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CHAPTER 1 
HIGHLIGHTS 

The 80386 is a high performance 32-bit micropro­
cessor designed to drive the most advanced 
computer-based applications of today and tomor­
row. CAE( CAD workstations, high resolution 
graphics, publishing, and office and factory 
automation are representative of today's appli­
cations that are well-served by the 80386. Tomor­
row's applications may be more constrained by 
the imagination of system designers than by the 
power and versatility of the 80386. 

The 80386 offers the system designer many new 
and powerful capabilities, including unprece­
dented performance of3 to 4 million instructions 
per second, a complete 32-bit architecture, a 4-
gigabyte (232 bytes) physical address space, and 
on-chip support for paged virtual memory. 
While embodying the latest in microprocessor 
technology, the 80386 retains object code com­
patibility with the wealth of software written for 
its predecessors, the 8086 and 80286. Of special 
interest is the 80386's virtual machine capability, 
which enables the 80386 to switch between 
programs running under different operating 
systems, such as Unix* and MS-DOS*. This 
facility enables OEMs to incorporate standard 
16-bit application software directly into new 
32-bit designs. 

Combining the power and performance of a 
superminicomputer with the low cost and design 
versatility of a microprocessor, the 80386 can 
open new markets to microprocessor-based sys­
tems. Applications that have not been feasible 
with slower microprocessors or cost-effective 
with superminicomputers are now practical with 
the 80386. Emerging applications such as machine 
vision, speech recognition, advanced robots, and 
expert systems, which have been largely experi­
mental, can now be brought to market. 

To effectively tackle the application challenges of 
tomorrow requires more than 32-bit registers, 
instructions, and buses. These fundamental facili­
ties are only the starting point for the 80386. The 
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following sections summarize the 80386's 32-bit 
architecture along with its more innovative 
features: 

o High-performance Implementation 

o Virtual Memory Support 

e Configurable Protection 

o Extended Debugging Support 

o Object Code Compatibility 

1.1 32-bit Architecture 

The 80386's 32-bit architecture provides the 
programming resources required to directly sup­
port "large" applications-those characterized 
by large integers, large data structures, large 
programs (or large numbers of programs), and 
so on. The 80386's physical address space is 232 

bytes, or 4 gigabytes; its logical address space is 
246 bytes, or 64 terabytes. The 80386's eight 32-bit 
general registers can be used interchangeably 
both as instruction operands and addressing 
mode variables. Data types include 8-, 16-, and 
32-bit integers and ordinals, packed and unpacked 
decimals, pointers, and strings of bits, bytes, 
words and doublewords. The 80386 has a com­
plete set of instructions for manipulating these 
types, as well as for controlling execution. The 
80386 addressing modes support efficient access 
to the elements of the standard data structures: 
arrays, records, arrays of records, and records 
containing arrays. 

1.2 High-performance 
Implementation 

A 32-bit architecture does not guarantee high 
performance. To deliver the potential of the 
architecture requires leading-edge semiconductor 
technology, careful partitioning of functions, 
and attention to off-chip operations, particularly 
the interaction of processor and memory. Incor-
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porating all of these, the 80386 delivers the 
highest perfonnance of any currently available 
microprocessor. 

The 80386 is implemented in Intel's CHMOS III, 
a semiconductor process that combines the high 
frequency of HMOS with the modest power 
requirements of CMOS. Using 1.5 microngeome­
tries and two metal layers, the 80386 packs over 
275,000 transistors into a single chip. Both 12 
and 16 MHz versions of the 80386 are initially 
available; running without wait states, the 16 
MHz part can achieve sustained execution rates 
of 34 million instructions per second. 

Internally, the 80386 is partitioned into six units 
that operate autonomously and in parallel with 
each other, synchronizing as necessary. All the 
internal buses that connect these units are 32 bits 
wide. By pipelining its functional units, the 80386 
can overlap the execution of different stages of 
one instruction and can process multiple instruc­
tions simultaneously. Thus, while one instruction 
is executed, another is decoded, and a third is 
fetched from memory. 

In addition to pipelining all instructions, the 
80386 applies dedicated hardware to important 
operations. The 80386's multiplyj divide unit can 
perform 32-bit multiplication in 941 clocks, 
depending on the number of significant digits; it 
can divide 32-bit operands in 38 clocks (unsigned) 
or 43 clocks (signed). The 80386's barrel shifter 
can shift 1-64 bits in a single clock. 

Many 32-bit applications, such as reprogram­
mabIe multiuser computers, need the logical-to­
physical address translation and protection pro­
vided by a memory management unit, or MMU. 
Other applications, for example, embedded real­
time control systems, do not. Most 32-bit micro­
processor architectures respond to this dichotomy 
by implementing the memory management unit 
in an optional chip. The 80386 MMU, by 
contrast, is incorporated on the processor chip as 
two of the processor's pipelined functional units. 
The operating system controls the operation of 
the MMU, allowing a real-time system, for 
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example, to forgo page translation. Implementing 
memory management on-chip produces better 
perfonnance for applications that use the MMU 
and no performance penalty for those that do 
not. This achievement is made possible by 
shorter signal propagation delays, use of the 
half-clock cyles that are available on-chip, and 
parallel operation. 

Another facility that is crucial to some appli­
cations and irrelevant to others is "number 
crunching," particularly single- and double­
precision floating point arithmetic. Floating 
point operands are large, and the useful set of 
operations on them is quite complex; many 
thousands of transistors are required to imple­
ment a standard set of floating point operations 
such as those defined by IEEE standard 754. 
Consequently, the 80386 provides hardware sup­
port for numerics in a separate numeric coproces­
sor chip. In fact, either of two chips, the 80287 
Numeric Coprocessor or the higher-perf onnance 
80387, can be connected to the 80386. The 
numeric coprocessors are invisible to applica­
tion software; they effectively extend the 80386 
architecture with IEEE 754-compatible regis­
ters, data types, and instructions. The combi­
nation of an 80386 and an 80387 can execute 1.8 
million Whetstones per second. 

A 32-bit processor running at 16 Mhz can outrun 
all but the fastest memories, making memory 
access time a potential performance bottleneck. 
The 80386 bus has been designed to make the 
best use of both very fast static RAMs and less 
expensive dynamic RAMs. For accesses to fast 
memory, such as caches, the 80386 provides a 
two-clock address-to-data bus cycle. (80386 
caches can be any size from a minimum useful 
capacity of 4 kilobytes to the entire physical 
address space.) Accesses to slower memories (or 
Ij 0 devices) can utilize the 80386's address 
pipelining facility to extend the effective address­
to-data time to three clocks, while maintaining 
two-clock throughput to the processor. Because 
of its internal pipelining of address translation 
with instruction execution, the 80386 generally 
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computes the address and definition of the next 
bus cycle during the current bus cycle. Address 
pipelining exposes this advance information to 
the memory subsystem, allowing one memory 
bank to decode the next bus cycle while another 
bank is responding to the current cycle. 

1.3 Virtual Memory Support 

Virtual memory enables the maximum size of a 
program, or a mix of programs, to be governed 
by available disk space rather than the size of 
physical (RAM) memory, which is presently on 
the order of 400 times more expensive. The 
resulting flexibility benefits manufacturers (who 
can supply multiple performance levels of a 
product that differ only in memory configura­
tions), programmers (who can leave storage 
management to the operating system, rather 
than writing overlays), and end-users (who can 
run more and larger applications without worry­
ing about running out of memory). 

Virtual memory is implemented by an operating 
system with support from the hardware. The 
80386 supports virtual memory systems based 
on segments or pages. Segment-based virtual 
memory is appropriate for smaller 16-bit systems 
whose segments are at most 64 kilobytes in 
length. The 80386, however, supports segments 
as large as 4 gigabytes; therefore most large-scale 
80386-based systems will base their virtual mem­
ory systems on the 80386's demand paging 
facilities. For each page, the 80386 supplies the 
Present, Dirty, and Accessed bits required to 
efficiently implement demand-paged virtual mem­
ory. The 80386 automatically traps to the oper­
ating system when an instruction refers to a not­
present page; when the operating system has 
swapped the missing page in from disk, the 
80386 automatically re-executes the instruction. 
To insure high virtual memory performance, the 
80386 provides an associative on-<:hip cache for 
paging information. The cache (called a trans­
lation lookaside buffer, or TLB) contains the 
mapping information for the 32 most recently 
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used pages. 80386 pages are 4 kilobytes long; by 
mapping 128 kilobytes of memory at once, the 
TLB enables the80386 to translate most addresses 
on-chip without consulting a memory-based 
page table. In typical systems, 98-99% of address 
references will "hit" a TLB entry. 

1.4 Configurable Protection 

Executing 3-4 million instructions per second, 
the 80386 has the "horsepower" to support 
extremely sophisticated applications consisting 
of hundreds or thousands of program modules. 
Insuch applications, the question is not whether 
there will be bugs, but how they can be found 
and eliminated as quickly as possible, and how 
their damage can be tightly confined. These 
applications can be debugged faster and made 
more robust in production if the processor 
verifies each instruction for conformance to 
protection criteria. The degree and style of 
protection that should be applied, however, is 
inherently application-specific. Indeed, simple 
embedded real-time applications may work best 
with no protection. A range of protection needs 
is best satisfied with a range of protection 
facilities that can be employed selectively as can 
those provided by the 80386: 

o Separation of task address spaces; 

o From zero to four privilege levels; 

'" Privileged instructions (for example, Halt); 

o Typed segments (for example, code or data); 

'" Access rights for segments and pages (for 
example, read-only or execute-only); 

'" Segment limit checking. 

All 80386 protection checks are performed in the 
on-chip pipeline to maximize performance. 

1.5 Extended Debugging Support 

The 80386's four on-chip debug registers can also 
significantly reduce program debugging time. 
These registers operate independently of the 
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protection system and can therefore be used by 
all applications, including those that will run in 
production without protection. More impor­
tantly, they provide the ability to set data 
breakpoints in addition to the more familiar 
instruction breakpoints. The 80386 monitors all 
four current break point addresses simultaneously 
without slowing execution. 

Instruction breakpoints trap (typically to a de­
bugger) when an instruction is executed; most 
processors provide this capability with a special 
instruction that the debugger writes over the 
instruction of interest. By specifying instruction 
breakpoint addresses in registers, the 80386 
eliminates the contortions required to write 
breakpoint instructions into protected or shared 
code. Data breakpoints, which are an exceptional 
capability for a microprocessor, are a particularly 
useful debugging tool. A data breakpoint can 
trap the instant that an address is read, or is 
either read or written. Using data breakpoints, a 
programmer can, for example, immediately locate 
the instruction responsible for erroneously over­
writing a data structure. 

In addition to the breakpoint registers, the 80386 
provides the more conventional debugging fa­
cilities of a breakpoint instruction and single 
stepping. 

1.6 Object Code Compatibility 

Two generations of 86 family processors have 
preceded the 80386, the 80286 and the 8086, and 
the 80386 is compatible at the binary level with 
both of them. This compatibility preserves soft­
ware investments, allows rapid market entry, and 
can provide access to the vast library of software 
written for computers based on the 86 family. 

Of course the 80386 can run 8086 programs; it 
can also run 80286 and 80386 programs concur­
rently. But the 80386's most innovative compati­
bility feature is Virtual 86 capability, which 
establishes a protected 8086 environment within 
the 80386 multitasking framework. Comple-
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menting the Virtual 86 facility, 80386 paging can 
be used to give each Virtual 86 task a one­
megabyte address space anywhere in the 80386 
physical address space. Moreover, if the 80386 
operating system supports virtual memory, Vir­
tual 86 tasks can be swapped like other tasks 
without special attention. In short, the 80386's 
Virtual 86 facility permits three generations of86 
family software to run at the same time. 

1.7 Summary 

The 80386 provides the raw performance required 
to implement high-end microprocessor-based 
systems. The 80386 architecture is flexible: rather 
than being bound to one view of the machine, 
system designers can choose the options that best 
match the needs of the application. Complete 
memory management facilities, including support 
for segmentation, paging, and virtual memory, 
are available on-chip. Up to four levels of 
protection can be used to build "firewalls" 
between software components, or protection can 
be forgone altogether. Virtual 86 tasks can enrich 
32-bit systems with the extraordinary array of 
standard software already developed for business 
and other 86 family machines. 

The power and versatility of the 80386 can be 
augmented by other Intel chips that can help 
maximize system performance. These include 
local area network controllers, advanced DMA 
controllers, disk controllers, and graphics 
coprocessors. 

Design time and cost can be reduced with the aid. 
of I ntel development tools and boards. Develop­
ment tools include compilers, linking and loading 
utilities, operating systems, and an in-circuit 
emulator (ICPM 386). Hundreds of industry 
standard MULTIBUS® I boards are available 
to perform standard functions without incurring 
design and test costs; -the array of high­
performance MULTIBUS II boards is growing 
rapidly. Finally, Intel's experienced staff of appli­
cation engineers and specialists can provide 
design assistance worldwide. 
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CHAPTER 2 
APPLICATION ARCHITECTURE 

The 80386 provides the assembly language appli­
cation programmer or compiler writer with an 
extensive set of 32-bit resources. The chapter 
describes these resources in three sections: 
I) registers, 2) memory and logical addressing, 
and 3) data types and instructions. 

2.1 Registers 

Computers, including the 80386, provide registers 
that programmers can use for very fast local 
storage. Register-resident data can be accessed 
without running bus cycles, thereby improving 
instruction execution time and leaving more bus 
bandwidth for other processors, such as direct 
memory access controllers. The 80386 provides 
programmers and compilers with eight general 
registers; another eight registers can be supplied 
by an optional 80287 or 80387 Numeric Coproces­
sor. Two other 80386 registers, which are oriented 
toward processor control and status, rather than 
data storage, are also important to programmers; 
these are the Flags register and the Instruction 
Pointer. 

2.1.1 General Registers 

As Figure 2-1 shows, the 80386 general registers 
are 32 bits wide; the processor's internal data 
paths, data bus, and address bus are also 32 bits 
wide. By any usual definition, the 80386 is a 
32-bit word machine. However, following the 
practice of a number of processors whose ances­
tors are 16-bit machines, an 80386 word is 16 bits, 
while a 32-bit quantity is called a doubleword, or 
dword. 

As Figure 2-1 shows, all of the general registers 
can be used as 16- or 32-bit registers and four of 
them can also be used as eight 8-bit registers. In 
nearly all instructions, any general register can be 
specified as an operand. For example, any two 
registers can be multiplied together. Similarly, 
any register can be used as a base or index 
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register in an address computation (discussed 
later in the chapter). Because every useful pro­
gram needs a stack, the ESP general register is 
implicitly defined as the top of stack pointer. 

31 15 

AX 
AH I AL EAX 

BX 
BH I BL EBX 

CX 
CH I CL ECX 

OX 
OH I OL EOX 

SI ESI 

01 EOI 

BP EBP 

SP ESP 

Figure 2-1. General Registers 

2.1.2 Flags and Instruction Pointer 

Figure 2-2 shows the format of the 80386 Flags 
register. The flags can be considered in three 
classes: status, control, and system. The processor 
sets the status flags after many instructions to 
reflect the outcome of the operation. For exam­
ple, when two operands compare equal, the 
processor sets the Zero flag. Other instructions, 
notably the conditional Jump instructions, testa 
status flag and behave differently depending on 
the flag's value. Programmers can set control 
flags to modify the semantics of some instruc­
tions. For example, the Scan string instruction 
looks toward higher or lower addresses depending 
on the value of the Direction Flag. The system 
flags are provided for operating system use, and 
can be ignored by application programmers. 
(The system flags are discussed in Chapter 3.) In 
fact, the 80386 protection system can be used to 
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prevent application programs from inadvertently 
altering the system flags. 

The 80386 Instruction Pointer, called EIP, is 32 
bits wide. The Instruction Pointer controls instruc­
tion fetching (including prefetching) and the 
processor automatically increments it after exe­
cuting an instruction. Interrupts, exceptions, and 
control transfer instructions, such as jumps and 
calls, alter the Instruction Pointer. 

2.1.3 Numeric Coprocessor Registers 

The numeric coprocessor registers shown in 
Figure 2-3 improve the performance of numeric 
applications. Connecting an 80287 or 80387 
Numeric Coprocessor to an 80386 effectively 

STATUS FLAGS 

CARRY 

PARITY 

AUXILIARY CARRY 

ZERO 

SIGN 

OVERFLOW 

I 

adds these registers to the 80386. While a 
numeric coprocessor recognizes integers, packed 
decimal, and floating point formats of various 
lengths, internally it holds all values in an eight­
deep 80-bit-wide floating point register stack. 
Numeric instructions may implicitly refer to the 
top element(s) of the stack, or explicitly to other 
registers. The Status Register maintains the top 
of stack pointer, flags that identify exceptions 
(for example, overflow), and condition codes 
that reflect the result of the last instruction. The 
Control Register contains option and mask bits 
that the programmer can set to select the 
rounding algorithm, how infinity is to be modeled, 
and whether exceptions are to be handled by the 
coprocessor or by software. 

I 
~ 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

_ VM I RF ~ NT I 10PL I OF I OF IIF I TF I SF I ZF ~ AF ~ PF ~ CF I 

lJ SYSTEM FL AGS 

VIRTUAL 86 M ODE 

RESUME 

NESTED TAS K 

1/0 PRIVILEG E LEVEL 

INTERRUPTS ENABLED 

FLAGS 

I 
CONTROL 

DIRECTION 

TRAP 

Figure 2-2. Flags Register 
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REGISTER STACK 

79 78 64 63 

± EXPONENT SIGNIFICAND 

CONTROL REGISTER 

STATUS REGISTER 

Figure 2-3. Numeric Coprocessor Registers 

2.2 Memory and logical Addressing 

80386 application programs use logical addresses 
to specify the locations of operands in a 4-
gigabyte physical address space. The processor 
automatically translates these logical addresses 
to the physical addresses that it emits on the 
system bus. As discussed more fully in Chapter 3, 
an 80386 operating system can tailor an appli­
cation program's view of its logical address 
space. For example, an operating system can 
define the logical address space as it is defined by 
many architectures, as a simple array of 232 bytes. 
Alternatively, an 80386 operating system can 
organize the logical address space as a collection 
of variable-length segments. An operating system 
can define many segments or just a few, as 
appropriate to its view of logical memory; the 
80386 does not dictate the use of segments, but 
rather allows them to be used as they support 
application needs. When reading the following 
sections, bear in mind that the extent to which an 
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application program actively uses segments de­
pends on the framework established by the 
operating system. 

2.2.1 Segments 

As just mentioned, an operating system can 
define the 80386 logical address space as one or 
more segments. Segments are logical units that 
map well to programming structures, which are 
inherently variable in length. For example, a 
l5l6-byte procedure fits exactly into a 1516-byte 
segment, as an 8-megabyte array (for example, a 
1028x1028x8 display buffer) fits exactly into a 
segment of the same size. By providing architec­
tural support for segments (for example, segments 
can be individually protected, and can be shared 
selectively between tasks), the 80386 improves 
the performance of systems that choose segments 
as a structuring mechanism. (Pages, which are 
described in Chapter 3, are fixed-size; they do 
not map well to programming constructs, but, 
on the other hand, are better-suited to operating 
system functions such as swapping.) 

An 80386 segment can be any size from 1 byte to 
4 gigabytes. For every segment, the operating 
system maintains an architecture-defined descrip­
tor that specifies the attributes of the segment. 
Segment attributes include a 32-bit base address 
and limit (length), and protection information 
that can guard a segment against incorrect use. 
Because descriptors are maintained by operating 
systems, fuller coverage of them is deferred to 
Chapter 3. Application programs deal only 
indirectly with descriptors, referring to segments 
by means of logical addresses. 

2.2.2 Logical Addresses 

Because a program may potentially refer to 
multiple segments, an 80386 logical address must 
identify a segment. Therefore, an 80386 logical 
address consists of two parts, a 16-bit segment 
selector and a 32-bit offset into the selected 
segment (see Figure 2-4). The selector part of a 
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logical address names a segment's descriptor. 
Conceptually, the processor determines a seg­
ment's address by using the selector as an 
index into a descriptor table maintained by the 
operating system. Adding the offset part of the 
logical address to the base address obtained 
from the segment's descriptor produces the 
operand address. 

2.2.3 Segment and Descriptor 
Registers 

To make logical addressing efficient, the 80386 
provides six segment and descriptor registers (see 
Figure 2-5). In effect, these registers act as a 
programmer-controlled cache that eliminates 
selectors from most instructions and permits 
most logical addresses to be translated on-chip 
without consulting a descriptor table. 

The address references of most programs cluster 
in a few small address ranges (this is the "locality 
ofreference"principle that makes virtual memory 
practical). For example, if a procedure is stored 
in a segment, many instructions are likely to be 
fetched from the segment before control passes 

LOGICAL ADDRESS 

47 32 31 

I SELECTOR OFFSET 

l 
DESCRIPTOR TABLE 

'--- DESCRIPTOR 

0 

I 

to another procedure in another segment. The 
80386, under program control, exploits this 
locality of reference by keeping recently used 
selectors and descriptors in its on-chip registers. 
The on-chip descriptors enable the great majority 
of logical addresses to be translated without 
time-consuming memory references. 

At any instant, up to six segments are addressable, 
the code segment, the stack segment, and up to 
four data segments. The CS, SS, DS, ES, FS, 
and GS segment registers contain the selectors 
for these segments. The corresponding descriptor 
registers contain the matching descriptors. If 
necessary, a program can make a new segment 
addressable by loading the new segment's selector 
into a segment register. The processor maintains 
the descriptor registers automatically, loading 
the proper descriptor whenever a program 
changes a segment register. (In fact, descriptor 
registers can only be loaded by the processor; 
they are inaccessible to programs.) Note that the 
Instruction Pointer contains the offset of the 
current instruction in the current code segment 
(defined by the CS register), and that register 
ESP contains the offset of the stack top in the 

SEGMENT -

OPERAND 

UP TO 
232 BYTES 

+ 

-

Figure 2-4. Logical Address Translation 
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current stack segment (defined by the SS register). 

To improve instruction encoding efficiency, most 
instructions do not name segment registers. 
Instead, the 80386 automatically selects a segment 
register based on the instruction being executed. 
For example, a Jump instruction implicitly 
refers to the CS register and a Push instruction 
uses the SS register. If necessary, a programmer 
can explicitly direct the 80386 to use a particular 
segment in an instruction by preceding the 
instruction with a one-byte segment override 
prefix. The prefix directs the processor to use a 
particular segment register to translate the address 
in the following instruction. 

Note that a segment whose base address is 0 and 
whose limit is 4 gigabytes defines a 4-gigabyte 
logical address space. Because the processor 
selects segment registers automatically, an instruc­
tion can name an operand anywhere in this 4-
gigabyte space with a simple 32-bit offset. If, as 
illustrated in Figure 2-6, all the descriptor registers 
are loaded with base addresses of 0 and limits of 
4 gigabytes, the segments effectively disappear. 
Every byte in the logical address space, whether 

15 SEGMENT 63 

SELECTOR 

-ADDITIONAL DESCRIPTOR FIELDS ARE DESCRIBED IN CHAPTER 3. 

an instruction, a variable, or an item on the 
stack, is addressable with a simple 32-bit offset. 
Thus, the segment registers give the 80386 six 
instantancously addressable logical address 
spaces of up to 4 gigabytes each. When these 
segments coincide, a program sees a single 4-
gigabyte logical address space identical to that 
provided by less-flexible 32-bit architectures. 

2.2.4 Addressing Modes 

The 80386 provides register and immediate 
addressing modes for operands that are located 
in registers or in instructions, respectively. More 
importantly, the 80386 provides the addressing 
modes needed to efficiently refer to elements in 
memory-based data structures such as arrays, 
records (structures), arrays of records, and records 
containing arrays. A program spccifies the offset 
part of a logical address using one of the 80386 
memory addressing modes. The 80386 computes 
the offset part of a logical address by the 
following formula: 

offset: = base + (index * scale) + displacement 

DESCRIPTOR 

BASE ADDRESS. LIMIT ETC.· CS (CODE) 

55 (STACK) 

os (DATA) 

ES (DATA) 

FS (DATAl 

GS (DATA) 

Figure 2-5. Segment and Descriptor Registers 

2-5 



APPLICATION ARCHITECTURE 

Any or all of the base, index, and displacement 
variables can be used to compute an offset. The 
base and index variables are the values of general 
registers, while the displacement value is con­
tained in the instruction. Any general register 
can serve as a base or index register. The value in 
the index register can be scaled (mUltiplied) by I, 
2,4, or 8, providing a direct way to refer to array 
or record elements of these lengths. A displace­
ment value can be 8 or 32 bits long and is 
interpreted by the processor as a signed 2's­
complement value. 

The most meaningful combinations of base, 
index, and displacement yield the following 
80386 memory addressing modes: 

• Direct: displacement only. 

o Register Indirect: base only. 

o Based: base + displacement. 

• Indexed: index (scaled). 

• Indexed with Displacement: index (scaled) + 
displacement. 

SEL. BASE LIMIT 

• Based Indexed: base + index (scaled). 

• Based Indexed with Displacement: base + 
index (scaled) + displacement. 

2.3 Data Types and Instructions 

This section describes the instructions that appli­
cation programmers use most frequently. Since 
the majority of instructions operate on specific 
data types (for example, integers), types and 
instructions are described together. Privileged 
instructions, including those for performing 1/0 
and handling interrupts, are covered in the next 
chapter. 

2.3.1 Principal Data Types 

Table 2-1 shows the data types and instructions 
provided by the 80386. Only the most frequently 
used instructions are shown in Table 2-1. Also 
omitted are variants of instructions such as (in 
the case of Rotate) Rotate Left,"Rotate Right, 
and Rotate Through Carry Flag. 

4GB # #1 

b 

"I 0 4GB 

l~. 
SS: n 4GB 

OS: n 4GB 

ES: n 0 4GB 

FS: n 4GB 
GS: n 0 4GB 1-7 

# 

SEGMENT/DESCRIPTOR REGISTERS SEGMENTS 

Figure 2-6. A 4-gigabyte Logical Address Space 
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Table 2-1. 
Principal Data Types and Instructions 

Type 

Integer, 
Ordinal 

Size 

8, 16,32 
bits 

Unpacked I digit 
Decimal 

Packed 2 digits 
Decimal 

Instructions 

Move, Exchange, Translate, 
Test, Compare, Convert, 
Shift, Double Shift, 
Rotate, Not, Negate, And, 
Or, Exclusive Or, Add, 
Subtract, Multiply, 
Divide, Increment, 
Decrement, Convert 
(M Dve with sign/ zero 
extension) 

Adjust for: Add, Subtract, 
Multiply, Divide 

Adjust for: Add, Subtract 

String (hyte, 0-4G bytes, M ave, Load, Store, 
word, dword) words, dwords Compare, Scan, Repeat 

Bit String 

Near 
Pointer! 

1-4G bits 

32 bits 

Test, Test and Set, Test 
and Reset, Test and 
Complement, Scan, Inscrt, 
Extract 

(Samc as Ordinal) 

Far Pointer 48 bits Load 

I. A near pointer is a 32-bit offset into a segment defined 
by one of the segment/descriptor register pairs. A far 
pointer is a full logical addess, that is, a selector and 
an offset. 

Figure 2-7 shows how exam pies of the basic data 
types are stored in memory, Multibyte items can 
be located at any byte address. Depending on the 
bus design, additional bus cycles may be required 
to access an operand located at an address that is 
not a multiple of its size. Therefore, for best 
performance independent of bus design, most 
programs align word operands on word bound­
aries, dword operands on doubleword bound­
aries, and so on. 

2.3.2 Numeric Coprocessor Data 
Types 

An 80287 or 80387 Numeric Coprocessor supple­
ments the 80386 with the data types and instruc­
tions shown in Table 2-2. Most numeric applica­
tions store input values and output results in the 
integer, real, or packed decimal types and reserve 
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the temporary real type for intermediate values, 
where its extended range and precision minimize 
rounding, underflow, and overflow problems in 
complex computations. In accordance with this 
model, a numeric coprocessor performs most 
computations on temporary real values stored in 
its registers. Loading any type into the register 
stack automatically converts the type to tempo­
rary real. A temporary real value in a register can 
be converted to any other type by a Store 
instruction. 

Table 2-2. Principal Numeric Coprocessor 
Data Types and Instructions 

Type 

Integer 

Packed 
Decimal 

Real 

Temporary 
Real 

Size 

16,32, 
64 bits 

18 digits 

32,64 bits 

80 bits 

Instructions 

Load, Store, Compare, 
Add, Subtract, Multiply, 
Divide 

Load, Store 

Load, Store, Compare, 
Add, Subtract, Multiply, 
Divide 

Add, Subtract, Multiply, 
Divide, Square Root, Scale 
Remainder, Integer Part, 
Change, Sign, Absolute 
Value, Extract Exponent 
and Significand, Compare, 
Examine, Test, Exchange 
Tangent, Arctangent, 2'-1, 
y* Log2 (X + 1), y* Log2 
(X), Load Constant (0.0, 
pi, etc.) (80387 adds Sine, 
Cosine, Sine and Cosine, 
Unordered Compare) 

Figure 2-8 shows how numeric data types are 
stored in memory. 

2.3.3 Other Instructions 

Not all 80386 instructions are associated with 
data types. The following paragraphs survey 
the untyped instructions. 

2.3.3.1 Stack Instructions 

An 80386 stack is a stack of dwords whose 
base and top are defined by the SS and ESP 
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registers, respectively. The Push instruction 
pushes a dword onto the stack and the Pop 
instruction pops the top d word from the stack 
into a register or to memory. Push All pushes 
the general registers onto the stack and Pop 
All does the reverse. 

The Enter and Leave instructions are provided 
for block-structured high-level languages. The 
Enter instruction builds the stack frame and 
display that compilers use to link procedure 
calls. The Leave instruction removes the dis­
play and stack frame from the stack in prepara­
tion for returning to the calling procedure. 

" INCREASING SIGNIFICANCE 

2.3.3.2 Control Transfer 
Instructions 

The Jump instruction transfers control to 
another instruction by changing the value of 
the Instruction Pointer. The target instruction 
may be in the same code segment (up to 232 

bytes a way) or in a different one. The operand 
of an intrasegment Jump is a near pointer, 
that is, the offset of the target instruction in 
the current code segment; thus, a Jump can be 
directed to any location in the largest possible 
segment. The operand of an intersegment 
Jump is a far pointer. allowing control to be 

I RELATIVE ADDRESSES 

7 0 o BYTE ORDINAL 

MAGNITUDE ___ -It 

47 

~ 0 

... IIL-__________ ..... I DWORD INTEGER 

t,--I ----MAGNITUDE------' 

'-------SIGN 

7 0 o UNPACKED DECIMAL 

7 3 0 OJ PACKED DECIMAL 

d~.,...I ____ -------.-1 BYTE STRING 

LEFTMOST BYTE------'t 

~ 0 

1L-__________ -.l1 NEAR POINTER 

31 I FAR POINTER L-______ ~ ____________ ~ 

L SELECTOR ~~I---- OFFSET - ___ ~ 

Figure 2-7. Data Type Storage 
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transfered to any point in a segment. (The 
selector part of the far pointer replaces the 
value in the CS register while the offset part 
replaces the value in EIP) A full set of condi­
tional Jump instructions, which branch based 
on the value of a status flag, is also available; 
these instructions can also transfer to locations 
up to 232 bytes away. 

Procedures and functions (subroutines) can 
be invoked with the Call instruction and a 
called routine can return with the Return 
instruction. As with Jumps, Calls within a 
code segment have near pointer operands 
which specify a new value for the Instruction 
Pointer, while Calls to a different code segment 
have far pointer operands that change the CS 
register in addition to EIP. Call instructions 
push the address of the following instruction 

onto the stack and then load the Instruction 
Pointer (and the CS register, if the transfer is 
to a different segment). The Return instruction 
pops the saved value(s) from the stack into 
Erp, and CS, if applicable. Calls can be 
indefinitely nested and recursive, subject only 
to the size of the stack. 

For controlling loops, the 80386 provides the 
Loop and conditional Loop instructions in 
addition to conditional Jumps. The loop 
instructions use the ECX register as a repeti­
tion counter; they decrement ECX and termi­
nate the loop when the register's value becomes 
zero. The conditional Loop instructions termi­
nate a loop prematurely when a flag takes a 
specified value. While the Loop instructions 
are designed for "bottom of loop" testing, 
adding a Jump If ECX Zero instruction 

I RELATIVE 
ADDRESSES 

... "'f----- INCREASING SIGNIFICANCE 

79 71 3 0 

(G::::J I I I I I PACKED DECIMAL 

Q ... 'S-IG-N--------MAGNITUDE-----------' 

31 23 0 

... 11--. ............ ________ 1 SHORT REAL l' • II MAGNITUDE----....J 

BIASED EXPONENT 

SIGN 

63 51 0 

LJIIL-_-LI ____________ ---JILONG REAL 

~II MAGNITUDE 

t BIASED EXPONENT 

SIGN 

79 62 0 

.. I &..1 ___ --11 ... 11 _________________ ---11 TEMPORARY REAL 

tL.1 _--,-_---ll L.I -------MAGNITUDE l t ____ BIASED EXPONENT 

L-.-----SIGN 

Figure 2-8. Numeric Coprocessor Data Type Storage Examples 
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implements a "top of loop" test that allows the 
loop to be executed zero times. 

2.3.3.3 Miscellaneous Instructions 

The 80386 Bound instruction can be used to 
verify that an array subscript is within the 
bounds of the array. There are instructions for 
setting and clearing flags, and for loading and 
storing the status byte of the Flags register. 
The 80287 and 80387 supply the instructions 
that an operating system needs to initialize the 
coprocessor, handle coprocessor exceptions, 
and save and restore the coprocessor's state. 
Finally, of course, the 80386 has a No Opera­
tion instruction. 

2-10 
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CHAPTER 3 
SYSTEM ARCHITECTURE 

The purpose of a system architecture is to 
support operating systems, but operating systems 
are quite diverse in their needs. In response, the 
80386 provides an array of resources that operat­
ing system designers and implementors can 
selectively employ. In effect, the 80386 system 
architecture can be configured to fit the needs of 
the operating system under development. 

3.1 System Registers 

In addition to the registers described in the 
preceding chapter, an operating system some­
times uses the 80386 registers shown in Figure 
3-1. (Later sections of this chapter sometimes 
refer to these registers, so they are shown here for 
reference.) In the main, it is the 80386 that uses 
the system registers; the operating system ini­
tializes the system registers and then ignores 
them during normal operation. The operating 
system may, however, use a system register to 
handle an exception. For example, when a page 
fault occurs, the processor loads the faulting 
address into CR2; the operating system's page 
fault handler uses the address to find the asso­
ciated page table entry. The system registers are 
normally inaccessible to application programs, 

47 

BASE ADDRESS 

63 

I SELECTOR 

I 
SYSTEM ADDRESS REGISTERS 

31 

15 

since only privileged instructions can operate on 
them. (Exceptions, page faults, and privileged 
instructions are explained later in this chapter.) 

3.2 Multitasking 

Many of the 80386's system architecture facilities 
directly support multitasking operating systems, 
though, of course, the 80386 can be used in 
demanding single-task applications. Multitasking 
is a technique for managing a computer system's 
work when that work consists of multiple activi­
ties; three such activities might be editing one file, 
compiling another, and transmitting a third to 
another computer. In a multitasking system, 
each activity that can proceed in parallel with 
other activities is represented by a task. (In this 
introduction, the term "task" is considered equiv­
alent to the term "process.") Each task executes a 
program consisting of instructions and initial 
data values. More than one task can execute the 
same program; for example, in a timesharing 
multitasking system several tasks (each corre­
sponding to a user) commonly execute the same 
compiler or editor. Programs and tasks are 
related in somewhat the same way that sheet 
music and musical performances are related: a 

LIMIT GDTR: GLOBAL DESCRIPTOR TABLE 

IDTR: INTERRUPT DESCRIPTOR TABLE 

LDTR: LOCAL DESCRIPTOR TABLE 

TR: RUNNING TASK'S TSS 

CRO: OPTIONS (FOR EXAMPLE, PAGING) 

~--------------~ CR1: (RESERVED BY INTEL) 

CR2: PAGE FAULT LINEAR ADDRESS 

CR3: PAGE DIRECTORY BASE ADDRESS 

SYSTEM CONTROL REGISTERS 

Figure 3-1. System Registers 
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program is a text that describes an algorithm, 
and a task is one execution (performance) ofthat 
algorithm. 

The programs that tasks execute are designed as 
though they were to run on dedicated processors 
sharing a common memory; that is, except ror 
occasional pauses to communicate or synchronize 
with other tasks, a task theoretically runs con­
tinuously in parallel with all other tasks. In fact, 
however, the tasks run one at a time in short 
bursts on a single processor. 

The multitasking operating system simulates 
mUltiple processors by providing each task with 
a "virtual processor." At any instant, the operating 
system assigns the real processor to one of the 
virtual processors, thereby running the associated 
task. To maintain the illusion of one processor 
per task, the operating system frequently switches 
the real processor to a different virtual proces­
sor. The 80386 system architecture supports this 
critical task switch operation with Task State 
Segments and instructions that switch tasks. 

3.2.1 Task State Segment 

A Task State Segment (TSS) is one of several 
data structures defined by the 80386 system 
architecture. In effect, these data structures are 
"data types" for operating systems. A TSS (see 
Figure 3-2) corresponds to what some operating 
systems call a task control block; it holds the 
state of a task's virtual processor. Each 80386 
task is represented by a TSS, which is divided 
into two parts. The lower part of the TSS is 
defined by the 80386 architecture and contains 
processor register values. The upper part of the 
TSS can be defined by the operating system to 
hold task-related data such as scheduling priority, 
file descriptors, and so on. To create a new task, 
the operating system creates a TSS and initializes 
it to the values the task should have when it 
begins execution. The 80386 then maintains the 
lower part of the TSS, while the upper part is the 
responsibility of the operating system. 

3-2 

3.2.2 Task Switching 

The operating system interleaves the execution 
of tasks on the processor according to a sched­
uling policy. The scheduling policy sets the order 
in which tasks run. Because task scheduling 
poljcies are so diverse, the 80386 leaves them to 
the operating system. Once the operating system 
has decided to run a new task, however, it can 
direct the processor to perform the core of the 
task switch, sometimes called the context switch. 

The 80386 keeps a selector and a descriptor for 
the running task's TSS in its Task Register (TR). 
To switch tasks, the operating system issues a 
Jump instruction whose operand is a selector for 
the TSS of the new task. The processor executes 
the Jump TSS instruction by first storing its 
registers in the current TSS and then loading TR 
with the selector (and its associated descriptor) 
specified in the instruction. Having obtained the 
address of the new TSS, the processor loads its 
registers with the values in the new TSS. Execu­
tion continues with the instruction pointed to by 

1 l-.. -- (DEFINED BY OPERATING SYSTEM) ,roo 

LOCAL DESCRIPTOR TABLE ADDRESS 

PAGE TABLE DIRECTORY ADDRESS 

.. ~ 
GENERAL REGISTERS 

~ ~ 

FLAGS REGISTER 

INSTRUCTION POINTER 

.. '" .... 
--SEGMENT REGISTERS 

I 
PRIVILEGED STACK POINTERS r 

Figure 3-2. Principal Task State Segment 
Fields 
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the new task's Instruction Pointer. To later 
resume execution of the old task, the operating 
system issues a Jump TSS to the old task's TSS; 
execution of the old task then continues with the 
instruction following the Jump TSS that sus­
pended the task. The task switch described here 
takes 17 microseconds (16 M Hz., no wait states). 

3.3 Addressing 

The physical address space of most computers is 
organized as a simple array of bytes. With the 
development of memory management units 
(M MUs), computer architectures began to distin­
guish between the physical address space imple­
mented by the memory hardware and the logical 
address space seen by a programmer. The M M U 
translates the logical addresses presented by 
programs into the physical addresses that go out 
on the bus. Most architectures view a task's 
logical address space as consisting of a collection 
of one of the following: 

Bytes 

Segments 

Pages 

The logical address space con­
sists of an array of bytes with 
no other structure (this is some­
times called a "flat" or "linear" 
address space). NoM M U trans­
lation is required because a 
logical address is exactly equiv­
alent to a physical address. 

The logical address space con­
sists of a few or many segments, 
each of which is composed of 
a variable number of bytes. A 
logical address is given in two 
parts, a segment number and 
an offset into the segment. The 
MMU translates a logical ad­
dress into a physical address. 

The logical address space con­
sists of many pages, each of 
which is composed of a fixed 
number of bytes. A logical 
address is a page number plus 
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an offset within the page. The 
MMU translates a logical ad­
dress into a physical address. 

Paged Segments The logical address space con­
sists of segments which them­
selves consist of pages. A logical 
address is a segment number 
and an offset. The MMU trans­
lates the logical address into a 
page number and an offset 
and then translates these into 
a physical address. 

Each of these views matches some classes of 
system well and others less well. For example, 
the "flat" view is appropriate for simple embedded 
systems, while systems that separately manage 
and protect individual program structures fit 
better with the segmented view of memory. 
Technically, the 80386 views memory as a collec­
tion of segments that are optionally paged. In 
practice, the 80386 architecture supports operat­
ing systems that use any of the four views of 
memory described above. 

3.3.1 Address Translation Overview 

Figure 3-3 shows the fundamentals of 80386 
logical-to-physical address translation. The se­
quence of operations shown in Figure 3-3 is 
central to both addressing and protection. It is 
described here in skeleton form to clearly establish 
its overall outline before considering such features 
as virtual memory and protection. Subsequent 
sections elaborate on the translation stages and 
show how they can be tailored to fit the needs of 
a particular system. 

As described in the previous chapter, the 80386 
memory addressing modes yield the 32-bit offset 
ofthe target operand. Combined with a segment 
selector, this offset forms a two-part logical 
address: the selector identifies the target segment 
and the offset locates the operand in the segment. 
In the vast majority of instructions, the selector is 
specified implicitly as the content of a segment 
register. 
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A selector is an index into a segment descriptor 
table; that is, it is a segment number. Each entry 
in a segment descriptor table contains the base 
address of a segment. The processor adds the 
offset to the segment's base address to produce a 
32-bit linear address. If paging is not enabled, the 
processor considers the linear address to be the 
physical address and emits it on the address pins. 

If paging is enabled, the 80386 translates the 
linear address into a physical address. It does this 
with the aid of page tables. A page table is 
conceptually similar to a descriptor table except 
that each page table entry contains the physical 
base address of a 4 kilobyte page. 

Because it embraces both traditional address 
space structuring units (segments and, optionally, 
pages), and because segments can be very large 
(up to 4 gigabytes), the 80386's addressing 
technique is very flexible. An operating system 
can provide a task with a single flat address 
space, a flat address space that is paged, a 

LOGICAL ADDRESS 

OFFSET 

31 

LINEAR ADDRESS 

DESCRIPTOR 
TABLES 

PAGE 
TABLES 

segmented address space, or a segmented address 
space that is paged. 

With all its flexibility, the 80386's multistage 
address translation facility is nevertheless quite 
fast. The 80386 typically computes an offset and 
translates the resulting logical address to a 
physical address in 1.5 clocks. Moreover, address 
translation time is not visible to the application 
because the 80386's on-chip MMU translates 
addresses in parallel with other processor activ­
ities (except when a Jump or Call instruction 
temporarily interrupts pipelining). 

3.3.2 Segments 

The segment is the unit the 80386 provides for 
defining a task's logical address space; that is, a 
task's logical address space consists of one or 
more segments. Operating systems differ sub­
stantially in the way in which they define a task's 
logical address space. For example, an embedded 
real-time system may define a task's logical 

PAGING ENABLED 

PHYSICAL ADDRESS 

Figure 3-3. Address Translation Overview 
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address space to be a single entity shared by all 
tasks and the operating system itself; in other 
words, a single segment is shared system-wide. 
At the other extreme, a system might map every 
data structure and procedure into a different 
segment, making a task's logical address space 
consist of dozens or hundreds of address spaces, 
each corresponding to a procedure or a data 
structure. Between these extremes might fall a 
general-purpose timesharing system in which 
tasks run in separate logical address spaces, and 
in which a task's code is separated from its data, 
and application code and data are separated 
from operating system code and data. The 80386 
segmentation facility is versatile enough to sup­
port each ofthese examples, and others as well. 

As described in Chapter 2, an instruction refers 
to a memory operand by a two-part logical 
address consisting of a segment selector and an 
offset into the segment. In principle, the 80386 
translates the logical address to a linear address 
by using the selector to look up the segment's 
descriptor in a segment descriptor table. The 
descriptor contains the segment's base address in 
the linear address space; adding the offset pro­
duces the operand's linear address. In practice, 
the logical-to-linear address translation is opti­
mized by implicit selectors and register-based 
descriptors. As a result, the descriptor table 
lookup only occurs for instructions that load 

ATTRIBUTES 
ACCESSED 

RIGHTS 

TYPE 

PRIVILEGE 

PRESENT 

I 
~ 

LIMIT 

new selectors into segment registers (for exam­
ple, a Call to a procedure in a different seg­
ment changes the selector in the CS register). 

I 

Although it rarely occurs in practice, it is 
nevertheless convenient to think of the processor 
translating logical addresses by looking up descrip­
tors in segment descriptor tables because it 
follows that the descriptors in a task's segment 
descriptor tables define the task's logical address 
space. Without a descriptor a task has no way to 
generate a linear address. 

A segment descriptor table is an array of 
descriptors; Figure 3-4 shows the logical format 
of a descriptor. The base address field has 
already been explained. The limit field specifies 
the length ofthe segment; the 80386 uses the limit 
field to verify that the offset part of a logical 
address is valid-that it actually falls within the 
segment. The segment attributes mainly relate to 
protection and are described later in the chapter. 

Each task can have a system-wide and a private 
logical address space; these are represented by 
the Global Descriptor Table (GOT) and the 
Local Descriptor Table (LOT), respectively. (A 
selector contains a bit associating it with 'one 
table or the other.)These descriptor tables can 
contain up to 8,192 descriptors each, and together 
they define a task's logical address space. That is, 
to make a new segment addressable by a task, the 
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I I I 
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Figure 3-4. Principal Descriptor Fields 
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operating system must insert a descriptor for the 
segment into the G DT or into the task's LDT. In 
protected systems, the G DT and LDT can be 
made privileged structures so that only the 
operating system can modify them. 

As its name implies, all tasks share the Global 
Descriptor Table; operating systems normally 
place descriptors for segments that are shared 

DESCRIPTOR TABLES 

GOT 

system-wide in the GDT. The operating system's 
code segment (or segments) is a good example of 
a segment that should be accessible to all tasks 
and whose descriptor is therefore normally 
located in the GDT. In contrast, each task can 
have its own Local Descriptor Table. The 80386 
maintains the current task's LDT address in its 
Local Descriptor Table Register (LDTR), but it 
reloads this register (just as it reloads its general 
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and segment registers) from the new task's TSS 
on task switches. 

Tasks may share a segment in three ways (see 
Figure 3-5): 

1. A segment whose descriptor is in the GDT is 
shared by all tasks. 

2. Tasks that share an LOT share the segments 
described in the LOT; this approach is 
appropriate for closely cooperating tasks. 

3. Descriptors in different LOTs may point to 
the same segment; such descriptors are called 
aliases. Aliases allow the unit of intertask 
sharing to be an individual segment, rather 
than all segments in a descriptor table. 

3.3.3 Pages 

Whether a task's logical address space consists 
of one segment or many, an operating system can 
subdivide the linear address space into pages. To 
an operating system, pages are convenient units 
for allocation and relocation because they are all 
the same size. Pages also provide a way to 
protect portions of large segments and, impor­
tantly, provide a convenient unit for imple­
menting virtual memory. These applications of 
paging are discussed in subsequent sections. 

An 80386 page is 4K bytes long. This size is 
consistent with the industry trend toward larger 
pages and it helps performance in two ways. 
First, it provides a high page cache hit ratio 
given the cache size that can reasonably be 
implemented on-chip with current technology. 
(The 80386's on-chip page cache is described 
shortly). Second, 4K bytes is an efficient unit 
for disk transfer; most operating systems run­
ning on machines with smaller page sizes must 
group pages into "clusters" to keep the number 
of disk transfers acceptably low. 

An 80386 operating system enables paging by 
setting the PG (Paging Enabled) bit in Control 
Register 0 with a privileged instruction. When 
paging is enabled, the processor translates a 
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linear address to a physical address with the aid 
of page tables. Page tables are the counterparts 
of segment descriptor tables; as a task's segment 
descriptor table defines its logical address space, 
a task's page tables define its linear address 
space. Similar to superminis and mainframes, 
an 80386 task's page tables are arranged in a 
two-level hierarchy as shown in Figure 3-6. 
Each task can have its own page table directory. 
The 80386's CR3 (Page Table Directory Base) 
system register points to the running task's 
page table directory; the processor updates 
CR3 on each task switch, obtaining the new 
directory address from the new task's TSS. A 
page table directory is one page long and 
contains entries for up to 1,024 page tables. 
Page tables are also one page long, and the 
entries in a page table describe 1,024 pages. 
Thus, each page table maps 4 megabytes and a 
directory can map up to 4 gigabytes, the entire 
32-bit physical address space. 

Figure 3-6· shows in functional terms how the 
80386 translates a linear address to a physical 
address when paging is enabled. The processor 
uses the upper 10 bits of the linear address as an 
index into the directory. The selected directory 
entry contains the address of a page table. The 
processor adds the middle 10 bits of the linear 
address to the page table address to index the 
page table entry that describes the target page. 
Adding the lower 12 bits of the linear address to 
the page address produces the 32-bit physical 
address. 

To save the overhead of page ta ble lookups, the 
80386 caches mapping information for the the 32 
most recently used pages in an on-chip translation 
lookaside buffer (TLB). Only when it does not 
find the mapping information for a page in the 
TLB does the processor consult a memory-based 
directory or page table. As a rule, 98-99% of 
address references are TLB "hits," requiring no 
memory reference to translate. When a TLB 
"miss" does occur, the processor replaces an 
older TLB entry with the new entry; the locality 
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of reference principle suggests that the new entry 
is likely to be used again in the near future. 

While enabling paging does not increase address 
translation time, it does make instruction execu­
tion time vary slightly, due to the occasional TLB 
misses. By disabling paging, real-time systems 
can eliminate this potential response time variable. 

Figure 3-7 shows the basic content of a page table 
entry (PTE). Directory entries are identical, 
except that the page address field is interpreted 
as the physical address of a page table, rather 
than a page. 

Tasks can share individual pages or entire page 
tables. Entries in different page tables that point 
to the same page are aliases of one another just as 
descriptors with the same base address are aliases 
of one another. The 80386's two-level page table 
structure makes it easier to share pages between 
tasks by sharing entire page tables. Since the 
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address of a page shared in this way exists in a 
single page table, the operating system has one 
page table entry to update when it moves the 
page. 

3.3.4 Virtual Memory 

Virtual memory allows very large programs, or 
groups of programs, to run in much smaller 
amounts of physical memory without overlays. 
Virtual memory systems can be based on either 
segments or pages. In either case, the basic idea 
of virtual memory is to exploit the much lower 
cost of disk storage compared to semiconductor 
memory. A virtual memory operating system 
stores all segments or pages in a large disk area, 
often called the swap area. The much smaller 
physical ("real') memory holds only the most 
frequently used segments or pages. So long as the 
segments or pages stored on disk are used 
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infrequently, a virtual memory system will per­
form nearly as well as one with far more memory 
at a fraction of the cost. The key architectural 
features needed to efficiently support virtual 
memory are: 

o A bit for each segment or page that tells the 
processor (or memory management unit) if the 
segment or page is "present" in memory or 
needs to be swapped in from disk. 

o A trap or exception mechanism by which the 
processor can notify the operating system to 
swap in a not-present segment or page. 

o Restartable instructions that enable the proces­
sor to retry an instruction after the operating 
system has loaded the formerly not-present 
page into memory and marked it present. 

The 80386 has all of these necessary facilities, 
plus others that improve the efficiency of virtual 
memory management. Both descriptors and 
page table entries have a Present bit, and 
therefore can be used as the basis of a virtual 
memory design. Swapping segments between 
memory and disk is a reasonable approach when 

ATTRIBUTES 

the segments are relatively small as they are in 
l6-bit architectures. When segments can be very 
large, as they can on the 80386, swapping pages is 
usually a more effective approach, due to the 
fixed size of pages. In a page-based system, the 
operating system allocates and frees memory in 
page-sized units called page frames; a page 
swapped in from disk will fit into any available 
frame. Because most 32-bit virtual memory 
systems are page-based, the remainder of this 
section describes the 80386's page-based virtual 
memory support. 

In general, a page-based virtual memory operat­
ing system transfers not-present pages from disk 
to page frames on demand, that is, when notified 
by the processor that an instruction refers to a 
not-present page. When the number offree page 
frames runs low, the operating system also 
transfers pages from page frames to disk, at­
tempting to remove the pages that are least likely 
to be referenced in the near future. By trans­
parently swapping pages between page frames 
and disk, the operating system gives application 
software the illusion of a physical memory that is 
as large as the swap area on the disk. The details 
of these operations are described below. 

PRESENT ----------------------, 

RIGHTS--------------------, 

PRIVILEGE------------------, 

ACCESSED--------------, I 
:::.-D-EF-IN-E-D-)--------l--~l I 

PAGE ADDRESS I I I I I I 
Figure 3-7. Principal Page Table Entry Fields 
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When, in the course of translating a logical 
address, the processor produces a linear address 
that refers to a page table entry whose Present bit 
is reset, the processor raises an exception called a 
page fault. Exceptions are covered later in this 
chapter, but the basic consequence of a page fault 
is the invocation by the processor of an operating 
system procedure called the page fault handler. 
On entry to the page fault handler, Control 
Register 2 contains the linear address associated 
with the not-present page. From this address the 
page fault handler can find the relevant page 
table entry by translating the linear address just 
as the processor.did. Note that all bits other than 
the Present bit in a not-present page table entry 
are user-defined; they provide a convenient place 
for the operating system to store the disk address 
of the not-present page. Having determined the 
disk address of the not-present page, the page 
fault handler can allocate a page frame and 
transfer the page from disk to the frame. After 
updating the page table entry's address field and 
Present bit, the page fault handler simply returns. 
The processor then automatically retrics the 
faulting instruction, and the result is the same as 
if the page had been present when the instruction 
was first executed. 

Other fields in an 80386 page ta ble entry hel p the 
operating system perform virtual memory opera­
tions efficiently. In addition to loading pages on 
demand, the operating system must maintain a 
supply offree page frames that can be allocated 
by the page fault handler. To increase the supply 
of free page frames, the operating system must 
decide which frames to free. Before it frees a 
frame, the operating system must also write the 
page to disk if the page has been modified since 
it was loaded. To assist the operating system in 
these activities, the 80386 architecture provides 
an Accessed bit and a Dirty bit in each page table 
entry; the processor updates these bits auto­
matically for all present pages. The 80386 sets the 
Accessed bit whenever the page is read or written 
and sets the Dirty bit whenever the page is 
written. By periodically examining and resetting 

the Accessed bits, the operating system can 
identify pages that have not recently been used. 
The frames containing these pages are good 
candidates for freeing because pages that have 
not recently been used are unlikely to be used in 
the near future. When the operating system has 
selected a page to give up its page frame, the page 
does not have to be written to disk unless the 
processor has set its Dirty bit. 

Each page table entry also contains a 3-bit field 
that the operating system can use as it likes. 
Operating systems commonly use this field to 
mark pages with special status conditions such as 
"locked for 1/0." 

3.4 Protection 

The 80386 provides an array of protection 
mechanisms that operating systems can selectively 
employ to fit their needs. One form of protection, 
the separation of task address spaces by segment 
descriptor tables and page tables, has already 
been discussed. This separation effectively pre­
vents application tasks from interfering with 
each other's code and data. In addition' to 
isolating tasks from each other, the 80386 pro­
vides facilities for protecting the operating system 
from application code, for protecting one part of 
the operating system from other parts, and for 
protecting a task from some of its own errors. 
Besides making operating systems more robust, 
the 80386 protection system can simplify de­
bugging by trapping and isolating errors to 
specific tasks. All 80386 protection facilities are 
implemented on-chip so protection checking can 
be performed without performance penalties. 

3.4.1 Privilege 

Many of the 80386 protection facilities are based 
on the notion of a privilege hierarchy. At any 
instant, a task's privilege is equal to the privilege 
level of the code segment it is executing. In each 
segment descriptor is a field that defines the 
privilege level of the associated segment; the field 

3-10 



SYSTEM ARCHITECTURE 

may take one of four values. Privilege level 0 is 
the most-privileged level and privilege level 3 is 
the least-privileged level. 

Figure 3-8 shows how the 80386 privilege levels 
can be used to establish different protection 
policies. An unprotected system can be imple­
mented by simply placing all procedures in a 
segment (or segments) whose privilege level is o. 
The traditional supervisor/ user distinction can 
be implemented by placing user (application) 
code in a privilege level 3 segment and supervisor 
procedures in a segment whose privilege level is 
O. An operating system can also use privilege 
levels I and 2, if desired. For example, the most 
critical and least-changing operating system proce­
dures (sometimes called the operating system 
kernel) might be assigned privilege level o. 
Privilege level I might be used for the services 
that are less critical and more frequently modified 
or extended, for example, device drivers. Level 2 
might be reserved for use by original equipment 
manufacturers. Such OEMs could then assign 
their code privilege level 2, leaving level 3 for the 
end users. In this way, the OEM software is 
protected from the end users, the operating 
system is protected from both the OEM and the 
end users, and the operating system kernel is 
protected from all other software, including that 
part of the operating system that is subject to 
frequent change. 

As will be amplified in succeeding sections, a 
task's privilege level determines what instructions 
it may execute and what subset of the segments 
and/ or pages in its address space it may reference. 
The processor checks for consistency between a 
task's privilege level and the privilege level of the 
segment or page that is the target of an instruc­
tion. Any attempt by a task to use a more 
privileged segment or page makes the processor 
stop execution of the instruction and raise a 
general protection exception. (Exceptions are 
discussed later in the chapter, as are system calls, 
which provide a controlled way for a less 
privileged procedure to call a more privileged 
one.) 
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A. UNPROTECTED SYSTEM 

B. SUPERVISOR/USER PROTECTION 

C. FOUR LEVELS OF PROTECTION 

Figure 3-8. USing Privilege Levels 
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3.4.2 Privileged Instructions 

In addition to defining which segments and 
pages it can use, a task's privilege level defines the 
instructions it can execute. The 80386 has a 
number of instructions whose execution must be 
tightly controlled to prevent serious system 
disruption. All of the instructions that load new 
values into the system registers are examples of 
privileged instructions. Only a task running at 
privilege level 0 can execute privileged instruc­
tions, 

3.4.3 Segment Protection 

The descriptors in a task's LDTand GDT define 
the task's logical address space. The segments 
defined in these tables are theoretically addres­
sable, because the descriptor tables provide the 
information necessary to compute a segment's 
address. However, an addressable segment may 
not be accessible to a particular operation 
because of the additional protection checks 
made by the 80386. The 80386 checks every 
segment reference (whether generated by the 
execution of an instruction or an instruction 
fetch) to verify that the reference is consistent 
with the protection attributes of the segment as 
described below. 

Privilege To access a segment, a program 
must be at least as privileged as the 
segment. For example, a program 
running at level 3 can only refer­
ence segments whose privilege level 
is also 3, while a program running 
at level 0 can access all segments in 
its logical address space. 

Limit A reference to a segment must fall 
within the segment's limit. Segment 
limits enable the processor to trap 
common programming errors such 
as stack overflow, bad pointers and 
array subscripts, and bad call and 
jump addresses. In cases where the 
operating system can determine that 
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Type 

Rights 

a reference outside the bounds of a 
segment is not an error (stack over­
flow is an example in some systems), 
the operating system can extend the 
segment (for example, by adding a 
page to it) and restart the instruction. 

Each descriptor contains a type field 
that the processor checks for consis­
tency with the instruction it is exccut­
ing. Ordinary segments have a type 
of code or data, ena bling the proces­
sor to catch an attempt to over­
write code, for example, the segment 
types manipulated directly by applica­
tions are code and data. System 
descriptors are also typed so the 
processor can verify when it is switch­
ing tasks, for example, that the 
segmcnt named in Jump TSS in­
struction is in fact a Task State 
Segment. 

A segment descriptor can be marked 
with rights that restrict the operations 
permitted on the associated segment. 
Code segments can be marked exe­
cutable or executable-and-readable. 
Data segments can be marked read­
only or readable-and-writable. 

All ofthe checks described above depend on the 
integrity of descriptors. If a task executing its 
application code could change a descriptor, the 
checks would guarantee nothing. For this reason, 
an operating system can restrict access to descrip­
tor tables to privilege level 0 code. 

Note that for sharing, different descriptors for 
the same segment (that is, aliases) may have 
different protection attributes, allowing, for ex­
ample, one task to read and write a segment 
while another can only read it. Aliases also 
permit the operating system to override the 
protection system when necessary, for example, 
to move a code segment. 
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3.4.4 Page Protection 

Systems that do not make extensive use of 
segments can instead protect pages. (Page protec­
tion can also be applied to sections of large 
segments.) Like a descriptor, a page table entry 
has a set of protection attributes; the 80386 
checks every reference to the page for confor­
mance to these attributes. 

A page table entry can be marked with one of 
two privilege levels, user or supervisor. User level 
corresponds to privilege level 3 but supervisor 
pages can only be accessed by tasks running at 
privilege levels 0, I, or 2. A user page can also be 
marked read-only or readable-and-writable. 

The 80386 checks a page's protection attributes 
after verifying that an access is consistent with 
the segment attributes. Thus, page protection is a 
convenient way for an operating system to apply 
additional protection to portions of a segment. 
For example, an operating system can safely 
store task-related operating system data, such as 
page tables and file descriptors, in a task's data 
segment by making the containing pages super­
VISor pages. 

3.5 System Calls 

Most operating systems organize their services as 
a collection of procedures that tasks can call. An 
unprotected 80386 operating system can place its 
procedures and application code in a level 0 code 
segment (or more than one such segment); an 
application task can then invoke an operating 
system service with an ordinary Call instruction. 
Such an approach is fast but relies on the 
application tasks to be error-free and well­
behaved (as they are in embedded systems, for 
example). Nothing prevents a task running at 
level 0 from calling an address that is not an 
operating system entry point; nor is such a task 
prevented from corrupting operating system 
data. To protect the operating system, application 
code and data can be placed in less-privileged 
privileged segments. Just as a task running at a 
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given privilege level cannot read or write a more 
privileged data segment or page, neither can a 
task directly call a more privileged code segment. 

To allow a task executing a less-privileged code 
segment to make a protected system call, the 
operating system must define one or more entry 
points. In the 80386, these entry points are called 
gates (see Figure 3-9). There are two types of 
gates that can be used to implement operating 
system entry points, trap gates and call gates. 
The two gates are generally similar, but the call 
gate allows the operating system interface to be 
identical to that of an ordinary procedure. Using 
call gates, compilers and assembly language 
programmers can use a single set of conventions 
to call any procedure, letting the 80386 take care 
of the extra processing required to change 
privilege levels. 

ATTRIBUTES 

DWORD COUNP n 
TYPE~ 
PRIVILEGE 1 
PRESENT 1 

11 I I ENTRY POINT 
SELECTOR 

ENTRY POINT OFFSET 

'DWORD COUNT APPLIES ONLY TO CALL GATES. 

Figure 3-9. Principal Gate Fields 

As shown in Figure 3-9, a gate contains the 
logical address of an entry point and a set of 
attributes. The most important attribute is the 
gate's privilege level. A gate's privilege level 
defines the privilege levels that can use the gate; 
in order to use a gate, a calling procedure must be 
at least as privileged as the gate. Figure 3-10 
shows an example. In this hypothetical system 
user code is assigned privilege level 3 while the 
operating system is divided into two levels. The 
operating system kernel runs at privilege level 0 
and the less-critical operating system service 
procedures run at privilege level 1. (Privilege 
level 2 is not used.) In this system user code is 
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allowed to call the service procedures but not the 
kernel; service procedures can, however, call the 
kernel. Accordingly, the operating system has 
provided a gate for the service procedures; the 
privilege level of this gate is 3 so user code can 
call through it. By assigning the kernel gate 
privilege level I , the operating system permits the 
service procedures to call the kernel, but denies 
access to the user code, which is less-privileged 
than the kernel gate. Thus, an operating system 
can use gates to precisely define its entry points, 
including the privilege level required to use an 
entry point. In order to make system services 
callable from all tasks, operating systems nor­
mally place their call gate(s) in the Global 
Descriptor Table. 

To call through a trap gate, a task issues an 
Interrupt instruction; to call through a call gate, 
a task issues an ordinary intersegment Call 
instruction. Both instructions change the task's 
privilege level and change to the stack defined (in 
the task's TSS) for the higher privilege level. (The 
operating system must have its own stack in 
order to guarantee that it has enough stack space 

t PERMITIEO CALL DR ~ PROHIBITED CALL DR 
INTERRUPT INSTRUCTION 0 INTERRUPT INSTRUCITDN 

Figure 3-10. Gates as Protected Entry Points 

to run; application tasks cannot safely be trusted 
to have left sufficient stack space.) 

Before calling through a call gate, a task can 
push parameters on its stack as it would before 
calling another procedure. The 80386 auto­
matically copies the parameters to the more­
privileged stack (the Dword Count field in the 
call gate tells the 80386 how many dwords of 
parameters to copy). Systems that call through 
trap gates can pass parameters in registers. 

3.6 Interrupts and Exceptions 

Devices generate interrupts when they require 
attention, while instructions may incur exceptions 
when their execution encounters a special condi­
tion, such as a not-present page. A typical 
interrupt or exception requires rapid invocation 
of a software handler that responds to the 
interrupt or exception. When the handler returns, 
the 80386 resumes execution of the instruction 
stream that was interrupted or incurred the 
exception. Because of their underlying similarity, 
the 80386 treats interrupts and exceptions in a 
unified manner. 

Each interrupt source and each exception type 
has an identifying number in the range 0-255; the 
80386 uses this number to invoke the handler 
associated with the interrupt or exception. Since 
exceptions are detected by the 80386, it defines 
the exception numbers shown in Table 3-1. 
Interrupt numbers are defined by the operating 
system. The operating system initializes an 8259A 
Programmable Interrupt Controller so that each 
interrupt source is associated with a number. 
When an interrupt occurs, the 8259A supplies 
the 80386 with the number of the interrupt. 
Interrupt instructions supply their numbers in 
their operands. Note that for compatibility with 
current and future Intel products, interrupti 
exception numbers 0-31 must not be used except 
as defined in Table 3-1. All other numbers may be 
used freely. 
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Thble 3-1., Exceptions 

ID Description 

0 Divide Error 

Debug Exception 

3 Software Breakpoint 

4 Overflow 

5 Array Bound Check 

6 Invalid Opcode 

7 Coprocessor Not Present 

8 Double Fault 

10 Invalid TSS 

11 Segment Fault 

12 Stack Under/ Overflow 

13 General Protection Violation 

14 Page Fault 

16 Coprocessor Error 

3.6.1. Interrupt Descriptor Table 

Having generated or obtained an interrupt or 
exception number, the 80386 uses the number 
as an index into the Interrupt Descriptor 
Table, or IDT. The IDT may be located 
anywhere in memory; the operating system 
initializes the IDT and loads its address into 
the processor's Interrupt Descriptor Table 
Register (IDTR). Like the GDT or an LDT, 
the IDT is a vector of descriptors, although 
gates are the only type of descriptors allowed 
in the IDT. There is one gate in the IDT for 
each interrupt and exception handler. (The 
IDT is functionally similar to the "interrupt 
vector table" provided by a number of archi­
tectures.) 

An 80386 interrupt or exception handler can 
be implemented as a procedure or a task; the 
merits of these two alternatives are discussed 
shortly. The 80386 invokes a procedure-based 
handler much as it performs a gated system 

call. To invoke a task-based handler, the 80386 
performs a task switch. A handler's IDT gate 
type tells the processor how to invoke the 
handler (see Table 3-2). As mentioned, inter­
rupt and trap gates are functionally similar to 
call gates, except that they have no provision 
for copying parameters, and they also cause 
the 80386 to save the Flags register on the 
handler's stack. They differ from one another 
only in the state of the Interrupt Enable Flag 
(IF) at entry to the handler; an interrupt 
handler is entered with interrupts disabled, 
while a trap handler, which is typically used to 
handle exceptions, is entered with interrupts 
unchanged. As part of switching to a task-based 
handler, the 80386 loads the Flags register 
with the value saved in the task's TSS, allowing 
the handler to run with interrupts enabled or 
disabled. 

Table 3-2. Interrupt and Exception 
Gate Characteristics 

Gate Type Handler Interrupts 

Interrupt Procedure Disabled 

Trap Procedure Enabled 

Task Task (Handler's IF Flag) 

Procedure-based handlers are appropriate for 
routines that should run in the context (that is, 
use the address space and register values) of the 
task that is interrupted or incurs the exception. 
At 16 MHz, the invocation sequence takes 3.6 
microseconds. Like any other procedure, an 
interrupt or exception procedure has access to all 
of the running task's resources-its data and 
code, its registers, and its stack. This is as it 
should be for most exceptions, because a task 
causes an exception and ready access to task data 
may be required to resolve it. For example, a 
page fault handler needs the running task's page 
tables to find the not-present page's disk address. 
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Ideally, interrupts should be handled by tasks, 
not procedures, because an interrupt is generally 
unrelated to the task it interrupts. Moreover, an 
interrupt handler should have its own resources 
(for example, its own stack) rather than "inherit­
ing" those of whatever task happens to be 
running when the interrupt occurs. On the other 
hand, a task switch takes longer than a procedure 
call (17 VS. 3.6 microseconds) because the pro­
cessor saves and restores its registers when it 
switches tasks. Systems that are extremely sen­
sitive to interrupt latency can handle interrupts 
with procedures. 

3.6.2 Debug E){ceptions 
and Registers 

Like most processors, the 80386 has a breakpoint 
instruction that can be used to invoke a debugger 
when it is executed. The 80386's principal de­
bugging support, however, takes the form of the 
debug registers shown in Figure 3-11. The debug 
registers support both instruction breakpoints 
and data breakpoints. Data breakpoints are an 
important innovation that can save hours of 
debugging time by pinpointing, for example, 
exactly when a data structure is being overwritten. 

31 o 

BREAKPOINT ADDRESS 0 ORO 

BREAKPOINT ADDRESS 1 DR1 

BREAKPOINT ADDRESS 2 DR2 

BREAKPOINT ADDRESS 3 DR3 

(RESERVED BY INTEL) DR4 

(RESERVED BY INTEL) DR5 

DEBUG STATUS DR6 

DEBUG CONTROL DR7 

Figure 3-11. Debug Registers 

The breakpoint registers also eliminate the contor­
tions required to write a breakpoint instruction 
into code that is write-protected or shared by 
multiple tasks. 

An 80386 debugger is implemented as the handler 
for exception number 1. The processor can be 
directed to invoke the debugger after every 
instruction (by setting TF, the Single Step Trap 
Flag), upon selected task switches, or upon 
occurrence of a breakpoint condition defined in 
one of the debug registers. By inspecting the 
Debug Status Register the debug exception 
handler can determine which of these caused it to 
be invoked. By having itself invoked on task 
switches, the debugger can reload the debug 
registers with values applicable to the new task. 

The 80386 can monitor up to four breakpoint 
conditions simultaneously, invoking the debug 
exception handler whenever one of these condi­
tions occurs. Each breakpoint condition is defined 
by the content of a debug register; these registers 
may be loaded and stored with privileged forms 
ofthe Move instruction. A breakpoint condition 
consists of a 32-bit linear address, a 2-bit length 
field, and an access field; the latter two items are 
specified in fields of DR7, the Debug Control 
Register. A breakpoint condition's address and 
length form an address range that the processor 
checks on each memory reference. The access 
field defines the type of access for which the 
processor is to raise exception 1. Three types of 
access may be specified: 

1. Instruction at address executed. 

2. Data written in address range. 

3. Data read or written in address range. 

3.7 InpuVOutput 

An 80386-based system can map I/O devices 
into the processor's memory space or into a 
separate I/O space. Memory-mapped I/O devices 
can be read or written using memory reference 
instructions such as Move, Or, and the like. 
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Memory-mapped devices can be protected by 
the standard 80386 segment and page protection 
mechanisms. 

In addition to its memory address space, the 
80386 has a 64 kilobyte I/O address space. 
Devices mapped into this space are manipulated 
with the Input, Output, Input String, and Output 
String instructions. The first two instructions 
transfer a byte, word, or dword to or from the 
EAX register. The latter two instructions transfer 
a string of bytes, words, or dwords to or from 
memory. 

The 80386 I/O instructions are privilege level 
sensitive. In the Flags register is a field called 
I/O Privilege Level (lOPL), which defines the 
minimum privilege level at which the running 
task can execute I/O instructions. (IOPL is 
loaded from the TSS so tasks can have different 
IOPLs). For example, if a task's 10PL is I, then 
the task cannot issue I/O instructions except 

when it is running at privilege level I or O. The . 
10PL mechanism supports multilevel protected 
operating systems in which, for example, critical 
and stable kernel procedures run at privilege 
level 0, and more volatile I/O procedures run at 
privilege level I; in this case the operating system 
has only to set IOPL to I when it creates a task. 
Because IOPL is task-specific, trusted tasks can 
be allowed execute I/O instructions while running 
application code, allowing them, for example, to 
directly manipulate special devices, for which no 
operating system driver is available. 
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To perform direct memory access (DMA) I/O, 
an 80386 operating system passes a physical 
address to the DMA controller and must guar­
antee that the target segment(s) and/ or page(s) 
do not move during the transfer. One way to 
mark pages "locked for I/O" is to use one of the 
three user-defined page table bits. 
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CHAPTER 4 
ARCHITECTURAL COMPATIBILITY 

The 80386 is compatible at the object code level 
with both the 80286 and the 8086. While it is 
possible to use the 80386 simply as a fast 80286 or 
a very fast 8086, its compatibility facilities are 
substantially more versatile. The 80386 can 
execute 80286 and 80386 programs concurrently, 
and, using the 80386's Virtual 86 Mode, existing 
8086 programs can also be run concurrently. 
With the 80386, then, it is possible to build 
systems that can concurrently execute software 
written for three generations of Intel 86 family 
microprocessors. 

4.1 80286 Compatibility 

The 80286 architecture is a proper subset of the 
80386 architecture. Because the 80386 recognizes 
all 80286 instructions, registers, descriptors, and 
so on, an 80286 operating system and application 
programs can be ported to comparable 80386-
based hardware without changing a bit. 

Direct porting, as described above, is the quickest 
way to get existing 80286 software running on an 
80386-based system. Alternatively, an 80386 
operating system can be designed to support 
existing 80286 applications, while at the same 
time allowing new applications to use the full 
facilities of the 80386 architecture (for example, 
32-bit parameters and large segments). In such a 
hybrid design, new applications call the operating 
system directly, passing 32-bit parameters. The 
calls of old applications, which are in the 80286's 
16-bit format, are intercepted and converted to 
32-bit format and then passed to the operating 
system. 

4.2 Real and Virtual 86 Modes 

The 80386 can execute 8086 object code in either 
of two modes, Real Mode or Virtual 86 Mode. 
The 80386 enters Real Mode when it is reset. In 
Real Mode, the processor provides fast execution 
in an unprotected environment like that of an 
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8086. Most operating systems will switch from 
Real Mode to Protected Mode after initiali­
zation, but it is also possible to run 8086 software 
in Real Mode. The principal difference between 
80386 Real Mode and an actual 8086 is speed: 
8086 programs that are speed-dependent (for 
example, those that use timing loops) may need 
minor modifications to run properly on the 
much faster Real Mode 80386. The great majority 
of 8086 programs, however, will run without 
difficulty, just as they do on a Real Mode 
80286. 

Virtual 86 Mode establishes an 8086 execution 
environment within the protected multi task envi­
ronment of the 80386. Where Real Mode governs 
everything the processor does, Virtual 86 Mode 
can be applied to selected 80386 tasks. When 
executing a Virtual 86 Mode task, the processor 
behaves like an 8086, but upon a switch to a 
normal task, the processor operates as an 80386 
(which, of course, can interpret both 80286 and 
80386 programs). Thus, Virtual 86 Mode enables 
an operating system to support the execution of 
8086, 80286, and 80386 programs concurrently. 

Chapter 3 described how a task's Task State 
Segment represents the state of its virtual pro­
cessor. The VM86 flag in the Flags register, 
which is loaded from the TSS, defines the 
running task's virtual processor as an 8086 or an 
80386. When the 80386 loads its registers from a 
TSS whose VM86 flag is set, the processor enters 
Virtual 86 Mode. When, on a subsequent task 
switch, the processor loads register values from a 
TSS whose VM86 flag is clear, it leaves Virtual 
86 Mode. Thus, on a task by task basis, the 
processor emulates an 80386 or an 8086 according 
to the value of the VM86 flag. The 80386 also 
leaves Virtual 86 Mode when it raises an excep­
tion or is interrupted, making the full resources 
of the architecture available to interrupt and 
exception handlers. On return from a handler 
invoked in Virtual 86 Mode, the 80386 auto­
matically re-enters Virtual 86 Mode. 
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Because the address space of an 8086 is one 
megabyte, the logical addresses generated by a 
Virtual 86 Mode task fall into the first megabyte 
of the 80386 linear address space. Multiple 
Virtual 86 Mode tasks could interfere with each 
other, since they would all share the low megabyte 
of the linear address space. An operating system 
can use 80386 paging to relocate the linear 
address spaces of Virtual 86 Mode tasks to 
different areas of the physical address space. 
Using paging in this way not only prevents 
interference among Virtual 86 Mode tasks, but 
enables a virtual memory operating system to 
swap the pages of Virtual 86 Mode tasks just 
as if they were 80386 tasks. 

A Virtual 86 Mode task may execute a program 
that was written for execution on a single-task 
personal computer. Such a program can contain 
instructions that are potentially disruptive if 
executed in a multitasking environment. For 
example, allowing a Virtual 86 Mode task to 
execute .the Clear Interrupt Flag instruction, 
thereby disabling interrupts, could bring the 
entire system to a halt. To prevent such disrup­
tions, the 80386 raises an exception when a 
Virtual 86 Mode task attempts to execute an I/O 
or interrupt-related instruction. 

Preventing the execution of such instructions 
protects the rest of the system from a Virtual 86 
Mode task, but does not satisfy the Virtual 86 
Mode task's need to execute the instructions. 
The solution is to simulate the sensitive instruc­
tions in an operating system procedure called a 
virtual machine monitor. When an exception 
handler is invoked, it can inspect the VM86 flag 
in the Flags image on the stack to see if the source 
of the exception is a Virtual 86 Mode task; if so, 
the exception handler can call the virtual machine 
monitor which can simulate the instruction and 
return to the Virtual 86 Mode task. Note that a 
virtual machine monitor simulates only a few 
8086 instructions and that both the simulated 
instructions and those the 80386 executes directly 
benefit from the much higher performance of the 
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80386 compared to the 8086. 

Working together, the 80386 and a virtual 
machine monitor implement the full 8086 instruc­
tion set, and paging can provide each Virtual 86 
M ode task with its own protected address space. 
However, most 8086 programs need additional 
resources provided by an operating system and 
peripheral hardware. An example ofthe former 
type of resource is a file system; an example of 
the latter is a bit-mapped display controller 
manipulated directly by an application program. 
These resources may not exist in the same form 
in the 80386-based system as they did in the 
system for which the 8086 program was designed. 
To simplify the job of providing these resources 
in a different environment, the 80386 can trap 
operating system and peripheral references made 
by Virtual 86 Mode tasks. 

For example, most 8086 operating systems use 
the Interrupt instruction to implement operating 
system calls. The 80386 raises an exception when 
a Virtual 86 Mode task attempts to execute an 
Interrupt instruction. The virtual machine moni­
tor can then translate the 8086 operating system 
call into a call on the 80386 operating system as 
shown in Figure 4-I.-If a Virtual 86 Mode task's 
10PL is set to less than 3, the 80386 will likewise 
trap any I/O instruction the 8086 program 
executes. The 80386 paging facility can be used 
to redirect references to memory-mapped periph­
erals to other addresses, if necessary. Such 
references can also be trapped by marking the 
corresponding pages read-only (to trap writes), 
or not-present (to trap both reads and writes). 
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Figure 4-1. Trapping Virtual 861\11ode System Calls 
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CHAPTER 5 
HARDWARE IMPLEMENTATION 

The 80386 architecture described in the previous 
chapters is implemented in over 275,000 transis­
tors using Intel's CHMOS III process. This 
chapter looks briefly inside the 80386 chip, and 
in more detail at the signals by which the 80386 
and other components communicate. 

5.1 Internal Design 

Figure 5-1 is an abstract view of the functional 
units that make up the 80386. These six units are 
arranged in a pipeline that enables them to 
operate in parallel on different instructions or on 
different parts of the same instruction. The bus 
unit performs bus transactions for the other 
units. When no other unit needs the bus, the 
prefetch unit reads the next dword of the 
instruction stream from memory into the prefetch 
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queue. In this way, most code fetches are 
performed in parallel with execution using un­
needed bus cycles. The decode unit "cracks" each 
opcode, converting it into a pointer to the 
microcode that implements the instruction. The 
execution unit executes the microinstructions. 
The execution unit can add two 32-bit registers 
in 2 clocks. Multiply/ divide hardware performs 
32-bit multiplications in 9-41 clocks, depending 
on the number of significant digits, and 32-bit 
division in 38 or42 clocks, depending on whether 
the operands are unsigned or signed. Shift, 
Rotate, and bit field instructions are aided by a 
barrel shifter that can shift up to 64 bits in a 
single clock. In typical instruction mixes that 
include jumps and calls, the 80386 executes 
instructions at an average speed of 4.4 clocks 
each. 
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Pipelining instruction fetch, decode, and execu­
tion units on a single chip is not unusual in 
modern microprocessors. On the other hand, 
placing the memory management unit (MMU) 
in the on-chip pipeline is quite unusual. Incor­
porating the MMU on the processor chip im­
proves the speed of addresss translation by 
reducing signal propagation delays (most off­
chip MMUs introduce at least one wait state), 
and exploiting the half-clock boundaries that are 
accessible within the chip (the 80386 clock input 
is twice the frequency of the chip). The 80386 
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MMU consists of the segment and page units 
shown in Figure 5-1. 

The segment unit translates logical addresses to 
linear addresses, and checks each access for 
consistency with segment protection attributes. 
For the majority of instructions, the segment 
unit obtains the translation and protection data 
from the 80386's on-chip segment and descriptor 
registers. The page unit is enabled or disabled by 
operating system software. When disabled, the 
linear addresses produced by the segment unit 
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pass through the page unit unaltered. When 
paging is enabled, the page unit translates linear 
addresses to physical addresses, and verifies that 
accesses are consistent with page attributes. The 
page unit includes a 32-entry translation look­
aside buffer (TLB) that caches the translation 
information for the most recently used pages. 
Using the TLB, the page unit can translate most 
page accesses (typically 98-99%) without con­
sulting the memory-based page tables. When 
necessary, the page unit initiates the bus cycles 
required to return an older TLB entry to its page 
table and to load the vacated TLB slot with the 
page table entry referenced by the current instruc­
tion. 

5.2 External Interface 

Figure 5-2 is a block diagram showing the 80386 
in a representative system, an engineering work-
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Figure 5-3 shows the 80386 external interface in 
more detail, grouping the pins into functionally 
related clusters. The next sections describe the 
signals associated with these pins. 

5.2.1 Clock 

The first versions of the 80386 run at 12.5 or 16 
MHz and are driven by a Clock (CLK2) signal 
that is twice the frequency of the chip. An 82384 
Clock Generator provides the CLK 2 signal, 
which the 80386 divides in two to obtain its 
internal clock. 

5.2.2 Data and Address Buses 

The 80386 has separate 32-bit address and data 
buses. For compatibility with existing hardware 
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and device drivers, the effective width of the data 
bus can be dynamically switched between 16 and 
32 bits. This topic is discussed in a subsequent 
section. 

The 80386 instruction set supports 8-, 16-, and 
32-bit transfers. The address bus is organized to 
directly specify the data bytes that are active in a 
given bus cycle. The high-order 30 bits of each 
address are presented on pins A2-A31. The BEO­
BE3 (Byte Enable) pins indicate which data bus 
bytes are relevant in the current transfer. BEO 
corresponds to DO-D7, BEl corresponds to D8-
DIS, and so on. These byte enables correspond 
directly to the way most 32-bit memory sub­
systems are organized and eliminate the need for 
byte decode hardware (see Figure 5-4). When 
necessary, for example, to connect to a system 
bus that requires the low-order address bits, AO 
and AI can be generated from BEO-BE3 with 
four gates. 

80386 memory operands do not need to be 
aligned, but performance is best when they fall 
on boundaries evenly divisible by their size in 
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015-08 
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80386 MEMORY 

Figure 5-4. Using Byte Enables 
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bytes. That is, words are best located on addresses 
divisible by 2 and dwords are best located on 
addresses divisible by 4. (Items larger than 32 
bits, such as double-precision floating point 
numbers, should also be aligned on 4-byte 
boundaries for best performance). The 80386 
automatically runs mUltiple bus cycles to trans­
fer unaligned operands; for example, a dword 
integer stored on an even address not divisible 
by 4 is transferred in two 16-bit bus cycles. 

5.2.3 Bus Cycle Definition 

The 80386 notifies external hardware that a 
normal bus cycle is beginning by asserting ADS 
(Address Status). At the same time, the process~r 
defines the type of bus cycle with the WI R, 
DI C, and MI 10 signals. These signals distin­
guish between write versus read, data versus 
code, and memory versus 110 accesses, respec­
tively. 

The 80386 provides the LOCK (Bus Lock) signal 
for multiprocessor and multimaster designs. 
The signal tells other bus masters that the 
processor is performing a multiple bus cycle 
operation that must not be interrupted. The 
80386 automatically asserts LOCK when it 
updates the segment descriptor and page tables, 
during interrupt acknowledge bus cycles, and 
when it executes the Exchange instruction. The 
Exchange instruction provides the indivisible 
"test and set" operation that is the crucial 
building block for implementing shared memory 
semaphores. Assembly language programmers 
can lock the bus during the execution of several 
other instructions by preceding such instructions 
with Lock prefixes. 

5.2.4 Bus Cycle Control 

Under the direction of external hardware, the 
80386 can run two kinds of bus cycles, 000-

pipelioed and pipelioed. The former is designed 
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to provide two-clock access to high-speed cache 
and local memories of any size. (The effectiveness 
of a memory cache depends on its size relative to 
the reference patterns of the application.) The 
latter gives lower-speed memory systems more 
time to respond to a bus cycle while still keeping 
the 80386 running at maximum speed. External 
hardware can dynamically enable pipelining by 
asserting the N A (N ext Address) pin as described 
below. By presenting a dynamically selectable 
choice of bus cycle timings, the 80386 allows 
hardware engineers to use the mix of memory 
components that meets price, space, and per-
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formance goals, and to adapt a design to 
exploit advances in memory technology. 

Figure 5-5 shows the timing of a non-pipelined 
bus cycle. The 80386 outputs the bus cycle 
definition as described above and external hard­
ware signals that it has responded to the bus 
cycle by asserting READY. If, as often is the 
case, another bus request is pending in the 80386 
when READY is asserted, the processor outputs 
the next bus cycle definition. With pipelining 
disabled, the minimum time between address 
and data is two clocks. External hardware that 
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(READ) 

CYCLE 3 
(READ) 

Figure 5-5. Non-pipelined Bus Cycle Timing 

5-5 



HARDWARE IMPLEMENTATION 

cannot respond in two clocks can stretch the bus 
cycle by holding READY inactive, that is, by 
inserting wait states into the cycle. When running 
back-to-back 32-bit bus cycles, the 80386's maxi­
mum bus bandwidth is 32 megabytes per second 
at 16 MHz or 25 megabytes per second at 12.5 
MHz. 

Due to its internal pipelining, the 80386 very 
often knows the address and definition of the 
next bus cycle before the external hardware 
has responded to the current cycle. External 
hardware can use the 80386's address pipelining 
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facility to gain early access to the following bus 
cycle definition when it is available. Address 
pipelining can give external hardware three 
clock between address and data while main­
taining two-clock bandwidth to the processor. 

Address pipelining is best exploited by interleaved 
memory systems that can respond to accesses in 
alternate banks in parallel. By asserting Next 
Address, the external hardware can ask the 
80386 to output the next bus cycle definition as 
soon as it is available in the processor, rather 
than waiting for READY (see Figure 5-6). 
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Figure 5-6. Bus Cycles with Pipelined Addresses 
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5.2.5 Dynamic Bus Sizing 

In addition to controlling the timing of bus cycle 
definitions, the memory (and 1/0) subsystem 
can also dynamically control the effective size of 
the data bus. Dynamic bus sizing permits: 

I. Arbitrary combinations of 16- and 32-bit 
memory subsystems; software can make 32-
bit transfers without regard to whether it is 
accessing 16- or 32-bit memory. 

2. Simple connection to 16-bit buses, such as the 
MULTIBUS I bus. 

3. Compatibility with 16-bit peripherals (and 
their drivers) whose registers are usually 
located on 16- rather than 32-bit boundaries. 

By asserting the Bus Size 16 (BSI6) signal, 
external hardware can instruct the processor to 
perform the current transfer on only the low 16 
bits of the data bus. If BS 16 is asserted, and the 
access is 32 bits, the processor automatically runs 
two bus cycles (see Figure 5-7). The 80386 
samples BS16 late in the bus cycle, permitting 
external hardware to assert it only for relevant 
memory and 110 addresses. 

5.2.6 Processor Status and Control 

Another bus master (a processor or an intelligent 
peripheral, such as a DMA controller), can 
request to use the 80386 local bus by asserting the 
80386's HOLD signal. The processor grants the 
bus by asserting HLDA (Hold Acknowledge) at 
the end of the current bus cycle (if any); it will 
then suspend its next bus cycle until HOLD is 
deasserted. When the 80386 relinquishes the bus 
to another master, it drives HLDA active and 
three-states all other pins, electrically isolating 
itself from the system. 

80386 interrupts are classified as maskable or 
non-maskable; the former arrive on the pro­
cessor's INTR (Interrupt Request) pin and the 
latter on its NMI (Non-maskabIe Interrupt 
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Request) pin. Operating system software can 
make the 80386 ignore the INTR pin by clearing 
the Interrupt Enable flag. The processor always 
samples the NMI pin; many systems use this pin 
to inform the processor of an impending power 
failure or a major system error. 

Maskable interrupt requests are usually con­
nected to INTR through one or more 8259A 
Programmable Interrupt Controllers (PICs). 
Each 8259A can handle up to eight interrupt 
sources; multiple 8259As can be cascaded to 
provide up to 64 different interrupt sources. The 
operating system initializes each 8259A with an 
identifying number (vector) to supply for each 
interrupt source the PIC monitors. The 8259A 
supplies this number to the 80386 in response to 
the processor's interrupt acknowledge bus cycle. 
The 80386 uses the number to invoke the handler 
designated to respond to the interrupt. 

Asserting RESET places the processor in a pre­
defined initial state (in Real Mode with interrupts 
disabled), and makes it fetch an instruction from 
physical address FFFFFFFOH. 

5.2.7 Coprocessor Control 

The 80386 passes instructions and operands to 
an 80287 or 80387 Numeric Coprocessor by 
running 110 bus cycles to reserved addresses 
above the normal 64 kilobyte 110 space. A 
numeric coprocessor can be selected by A31 high 
and MilO low. The 80386 uses different com­
munication protocols for each coprocessor, pass­
ing 16-bit quantities to the 80287 and 32-bit 
quantities to the 80387. The 80386 can tell when it 
is RESET if an 80387 is present; system initiali­
zation software can check for the presence of an 
80287. 

The coprocessor asserts BUSY while it is exe­
cuting an instruction. The 80386 does not pass 
the next numeric instruction to the coprocessor 
until BUSY is negated. Software can synchronize 
the 80386 with a coprocessor by issuing the 
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WAIT instruction, which suspends the 80386 
until BUSY goes inactive. The coprocessor 
asserts ERROR when it encounters an exception 
that should be handled by operating system 
software; the 80386 in turn invokes the numeric 

CLK2 [ 

BEO, BEl [ 

ADDRESS AND [ 
DEFINITION 

ADS [ 

BS16 [ 

READY [ 

00-015 [ 

016-031 [ 

exception handler by raising exception 7. The 
PEREQ pin is used to implement the 80386-
coprocessor protocol. 

32-BIT 

BUS SIZE 

00-015 

~-
IGNORED 

9-
Figure 5-7. Mixed 16- and 32-bit Accesses 

5-8 



Chapter 6 
80386 Data Sheet 

6 





80386 
HIGH PERFORMANCE 32-BIT MICROPROCESSOR 

WITH ~NTEGRATED MEMORY MANAGEMENT 
l!II Flexible 32-Bit Microprocessor 

- 8, 16, 32-Bit Data Types 
- 8 General Purpose 32-Bit Registers 

[;'] Very Large Address Space 
- 4 Gigabyte Physical 
- 64 Terabyte Virtual 
- 4 Gigabyte Maximum Segment Size 

o Integrated Memory Management Unit 
- Virtual Memory Support 
- Optional On-Chip Paging 
- 4 Levels of Protection 
- Fully Compatible with 80286 

o Object Code Compatible with All 8086 
Family Microprocessors 

o Virtual 8086 Mode Allows Running of 
8086 Software in a Protected and 
Paged System 

III Hardware Debugging Support 

III Optimized for System Performance 
- Pipelined Instruction Execution 
- On-Chip Address Translation Caches 
-12.5 and 16 MHz Clock 
- 32 Megabytes/Sec Bus Bandwidth 

o High Speed Numerics Support via 
80287 and 80387 Coprocessors 

o Complete System Development 
Support 
- Software: C, PLlM, Assembler 

System Generation Tools 
- Debuggers: PSCOPE, ICETM-386 

o High Speed CHMOS III Technology 

o 132 Pin Grid Array Package 
(See Packaging Specification, Order #231369) 

The 80386 is an advanced 32-bit microprocessor designed for applications needing very high performance 
and optimized for multitasking operating systems. The 32-bit registers and data paths support 32-bit addresses 
and data types. The processor addresses up to four gigabytes of physical memory and 64 terabytes (2**46) of 
virtual memory. The integrated memory management and protection architecture includes address translation 
registers, advanced multitasking hardware and a protection mechanism to support operating systems. In 
addition, the 80386 allows the simultaneous running of multiple operating systems. 
Instruction pipelining, on-chip address translation, and high bus bandwidth ensure short average instruction 
execution times and high system throughput. The 80386 processor is capable of execution at sustained rates 
of between 3 and 4 million instructions per second. 
The 80386 offers new testability and debugging features. Testability features include a self-test and direct 
access to the page translation cache. Four new breakpoint registers provide breakpoint traps on code execu­
tion or data accesses, for powerful debugging of even ROM-based systems. 
Object-code compatibility with all iAPX 86 family members (8086, 8088, 80186, 80188, 80286) means the 
80386 offers immediate access to the world's largest microprocessor software base. 
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Figure 1-1.80386 Pipelined 32-Bit Microarchitecture 

Unix™ is a Trademark of AT&T Bell Labs. 
MS-DOS is a Trademark of MicroSoft Corporation. 
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2. BASE ARCHITECTURE 

2.1 INTRODUCTION 

The B03B6 consists of a central processing unit, a 
memory management unit and a bus interface. 

The central processing unit consists of the execu­
tion unit and instruction unit. The execution unit con­
tains the eight 32-bit general purpose registers 
which are used for both address calculation, data 
operations and a 64-bit barrel shifter used to speed 
shift, rotate, multiply, and divide operations. The 
multiply and divide logic uses a 1-bit per cycle algo­
rithm. The multiply algorithm stops the iteration 
when the most significant bits of the multiplier are all 
zero. This allows typical 32-bit multiplies to be exe­
cuted in under one microsecond. The instruction unit 
decodes the instruction opcodes and stores them in 
the decoded instruction queue for immediate use by 
the execution unit. 

The memory management unit (MMU) consists of a 
segmentation unit and a paging unit. Segmentation 
allows the managing of the logical address space by 
providing an extra addressing component, one that 
allows easy code and data relocatability, and effi­
cient sharing. The paging mechanism operates be­
neath and is transparent to the segmentation proc­
ess, to allow management of the physical address 
space. Each segment is divided into one or more 4K 
byte pages. To implement a virtual memory system, 
the B03B6 supports full restartability for all page and 
segment faults. 

Memory is organized into one or more variable 
length segments, each up to four gigabytes in size. A 
given region of the linear address space, a segment, 
can have attributes associated with it. These attri­
butes include its location, size, type (Le. stack, code 
or data), and protection characteristics. Each task 
on an B03B6 can have a maximum of 16,3B1 seg­
ments of up to four gigabytes each, thus providing 
64 terabytes (trillion bytes) of virtual memory to each 
task. 

The segmentation unit provides four-levels of pro­
tection for isolating and protecting applications and 
the operating system from each other. The hardware 
enforced protection allows the design of systems 
with a high degree of integrity. 

The 80386 has two modes of operation: Real Ad­
dress Mode (Real Mode), and Protected Virtual Ad­
dress Mode (Protected Mode). In Real Mode the 
B0386 operates as a very fast 80B6, but with 32-bit 
extensions if desired. Real Mode is required primari-
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Iy to setup the processor for Protected Mode opera­
tion. Protected Mode provides access to the sophis­
ticated memory management, paging and privilege 
capabilities of the processor. 

Within Protected Mode, software can perform a task 
switch to enter into tasks designated as Virtual B086 
Mode tasks. Each such task behaves with BOB6 se­
mantics, thus allowing BOB6 software (an application 
program, or an entire operating system) to execute. 
The Virtual 80B6 tasks can be isolated and protect­
ed from one another and the host B0386 operating 
system, by the use of paging, and the 110 Permis­
sion Bitmap. 

Finally, to facilitate high performance system hard­
ware designs, the 80386 bus interface offers ad­
dress pipelining, dynamic data bus sizing, and direct 
Byte Enable signals for each byte of the data bus. 
These hardware features are described fully begin­
ning in Section 5. 

2.2 REGISTER OVERVIEW 

The B0386 has 32 register resources in the following 
categories: 

o General Purpose Registers 

o Segment Registers 

o Instruction Pointer and Flags 

o Control Registers 

o System Address Registers 

o Debug Registers 

o Test Registers. 

The registers are a superset of the 8086, 80186 and 
B0286 registers, so all 16-bit 8086, B0186 and 
802B6 registers are contained within the 32-bit 
803B6. 

Figure 2-1 shows all of B0386 base architecture reg­
isters, which include the general address and data 
registers, the instruction pointer, and the flags regis­
ter. The contents of these registers are task-specific, 
so these registers are automatically loaded with a 
new context upon a task switch operation. 

The base architecture also includes six directly ac­
cessible segments, each up to 4 Gbytes in size. The 
segments are indicated by the selector values 
placed in 80386 segment registers of Figure 2-1. 
Various selector values can be loaded as a program 
executes, if desired. 
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GENERAL DATA AND ADDRESS REGISTERS 
31 16 15 0 

AX EAX 

BX EBX 

CX ECX 

DX EDX 

SI ESI 

DI EDI 

BP EBP 

SP ESP 

SEGMENT SELECTOR REGISTERS 
15 0 

CS CODE 

SS STACK 

DS 

} DATA 
ES 

FS 

GS 

INSTRUCTION POINTER 
AND FLAGS REGISTER 
31 16 15 0 

I I 
IP I EIP 

FLAGS : EFLAGS 

Figure 2-1. 80386 Base Architecture Registers 

The selectors are also task-specific, so the segment 
registers are automatically loaded with new context 
upon a task switch operation. 

The other types of registers, Control, System Ad­
dress, Debug, and Test, are primarily used by sys­
tem software. 

2.3 REGISTER DESCRIPTIONS 

2.3.1 General Purpose Registers 

General Purpose Registers: The eight general pur­
pose registers of 32 bits hold data or address quanti­
ties. The general registers, Figure 2-2, support data 
operands of 1, 8, 16, 32 and 64 bits, and bit fields of 
1 to 32 bits. They support address operands of 16 
and 32 bits. The 32-bit registers are named EAX, 
EBX, ECX, EDX, ESI, EDI, EBP, and ESP. 
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The least significant 16 bits of the registers can be 
accessed separately. This is done by using the 16-
bit names of the registers AX, BX, CX, DX, SI, DI, 
BP, and SP. 

Finally 8-bit operations can individually access the 
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of general purpose registers AX, BX, CX and DX. 
The lowest bytes are named AL, BL, CL and DL, 
respectively. The higher bytes are named AH, BH, 
CH and DH, respectively. The individual byte acces­
sibility offers additional flexibility for data operations, 
but is not used for effective address calculation. 

31 16 15 8 7 0 

AH AX AL EAX 

BH BX BL EBX 

CH CX CL ECX 

DH DX DL EDX 

SI ESI 

DI EDI 

BP EBP 

SP ESP 

31 16 15 0 

I I I EIP 

\. • 
} 

IP 

Figure 2-2. General Registers and Instruction 
Pointer 

2.3.2 Instruction Pointer 

The instruction pointer, Figure 2-2, is a 32-bit regis­
ter named EIP. EIP holds the offset of the next in­
struction to be executed. The offset is always rela­
tive to the base of the code segment (CS). The low­
er 16 bits (bits 0-15) of EIP contain the 16-bit in­
struction pointer named IP, which is used by 16-bit 
addressing. 

2.3.3 Flags Register 

The Flags Register is a 32-bit register named 
EFLAGS. The defined bits and bit fields within 
EFLAGS, shown in Figure 2-3, control certain opera­
tions and indicate status of the 80386. The lower 16 
bits (bit 0 -15) of EFLAGS contain the 16-bit flag 
register named FLAGS, which is most useful when 
executing 8086 and 80286 code. 
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FLAGS 

3 3 2 2 2 2 2 2 2 222 1 1 1 1 1 1 1 1 1 
1 0 9 8 7 6 5 432 1 0 9 8 7 6 5 4 3 2 0 9 8 7 6 5 432 1 0 

EFLAGS RESERVED FOR INTEL 

VIRTUAL MODE---------' 

RESUME FLAG -:;:;.:======::::'-.J 
NESTED TASK FLAG 
I/O PRIVILEGE LEVEL----------' 
OVERFLOW--------------' 

DIRECTION FLAG"7===========:::::::~ 
INTERRUPT ENABLE 

231630-50 

Figure 2-3. Flags Register 

VM (Virtual 8086 Mode, bit 17) 

The VM bit provides Virtual 8086 Mode within 
Protected Mode. If set while the 80386 is in 
Protected Mode, the 80386 will switch to Vir­
tual 8086 operation, handling segment loads 
as the 8086 does, but generating exception 
13 faults on privileged opcodes. The VM bit 
can be set only in Protected Mode, by the 
IRET instruction (if current privilege level = 
0) and by task switches at any privilege level. 
The VM bit is unaffected by POPF. PUSHF 
always pushes a a in this bit, even if execut­
ing in virtual 8086 Mode. The EFLAGS image 
pushed during interrupt processing or saved 
during task switches will contain a 1 in this bit 
if the interrupted code was executing as a Vir­
tual 8086 Task. 

RF (Resume Flag, bit 16) 

The RF flag is used in conjunction with the 
debug register breakpoints. It is checked at 
instruction boundaries before breakpoint 
processing. When RF is set, it causes any de­
bug fault to be ignored on the next instruc­
tion. RF is then automatically reset at the suc­
cessful completion of every instruction (no 
faults are signalled) except the IRET instruc­
tion, the POPF instruction, (and JMP, CALL, 
and INT instructions causing a task switch). 
These instructions set RF to the value speci­
fied by the memory image. For example, at 
the end of the breakpoint service routine, 
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the IRET instruction can pop an EFLAG im­
age having the RF bit set and resume the 
program's execution at the breakpoint ad­
dress without generating another breakpoint 
fault on the same location. 

NT (Nested Task, bit 14) 

This flag applies to Protected Mode. NT is set 
to indicate that the execution of this task is 
nested within another task. If set, it indicates 
that the current nested task's Task State 
Segment (TSS) has a valid back link to the 
previous task's TSS. This bit is set or reset by 
control transfers to other tasks. The value of 
NT in EFLAGS is tested by the IRET instruc­
tion to determine whether to do an inter-task 
return or an intra-task return. A POPF or an 
IRET instruction will affect the setting of this 
bit according to the image popped, at any 
privilege level. 

10PL (Input/Output Privilege Level, bits 12-13) 

This two-bit field applies to Protected Mode. 
10PL indicates the numerically maximum CPL 
(current privilege level) value permitted to ex­
ecute 1/0 instructions without generating an 
exception 13 fault or consulting the 1/0 Per­
mission Bitmap. It also indicates the maxi­
mum CPL value allowing alteration of the IF 
(INTR Enable Flag) bit when new values are 
popped into the EFLAG register. POPF and 
IRET instruction can alter the 10PL field when 
executed at CPL = O. Task switches can al­
ways alter the 10PL field, when the new flag 
image is loaded from the incoming task's 
TSS. 
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OF (Overflow Flag, bit 11) 

OF is set if the operation resulted in a signed 
overflow. Signed overflow occurs when the 
operation resulted in carry/borrow into the 
sign bit (high-order bit) of the result but did 
not result in a carry/borrow out of the high­
order bit, or vice-versa. For 8/16/32 bit oper­
ations, OF is set according to overflow at bit 
7/15/31, respectively. 

DF (Direction Flag, bit 10) 

DF defines whether ESI and/or EDI registers 
postdecrement or postincrement during the 
string instructions. Postincrement occurs if 
DF is reset. Postdecrement occurs if DF is 
set. 

IF (INTR Enable Flag, bit 9) 

The IF flag, when set, allows recognition of 
external interrupts signalled on the INTR pin. 
When IF is reset, external interrupts signalled 
on the INTR are not recognized. IOPL indi­
cates the maximum CPL value allowing alter­
ation of the IF bit when new values are 
popped into EFLAGS or FLAGS. 

TF (Trap Enable Flag, bit 8) 

TF controls the generation of exception 1 
trap when single-stepping through code. 
When TF is set, the 80386 generates an ex­
ception 1 trap after the next instruction is exe­
cuted. When TF is reset, exception 1 traps 
occur only as a function of the breakpoint ad­
dresses loaded into debug registers DRO­
DR3. 

SF (Sign Flag, bit 7) 

SF is set if the high-order bit of the result is 
set, it is reset otherwise. For 8-, 16-, 32-bit 
operations, SF reflects the state of bit 7, 15, 
31 respectively. 

SEGMENT 

ZF (Zero Flag, bit 6) 

ZF is set if all bits of the result are O. Other­
wise it is reset. 

AF (Auxiliary Carry Flag, bit 4) 

The Auxiliary Flag is used to simplify the addi­
tion and subtraction of packed BCD quanti­
ties. AF is set if the operation resulted in a 
carry out of bit 3 (addition) or a borrow into bit 
3 (subtraction). Otherwise AF is reset. AF is 
affected by carry out of, or borrow into bit 3 
only, regardless of overall operand length: 8, 
16 or 32 bits. 

PF (Parity Flags, bit 2) 

PF is set if the low-order eight bits of the op­
eration contains an even number of "1 's" 
(even parity). PF is reset if the low-order eight 
bits have odd parity. PF is a function of only 
the low-order eight bits, regardless of oper­
and size. 

CF (Carry Flag, bit 0) 

CF is set if the operation resulted in a carry 
out of (addition), or a borrow into (subtraction) 
the high-order bit. Otherwise CF is reset. For 
8-, 16- or 32-bit operations, CF is set accord­
ing to carry/borrow at bit 7, 15 or 31, respec­
tively. 

Note in these descriptions, "set" means "set to 1," 
and "reset" means "reset to 0." 

2.3.4 Segment Registers 

Six 16-bit segment registers hold segment selector 
values identifying the currently addressable memory 
segments. Segment registers are shown in Figure 2-
4. In Protected Mode, each segment may range in 
size from one byte up to the entire linear and physi-

REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY) 
A A 

( \ ( Other \ 

Segment 
15 0 Physical Base Address Segment Limit Attributes from Descriptor 

Selector CS- -
Selector SS- - -
Selector DS- - - -
Selector ES- - - -
Selector FS- - - -
Selector GS- - - -

Figure 2-4. 80386 Segment Registers, and Associated Descriptor Registers 
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cal space of the machine, 4 Gbytes (232 bytes). In 
Real Address Mode, the maximum segment size is 
fixed at 64 Kbytes (216 bytes). 

The six segments addressable at any given moment 
are defined by the segment registers CS, SS, OS, 
ES, FS and GS. The selector in CS indicates the 
current code segment; the selector in SS indicates 
the current stack segment; the selectors in OS, ES, 
FS and GS indicate the current data segments. 

2.3.5 Segment Descriptor Registers 

The segment descriptor registers are not program­
mer visible, yet it is very useful to understand their 
content. Inside the 80386, a descriptor register (pro­
grammer invisible) is associated with each program­
mer-visible segment register, as shown by Figure 2-
4. Each descriptor register holds a 32-bit segment 
base address, a 32-bit segment limit, and the other 
necessary segment attributes. 

When a selector value is loaded into a segment reg­
ister, the associated descriptor register is automati­
cally updated with the correct information. In Real 
Address Mode, only the base address is updated 
directly (by shifting the selector value four bits to the 
left), since the segment maximum limit and attributes 
are fixed in Real Mode. In Protected Mode, the base 
address, the limit, and the attributes are all updated 
per the contents of the segment descriptor indexed 
by the selector. 

Whenever a memory reference occurs, the segment 
descriptor register associated with the segment be­
ing used is automatically involved with the memory 
reference. The 32-bit segment base address be­
comes a component of the linear address calcula­
tion, the 32-bit limit is used for the limit-check opera­
tion, and the attributes are checked against the type 
of memory reference requested. 

2.3.6 Control Registers 

The 80386 has three control registers of 32 bits, 
CRO, CR2 and CR3, to hold machine state of a glob­
al nature (not specific to an individual task). These 
registers, along with System Address Registers de­
scribed in the next section, hold machine state that 
affects all tasks in the system. To access the Con­
trol Registers, load and store instructions are de­
fined. 

CRO: Machine Control Register (includes 80286 
Machine Status Word) 

CRO, shown in Figure 2-5, contains 6 defined bits for 
control and status purposes. The low-order 16 bits 
of CRO are also known as the Machine Status Word, 
MSW, for compatibility with 80286 Protected Mode. 
LMSW and SMSW instructions are taken as special 
aliases of the load and store CRO operations, where 
only the low-order 16 bits of CRO are involved. For 
compatibility with 80286 operating systems the 
80386's LMSW instructions work in an identical 
fashion to the LMSW instruction on the 80286. (Le. It 
only operates on the low-order l6-bits of CRO and it 
ignores the new bits in CRO.) New 80386 operating 
systems should use the MOV CRO, Reg instruction. 

The defined CRO bits are described below. 

PG (Paging Enable, bit 31) 

the PG bit is set to enable the on-chip paging 
unit. It is reset to disable the on-chip paging 
unit. 

ET (Processor Extension Type, bit 4) 

ET indicates the processor extension type (ei­
ther 80287 or 80387) as detected by the level 
of the ERROR# input following 80386 reset. 
The ET bit may also be set or reset by loading 
CRO under program control if desired. If ET is 
set, the 80387-compatible 32-bit protocol is 
used. If ET is reset, 80287-compatible 16-bit 
protocol is used. 

Note that for strict 80286 compatibility, ET is 
not affected by the LMSW instruction. When 
the MSW or CRO is stored, bit 4 accurately re­
flects the current state of the ET bit. 

~~---------------y--------------~} 
MSW 

NOTE: f' :;~~\I indicates I ntel reserved: Do not define; SEE SECTION 2.3.10 

Figure 2-5. Control Register 0 
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TS (Task Switched, bit 3) 

TS is automatically set whenever a task switch 
operation is performed. If TS is set, a coproces­
sor ESCape opcode will cause a Coprocessor 
Not Available trap (exception 7). The trap han­
dier typically saves the 80287/80387 context 
belonging to a previous task, loads the 
80287/80387 state belonging to the current 
task, and clears the TS bit before returning to 
the faulting coprocessor opcode. 

EM (Emulate Coprocessor, bit 2) 

The EMulate coprocessor bit is set to cause all 
coprocessor opcodes to generate a Coproces­
sor Not Available fault (exception 7). It is reset 
to allow coprocessor opcodes to be executed 
on an actual 80287 or 80387 coprocessor (this 
the default case after reset). Note that the 
WAIT opcode is not affected by the EM bit set­
ting. 

MP (Monitor Coprocessor, bit 1) 

The MP bit is used in conjunction with the TS 
bit to determine if the WAIT opcode will gener­
ate a Coprocessor Not Available fault (excep­
tion 7) when TS = 1. When both MP = 1 and 
TS = 1, the WAIT opcode generates a trap. 
Otherwise, the WAIT opcode does not gener­
ate a trap. Note that TS is automatically set 
whenever a task switch operation is performed. 

PE (Protection Enable, bit 0) 

The PE bit is set to enable the Protected Mode. 
If PE is reset, the processor operates again in 
Real Mode. PE may be set by loading MSW or 
CRO. PE can be reset only by a load into CRO. 
Resetting the PE bit is typically part of a longer 
instruction sequence needed for proper tran­
sition from Protected Mode to Real Mode. Note 
that for strict 80286 compatibility, PE cannot be 
reset by the LMSW instruction. 

CR1: reserved 

CR1 is reserved for use in future Intel processors. 

CR2: Page Fault Linear Address 

CR2, shown in Figure 2-6, holds the 32-bit linear ad­
dress that caused the last page fault detected. The 

error code pushed onto the page. fault handler's 
stack when it is invoked provides additional status 
information on this page fault. 

CR3: Page Directory Base Address 

CR3, shown in Figure 2-6, contains the physical 
base address of the page directory table. The 80386 
page directory table is always page-aligned 
(4 Kbyte-aligned). Therefore the lowest twelve bits 
of CR3 are ignored when written and they store as 
undefined. 

A task switch through a TSS which changes the 
value in CR3, or an explicit load into CR3 with any 
value, will invalidate all cached page table entries in 
the paging unit cache. Note that if the value in CR3 
does not change during the task switch, the cached 
page table entries are not flushed. 

2.3.7 System Address Registers 

Four special registers are defined to reference the 
tables or segments supported by the 80286/80386 
protection model. These tables or segments are: 

GDT (Global Descriptor Table), 

IDT (Interrupt Descriptor Table), 

LDT (Local Descriptor Table), 

TSS (Task State Segment). 

The addresses of these tables and segments are 
stored in special registers, the System Address and 
System Segment Registers illustrated in Figure 2-7. 
These registers are named GDTR, IDTR, LDTR and 
TR, respectively. Section 4 Protected Mode Archi­
tecture describes the use of these registers. 

GDTR and IDTR 

These registers hold the 32-bit linear base address 
and 16-bit limit of the GDT and IDT, respectively. 

The GDT and IDT segments, since they are global to 
all tasks in the system, are defined by 32-bit linear 
addresses (subject to page translation if paging is 
enabled) and 16-bit limit values. 

31 24 23 16 15 8 7 o 
PAGE FAULT LINEAR ADDRESS REGISTER CR2 

r--------------------------------------.~~_r_r~~~r_~_._4 

PAGE DIRECTORY BASE REGISTER 00 0 CR3 

NOTE: I· .0:1 indicates Intel reserved: Do not define; SEE SECTION 2.3.10 

Figure 2-6. Control Registers 2 and 3 
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SYSTEM ADDRESS REGISTERS 
47 32-BITLINEARBASEADDRESS 1615 LIMIT 0 

~~~:I I I 
SYSTEM SEGMENT 

REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED) 

~5 ( 32-BIT LINEAR BASE ADDRESS 32-BIT SEGMENT LIMIT ATTRIBUTES\ 

I " II 
TR SELECTOR 

LDTR SELECTOR 

Figure 2-7. System Address and System Segment Registers 

LDTR and TR 

These registers hold the 16-bit selector for the LOT 
descriptor and the TSS descriptor, respectively. 

The LOT and TSS segments, since they are task­
specific segments, are defined by selector values 
stored in the system segment registers. Note that a 
segment descriptor register (programmer-invisible) 
is associated with each system segment register. 

2.3.8 Debug and Test Registers 

Debug Registers: The six programmer accessible 
debug registers provide on-chip support for debug­
ging. Debug Registers DRO-3 specify the four linear 
breakpoints. The Debug Control Register DR? is 
used to set the breakpoints and the Debug Status 
Register DR6, displays the current state of the 
breakpoints. The use of the debug registers is de­
scribed in section 2.12 Debugging support. 

DEBUG REGISTERS 
31 0 

LINEAR BREAKPOINT ADDRESS 0 ORO 

LINEAR BREAKPOINT ADDRESS 1 DR1 

LINEAR BREAKPOINT ADDRESS 2 DR2 

LINEAR BREAKPOINT ADDRESS 3 DR3 

Intel reserved. Do not define. DR4 

Intel reserved. Do not define. DR5 

BREAKPOINT STATUS DR6 

BREAKPOINT CONTROL DR? 

TEST REGISTERS (FOR PAGE CACHE) 
31 0 

I TEST CONTROL 

I 
TR6 

TR? TEST STATUS 

Figure 2-8. Debug and Test Registers 
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Test Registers: Two registers are used to control 
the testing of the RAM/CAM (Content Addressable 
Memories) in the Translation Lookaside Buffer por­
tion of the 80386. TR6 is the command test register, 
and TR? is the data register which contains the data 
of the Translation Lookaside buffer test. Their use is 
discussed in section 2.11 Testability. 

Figure 2-8 shows the Debug and Test registers. 

2.3.9 Register Accessibility 

There are a few differences regarding the accessibil­
ity of the registers in Real and Protected Mode. Ta­
ble 2-1 summarizes these differences. See Section 
4 Protected Mode Architecture for further details. 

2.3.10 Compatibility 

VERY IMPORTANT NOTE: 
COMPATIBILITY WITH FUTURE PROCESSORS 

In the preceding register descriptions, note cer­
tain 80386 register bits are undefined. When un­
defined bits are called out, treat them as fully 
undefined. This is essential for your software 
compatibility with future processorsl Follow the 
guidelines below: 
1) Do not depend on the states of any unde­

fined bits when testing the values of defined 
register bits. Mask them out when testing. 

2) Do not depend on the states of any unde­
fined bits when storing them to memory or 
another register. 

3) Do not depend on the ability to retain infor­
mation written into any undefined bits. 

4) When loading registers always load the unde­
fined bits as zeros. 
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Table 2-1. Register Usage 

Use in Use in Use in 

Register 
Real Mode Protected Mode Virtual 8086 Mode 

Load Store Load Store Load Store 

General Registers Yes Yes Yes Yes Yes Yes 

Segment Registers Yes Yes Yes Yes Yes Yes 

Flag Register Yes Yes Yes Yes IOPL IOPL' 

Control Registers Yes Yes PL = 0 PL = 0 No Yes 

GDTR Yes Yes PL = 0 Yes No Yes 

IDTR Yes Yes PL = 0 Yes No Yes 

LDTR No No PL = 0 Yes No No 

TR No No PL = 0 Yes No No 

Debug Control Yes Yes PL = 0 PL = 0 No No 

Test Registers Yes Yes PL = 0 PL = 0 No No 

NOTES: 
PL = 0: The registers can be accessed only when the current privilege level is zero. 
'IOPL: The PUSHF and POPF instructions are made I/O Privilege Level sensitive in Virtual 8086 Mode. 

5) However, registers which have been previ­
ously stored may be reloaded without mask­
ing. 

Depending upon the values of undefined regis­
ter bits will make your software dependent upon 
the unspecified 80386 handling of these bits. De­
pending on undefined values risks making your 
software incompatible with future processors 
that define usages for the 80386-undefined bits. 
AVOID ANY SOFTWARE DEPENDENCE UPON 
THE STATE OF UNDEFINED 80386 REGISTER 
BITS. 

2.4 INSTRUCTION SET 

2.4.1 Instruction Set Overview 

The instruction set is divided into nine categories of 
operations: 

Data Transfer 

Arithmetic 

Shift/Rotate 

String Manipulation 

Bit Manipulation 

Control Transfer 

High Level Language Support 

Operating System Support 

Processor Control 

These 80386 instructions are listed in Table 2·2. 
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All 80386 instructions operate on either 0, 1, 2, or 3 
operands; where an operand resides in a register, in 
the instruction itself, or in memory. Most zero oper· 
and instructions (e.g. CLI, STI) take only one byte. 
One operand instructions generally are two bytes 
long. The average instruction is 3.2 bytes long. 
Since the 80386 has a 16·byte instruction queue, an 
average of 5 instructions will be prefetched. The use 
of two operands permits the following types of com­
mon instructions: 

Register to Register 

Memory to Register 

Immediate to Register 

Register to Memory 

Immediate to Memory. 

The operands can be either 8, 16, or 32 bits long. As 
a general rule, when executing code written for the 
80386 (32-bit code), operands are 8 or 32 bits; when 
executing existing 80286 or 8086 code (16-bit code), 
operands are 8 or 16 bits. Prefixes can be added to 
all instructions which override the default length of 
the operands, (Le. use 32-bit operands for 16-bit 
code, or 16-bit operands for 32-bit code). 



80386 

2.4.2 80386 Instructions Table 2-2b Arithmetic Instructions 

Table 2-2a Data Transfer ADDITION 

GENERAL PURPOSE ADD Add operands 

MOV Move operand ADC Add with carry 

PUSH Push operand onto stack INC Increment operand by 1 

POP Pop operand off stack AAA ASCII adjust for addition 

PUSHA Push all registers on stack DAA Decimal adjust for addition 

POPA Pop all registers off stack SUBTRACTION 

XCHG Exchange Operand, Register SUB Subtract operands 

XLAT Translate SBB Subtract with borrow 

CONVERSION DEC Decrement operand by 1 

MOVZX Move byte or Word, Dword, with zero NEG Negate operand 
extension CMP Compare operands 

MOVSX Move byte or Word, Dword, sign DAS Decimal adjust for subtraction 
extended 

CBW Convert byte to Word, or Word to Dword 
AAS ASCII Adjust for subtraction 

MULTIPLICATION 
CWO Convert Word to DWORD 

CWDE Convert Word to DWORD extended 

COO Convert DWORD to aWORD 

MUL Multiply Double/Single Precision 

IMUL Integer multiply 

AAM ASCII adjust after multiply 
INPUT !OUTPUT DIVISION 

IN Input operand from I/O space 

OUT Output operand to I/O space 
DIV Divide unsigned 

IDIV Integer Divide 
ADDRESS OBJECT AAD ASCII adjust before division 

LEA Load effective address 

LOS Load pointer into 0 segment register Table 2-2c String Instructions 

LES Load pointer into E segment register MOVS Move byte or Word, Dword string 

LFS Load pointer into F segment register INS Input string from I/O space 

LGS Load pOinter into G segment register OUTS Output string to I/O space 

LSS Load pointer into S (Stack) segment CMPS Compare byte or Word, Dword string 

register SCAS Scan Byte or Word, Dword string 

FLAG MANIPULATION LODS Load byte or Word, Dword string 

LAHF Load A register from Flags STOS Store byte or Word, Dword string 

SAHF Store A register in Flags REP Repeat 

PUSHF Push flags onto stack REPE/ 

POPF Pop flags off stack REPZ Repeat while equal/zero 

PUSHFD Push EFlags onto stack 

POPFD Pop EFlags off stack 

CLC Clear Carry Flag 

CLD Clear Direction Flag 

CMC Complement Carry Flag 

STC Set Carry Flag 

STD Set Direction Flag 

RENE! 
REPNZ Repeat while not equal/not zero 

Table 2-2d Logical Instructions 

LOGICALS 

NOT "NOT" operands 

AND "AND" operands 

OR "Inclusive OR" operands 

XOR "Exclusive OR" operands 

TEST "Test" operands 

15 
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Table 2-2d Logical Instructions (Continued) Table 2-2f. Program Control Instructions 

SHIFTS (Continued) 

SHL/SHR Shift logical left or right UNCONDITIONAL TRANSFERS 

SAL/SAR Shift arithmetic left or right CALL Call procedure/task 

SHLD/ RET Return from procedure 

SHRD Double shift left or right JMP Jump 

ROTATES ITERATION CONTROLS 
ROL/ROR Rotate left/right LOOP Loop 
RCLIRCR Rotate through carry left/right LOOPE/ 

Table 2-2e Bit Manipulation Instructions LOOPZ Loop if equal/zero 

SINGLE BIT INSTRUCTIONS 

BT Bit Test 

BTS Bit Test and Set 

BTR Bit Test and Reset 

BTC Bit Test and Complement 

BSF Bit Scan Forward 

BSR Bit Scan Reverse 

BIT STRING INSTRUCTIONS 

IBTS Insert Bit String 

XBTS Exact Bit String 

Table 2-2f Program Control Instructions 

CONDITIONAL TRANSFERS 

LOOPNE/ 
LOOPNZ Loop if not equal/not zero 

JCXZ JUMP if register CX = 0 

INTERRUPTS 

INT Interrupt 

"INTO Interrupt if overflow 

IRET Return from Interrupt/Task 

CLI Clear interrupt Enable 

SLI Set Interrupt Enable 

Table 2 2g High Level Language Instructions -
BOUND Check Array Bounds 

ENTER Setup Parameter Block for Entering 
Procedure 

SETCC Set byte equal to condition code LEAVE Leave Procedure 
JA/JNBE Jump if above/not below nor equal Table 2-2h Protection Model 
JAE/JNB Jump if above or equal/not below 

JB/JNAE Jump if below/not above nor equal 

JBE/JNA Jump if below or equal/not above 

JC Jump if carry 

JE/JZ Jump if equal/zero 

JG/JNLE Jump if greater/not less nor equal 

JGE/JNL Jump if greater or equal/not less 

JL/JNGE Jump if less/not greater nor equal 

JLE/JNG Jump if less or equal/not greater 

JNC Jump if not carry 

JNE/JNZ Jump if not equal/not zero 

JNO Jump if not overflow 

SGDT Store Global Descriptor Table 

SIDT Store Interrupt Descriptor Table 

STR Store Task Register 

SLDT Store Local Descriptor Table 

LGDT Load Global Descriptor Table 

LlDT Load Interrupt Descriptor Table 

LTR Load Task Register 

LLDT Load Local Descriptor Table 

ARPL Adjust Requested Privilege Level 

LAR Load Access Rights 

LSL Load Segment Limit 

VERR/ 
JNP/JPO Jump if not parity/parity odd VERW Verify Segment for Reading or Writing 
JNS Jump if not sign LMSW Load Machine Status Word (lower 
JO Jump if overflow 16 bits of CRO) 

JP/JPE Jump if parity/parity even SMSW Store Machine Status Word 

JS Jump if Sign Table 2-2i Processor Control Instructions 

HLT Halt 

WAIT Wait until BUSY # negated 

ESC Escape 

LOCK Lock Bus 

16 
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2.5 ADDRESSING MODES 

2.5.1 Addressing Modes Overview 

The 80386 provides a total of 11 addressing modes 
for instructions to specify operands. The addressing 
modes are optimized to allow the efficient execution 
of high level languages such as C and FORTRAN, 
and they cover the vast majority of data references 
needed by high-level languages. 

2.5.2 Register and Immediate Modes 

Two of the addressing modes provide for instruc­
tions that operate on register or immediate oper­
ands: 

Register Operand Mode: The operand is located 
in one of the 8-, 16- or 32-bit general registers. 

Immediate Operand Mode: The operand is in­
cluded in the instruction as part of the opcode. 

2.5.3 32-Bit Memory Addressing 
Modes 

The remaining 9 modes provide a mechanism for 
specifying the effective address of an operand. The 
linear address consists of two components: the seg­
ment base address and an effective address. The 
effective address is calculated by using combina­
tions of the following four address elements: 

DISPLACEMENT: An 8-, or 32-bit immediate value, 
following the instruction. 

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area. 

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to 
access the elements of an array, or a string of char­
acters. 

SCALE: The index register's value can be multiplied 
by a scale factor, either 1, 2, 4 or 8. Scaled index 
mode is especially useful for accessing arrays or 
structures. 

Combinations of these 4 components make up the 9 
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is 
pipelined with the execution of other instructions. 
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The one exception is the simultaneous use of Base 
and Index components which requires one addition­
al clock. 

As shown in Figure 2-9, the effective address (EA) of 
an operand is calculated according to the following 
formula. 

EA = Base Reg + (Index Reg' Scaling) + Displacement 

Direct Mode: The operand's offset is contained as 
part of the instruction as an 8-, 16- or 32-bit dis­
placement. 
EXAMPLE: INC Word PTR [500] 

Register Indirect Mode: A BASE register contains 
the address of the operand. 
EXAMPLE: MOV [ECX], EDX 

Based Mode: A BASE register's contents is added 
to a DISPLACEMENT to form the operands offset. 
EXAMPLE: MOV ECX, [EAX + 24] 

Index Mode: An INDEX register's contents is added 
to a DISPLACEMENT to form the operands offset. 
EXAMPLE: ADD EAX, TABLE[ESIl 

Scaled Index Mode: An INDEX register's contents is 
multiplied by a scaling factor which is added to a 
DISPLACEMENT to form the operands offset. 
EXAMPLE: IMUL EBX, TABLE[ESI*4],7 

Based Index Mode: The contents of a BASE register 
is added to the contents of an INDEX register to 
form the effective address of an operand. 
EXAMPLE: MOV EAX, [ESI] [EBX] 

Based Scaled Index Mode: The contents of an IN­
DEX register is multiplied by a SCALING factor and 
the result is added to the contents of a BASE regis­
ter to obtain the operands offset. 
EXAMPLE: MOV ECX, [EDX*S] [EAX] 

Based Index Mode with Displacement: The contents 
of an INDEX Register and a BASE register's con­
tents and a DISPLACEMENT are all summed to­
gether to form the operand offset. 
EXAMPLE: ADD EDX, [ESIl [EBP+OOFFFFFOH] 

Based Scaled Index Mode with Displacement: The 
contents of an INDEX register are multiplied by a 
SCALING factor, the result is added to the contents 
of a BASE register and a DISPLACEMENT to form 
the operand's offset. 
EXAMPLE: MOV EAX, LOCALTABLE[EDI*4] 
[EBP+SO] 
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Figure 2-9. Addressing Mode Calculations 

2.5.4 Differences Between 16 and 32 
Bit Addresses 

In order to provide software compatibility with the 
80286 and the 8086, the 80386 can execute 16-bit 
instructions in Real and Protected Modes. The proc­
essor determines the size of the instructions it is ex­
ecuting by examining the D bit in the CS segment 
Descriptor. If the D bit is ° then all operand lengths 
and effective addresses are assumed to be 16 bits 
long. If the D bit is 1 then the default length for oper­
ands and addresses is 32 bits. In Real Mode the 
default size for operands and addresses is 16-bits. 

Regardless of the default precision of the operands 
or addresses, the 80386 is able to execute either 16 
or 32-bit instructions. This is specified via the use of 
override prefixes. Two prefixes, the Operand Size 
Prefix and the Address Length Prefix, override the 
value of the D bit on an individual instruction basis. 
These prefixes are automatically added by Intel as­
semblers. 

18 

Example: The processor is executing in Real Mode 
and the programmer needs to access the EAX regis­
ters. The assembler code for this might be MOV 
EAX, 32bitMEMORYOP, ASM 386 automatically de­
termines that an Operand Size Prefix is needed and 
generates it. 

Example: The D bit is 0, and the programmer wishes 
to use Scaled Index addressing mode to access an 
array. The Address Length Prefix allows the use of 
MOV DX, TABLE[ESI*2]. The assembler uses an 
Address Length Prefix since, with D = 0, the default 
addressing mode is 16-bits. 

Example: The D bit is 1, and the program wants to 
store a 16-bit quantity. The Operand Length Prefix is 
used to specify only a 16-bit value; MOV MEM16, 
DX. 
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Table 2-3. BASE and INDEX Registers for 16- and 32-Bit Addresses 

16·Bit Addressing 32-Bit Addressing 

BASE REGISTER BX,BP 
INDEX REGISTER SI,DI 

SCALE FACTOR none 
DISPLACEMENT 0,8, 16 bits 

The OPERAND LENGTH and Address Length Pre­
fixes can be applied separately or in combination to 
any instruction. The Address Length Prefix does not 
allow addresses over 64K bytes to be accessed in 
Real Mode. A memory address which exceeds 
FFFFH will result in a General Protection Fault. An 
Address Length Prefix only allows the use of the ad­
ditional 80386 addressing modes. 

When executing 32-bit code, the 80386 uses either 
8-, or 32-bit displacements, and any register can be 
used as base or index registers. When executing 16-
bit code, the displacements are either 8, or 16 bits, 
and the base and index register conform to the 286 
model. Table 2-3 illustrates the differences. 

2.6 DATA TYPES 

The 80386 supports all of the data types commonly 
used in high level languages: 

Bit: A single bit quantity. 

Bit Field: A group of up to 32 contiguous bits, 
which spans a maximum of four bytes. 

Bit String: A set of contiguous bits, on the 80386 
bit strings can be up to 4 gigabits long. 

Byte: A signed 8-bit quantity. 

Unsigned Byte: An unsigned 8-bit quantity. 

Integer (Word): A signed 16-bit quantity. 

Long Integer (Double Word): A signed 32-bit quan­
tity. All operations assume a 2's complement rep­
resentation. 

Unsigned Integer (Word): An unsigned 16-bit 
quantity. 

Unsigned Long Integer (Double Word): An un­
signed 32-bit quantity. 
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Any 32-bit GP Register 
Any 32-bit GP Register 
Except ESP 
1,2,4,8 
0,8,32 bits 

Signed Quad Word: A signed 64-bit quantity. 

Unsigned Quad Word: An unsigned 64-bit quanti­
ty. 

Offset: A 16- or 32-bit offset only quantity which 
indirectly references another memory location. 

Pointer: A full pointer which consists of a 16-bit 
segment selector and either a 16- or 32-bit offset. 

Char: A byte representation of an ASCII Alphanu­
meric or control character. 

String: A contiguous sequence of bytes, words or 
dwords. A string may contain between 1 byte and 
4 Gbytes. 

BCD: A byte (unpacked) representation of decimal 
digits 0-9. 

Packed BCD: A byte (packed) representation of 
two decimal digits 0-9 storing one digit in each 
nibble. 

When the 80386 is coupled with a numerics Coproc­
essor such as the 80287 or the 80387 then the fol­
lowing common Floating Point types are supported. 

Floating Point: A signed 32-, 64-, or 80-bit real 
number representation. Floating point numbers 
are supported by the 80287 and 80387 numerics 
coprocessor. 

Figure 2-10 illustrates the data types supported by 
the 80386 and the 80387/80287. 
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2.7 MEMORY ORGANIZATION 

2.7.1 Introduction 
~emory on the 80386 is divided up into 8-bit quanti­
ties (bytes), 16-bit quantities (words), and 32-bit 
quantities (dwords). Words are stored in two consec­
utive bytes in memory with the low-order byte at the 
lowest address, the high order byte at the high ad­
dress. Dwords are stored in four consecutive bytes 
in memory with the low-order byte at the lowest ad­
dress, the high-order byte at the highest address. 
The address of a word or dword is the byte address 
of the low-order byte. 

In addition to these basic data types the 386 sup­
ports two larger units of memory: pages and seg­
ments. Memory can be divided up into one or more 
variable length segments, which can be swapped to 
disk or shared between programs. Memory can also 
be organized into one or more 4K byte pages. Final­
ly, both segmentation and paging can be combined, 
gaining the advantages of both systems. The 80386 
supports both pages and segments in order to pro­
vide maximum flexibility to the system designer. 
Segmentation and paging are complementary. Seg­
mentation is useful for organizing memory in logical 
modules, and as such is a tool for the application 
programmer, while pages are useful for the system 
programmer for managing the physical memory of a 
system. 

2.7.2 Address Spaces 
The 80386 has three distinct address spaces: 
logical, linear, and physical. A logical address 

EFFECTIVE ADDRESS CALCULATION 

(also known as a virtual address) consists of a se­
lector and an offset. A selector is the contents of a 
segment register. An offset is formed by summing all 
of the addressing components (BASE, INDEX, DIS­
PLACEMENT) discussed in section 2.5.3 Memory 
Addressing Modes into an effective address. Since 
each task on 80386 has a maximum of 16K (214 
-1) selectors, and offsets can be 4 gigabytes, (232 

bits) this gives a total of 246 bits or 64 terabytes of 
logical address space per task. The programmer 
sees this virtual address space. 

The segmentation unit translates the logical ad­
dress space into a 32-bit linear address space. If the 
paging unit is not enabled then the 32-bit linear ad­
dress corresponds to the physical address. The 
paging unit translates the linear address space into 
the physical address space. The physical address 
is what appears on the address pins. 

The primary difference between Real Mode and Pro­
tected Mode is how the segmentation unit performs 
the translation of the logical address into the linear 
address. In Real Mode, the segmentation unit shifts 
the selector left four bits and adds the result to the 
offset to form the linear address. While in Protected 
Mode every selector has a linear base address as­
sociated with it. The linear base address is stored in 
one of two operating system tables (Le. the Local 
Descriptor Table or Global Descriptor Table). The 
selector's linear base address is added to the offset 
to form the final linear address. 

Figure 2-11 shows the relationship between the vari­
ous address spaces. 
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A31 - A2 

32 0 
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MEMORY 

ADDRESS 
LOGICAL OR SEGMENTATION 1----'3~2;C+1 PAGING UNIT 

14 VIRTUAL ADDRESS UNIT LINEAR (OPTIONAL USE) 
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Figure 2-11. Address Translation 
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2.7.3 Segment Register Usage 

The main data structure used to organize memory is 
the segment. On the 386, segments are variable 
sized blocks of linear addresses which have certain 
attributes associated with them. There are two main 
types of segments: code and data, the segments are 
of variable size and can be as small as 1 byte or as 
large as 4 gigabytes (232 bytes). 

In order to provide compact instruction encoding, 
and increase processor performance, instructions 
do not need to explicitly specify which segment reg­
ister is used. A default segment register is automati­
cally chosen according to the rules of Table 2-4 
(Segment Register Selection Rules). In general, data 
references use the selector contained in the OS reg­
ister; Stack references use the SS register and In­
struction fetches use the CS register. The contents 
of the Instruction Pointer provides the offset. Special 
segment override prefixes allow the explicit use of a 
given segment register, and override the implicit 
rules listed in Table 2-4. The override prefixes also 
allow the use of the ES, FS and GS segment regis­
ters. 

There are no restrictions regarding the overlapping 
of the base addresses of any segments. Thus, all 6 
segments could have the base address set to zero 
and create a system with a four gigabyte linear ad­
dress space. This creates a system where the virtual 
address space is the same as the linear address 
space. Further details of segmentation are dis­
cussed in section 4.1. 

2.8 I/O SPACE 

The 80386 has two distinct physical address 
spaces: Memory and 1/0. Generally, peripherals are 
placed in 1/0 space although the 80386 also sup­
ports memory-mapped peripherals. The 1/0 space 
consists of 64K bytes, it can be divided into 64K 8-
bit ports, 32K 16-bit ports, or 16K 32-bit ports, or any 
combination of ports which add up to less than 64K 
bytes. The 64K 1/0 address space refers to physical 
memory rather than linear address since 1/0 instruc­
tions do not go through the segmentation or paging 
hardware. The M/IO# pin acts as an additional ad­
dress line thus allowing the system designer to easi­
ly determine which address space the processor is 
accessing. 

Table 2-4. Segment Register Selection Rules 

Type of Implied (Default) Segment Override 
Memory Reference Segment Use Prefixes Possible 

Code Fetch CS None 

Destination of PUSH, 
PUSHA instructions SS None 

Source of POP, POPA 
instructions SS None 

Other data references, 
with effective address 
using base register of: 

[EAX] OS CS,SS,ES,FS,GS 
[ESX] OS CS,SS,ES,FS,GS 
[ECX] OS CS,SS,ES,FS,GS 
[EOX] OS CS,SS,ES,FS,GS 
[ESX] OS CS,SS,ES,FS,GS 
[ESI] OS CS,SS,ES,FS,GS 

[EOI]· DS CS,SS,ES,FS,GS 
[ESP] SS CS,DS,ES,FS,GS 
[ESP] SS CS,DS,ES,FS,GS 

• Data references for the memory destination of the STaS and MaVS instructions (and REP STaS and REP MaVS) 
use 01 as the base register and ES as the segment, with no override possible. 
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The 1/0 ports are accessed via the IN and OUT 1/0 
instructions, with the port address supplied as an 
immediate 8-bit constant in the instruction or in the 
OX register. All 8- and 16-bit port addresses are zero 
extended on the upper address lines. The 1/0 in­
structions cause the M/IO# pin to be driven low. 

1/0 port addresses 00F8H through OOFFH are re­
served for use by Intel. 

2.9 INTERRUPTS 

2.9. i Interrupts and E}(cep~ions 

Interrupts and exceptions alter the normal program 
flow, in order to handle external events, to report 
errors or exceptional conditions. The difference be­
tween interrupts and exceptions is that interrupts are 
used to handle asynchronous external events while 
exceptions handle instruction faults. Although a pro­
gram can generate a software interrupt via an INT N 
instruction, the processor treats software interrupts 
as exceptions. 

Hardware interrupts occur as the result of an exter­
nal event and are classified into two types: maskable 
or non-maskable. Interrupts are serviced after the 
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately 
after the interrupted instruction. Sections 2.9.3 and 
2.9.4 discuss the differences between Maskable and 
Non-Maskable interrupts. 

Exceptions are classified as faults, traps, or aborts 
depending on the way they are reported, and wheth­
er or not restart of the instruction causing the excep­
tion is supported. Faults are exceptions that are de­
tected and serviced before the execution of the 
faulting instruction. A fault would occur in a virtual 
memory system, when the processor referenced a 
page or a segment which was not present. The oper­
ating system would fetch the page or segment from 
disk, and then the 80386 would restart the instruc­
tion. Traps are exceptions that are reported immedi­
ately after the execution of the instruction which 
caused the problem. User defined interrupts are ex­
amples of traps. Aborts are exceptions which do 
not permit the precise location of the instruction 
causing the exception to be determined. Aborts are 
used to report severe errors, such as a hardware 
error, or illegal values in system tables. 

23 

Thus, when an interrupt service routine has been 
completed, execution proceeds from the instruction 
immediately following the interrupted instruction. On 
the other hand, the return address from an excep­
tion fault routine will always point at the instruction 
causing the exception and include any leading in­
struction prefixes. Table 2-5 summarizes the possi­
ble interrupts for the 80386 and shows where the 
return address points. 

The 80386 has the ability to handle up to 256 differ­
ent interruptsl exceptions. In order to service the in­
terrupts, a table with up to 256 interrupt vectors 
must be defined. The interrupt vectors are simply 
pointers to the appropriate interrupt service routine. 
In Real Mode (see section 3.1), the vectors are 4 
byte quantities, a Code Segment plus a 16-bit offset; 
in Protected Mode, the interrupt vectors are 8 byte 
quantities, which are put in an Interrupt Descriptor 
Table (see section 4.1). Of the 256 possible inter­
rupts, 32 are reserved for use by Intel, the remaining 
224 are free to be used by the system designer. 

2.9.2 Interrupt Processing 

When an interrupt occurs the following actions hap­
pen. First, the current program address and the 
Flags are saved on the stack to allow resumption of 
the interrupted program. Next, an 8-bit vector is sup­
plied to the 80386 which identifies the appropriate 
entry in the interrupt table. The table contains the 
starting address of the interrupt service routine. 
Then, the user supplied interrupt service routine is 
executed. Finally, when an IRET instruction is exe­
cuted the old processor state is restored and pro­
gram execution resumes at the appropriate instruc­
tion. 

The 8-bit interrupt vector is supplied to the 80386 in 
several different ways: exceptions supply the inter­
rupt vector internally; software INT instructions con­
tain or imply the vector; maskable hardware inter­
rupts supply the 8-bit vector via the interrupt ac­
knowledge bus sequence. Non-Maskable hardware 
interrupts are assigned to interrupt vector 2. 

2.9.3 Maskable Interrupt 

Maskable interrupts are the most common way used 
by the 80386 to respond to asynchronous external 
hardware events. A hardware interrupt occurs when 
the INTR is pulled high and the Interrupt Flag bit (IF) 
is enabled. The processor only responds to inter­
rupts between instructions, (REPeat String instruc-
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Table 2-5. Interrupt Vector Assignments 

Instruction Which 
Return Address 

Interrupt Points to 
Function Can Cause Type 

Number Faulting 
Exception 

Instruction 

Divide Error 0 DIV,IDIV YES FAULT 

Debug Exception 1 any instruction YES TRAP' 

NMllnterrupt 2 INT 2 orNMI NO NMI 

One Byte Interrupt 3 INT NO TRAP 

Interrupt on Overflow 4 INTO NO TRAP 

Array Bounds Check 5 BOUND YES FAULT 

Invalid OP-Code 6 Any Illegal Instruction YES FAULT 

Device Not Available 7 ESC, WAIT YES FAULT 

Double Fault 8 Any Instruction That Can ABORT 
Generate an Exception 

Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT 

Segment Not Present 11 Segment Register Instructions YES FAULT 

Stack Fault 12 Stack References YES FAULT 

General Protection Fault 13 Any Memory Reference YES FAULT 

Page Fault 14 Any Memory Access or Code Fetch YES FAULT 

Coprocessor Error 16 ESC, WAIT YES FAULT 

Intel Reserved 17-32 

Two Byte Interrupt 0-255 INTn NO TRAP 
• Some debug exceptIOns may report both traps on the prevIOUS Instruclion, and faults on the next Instruction. 
Note: Exception 9 no longer occurs on the 80386 due to the improved interface between the 80386 and its coprocessors. 

tions, have an "interrupt window", between memory 
moves, which allows interrupts during long string 
moves). When an interrupt occurs the processor 
reads an 8-bit vector supplied by the hardware which 
identifies the source of the interrupt, (one of 224 
user defined interrupts). The exact nature of the in­
terrupt sequence is discussed in section 5. 

The IF bit in the EFLAG registers is reset when an 
interrupt is being serviced. This effectively disables 
servicing additional interrupts during an interrupt 
service routine. However, the IF may be set explicitly 
by the interrupt handler, to allow the nesting of inter­
rupts. When an IRET instruction is executed the 
original state of the IF is restored. 

2.9.4 Non-Maskable Interrupt 

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. A common example 
of the use of a non-maskable interrupt (NMI) would 
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be to activate a power failure routine. When the NMI 
input is pulled high it causes an interrupt with an 
internally supplied vector value of 2. Unlike a normal 
hardware interrupt, no interrupt acknowledgment se­
quence is performed for an NMI. 

While executing the NMI servicing procedure, the 
80386 will not service further NMI requests, until an 
interrupt return (IRET) instruction is executed or the 
processor is reset. If NMI occurs while currently 
servicing an NMI, its presence will be saved f9r serv­
icing after executing the first IRET instruction. The IF 
bit is cleared at the beginning of an NMI interrupt to 
inhibit further INTR interrupts. 

2.9.5 Software Interrupts 

A third type of interrupti exception for the 80386 is 
the software interrupt. An INT n instruction causes 



80386 

the processor to execute the interrupt service rou­
tine pointed to by the nth vector in the interrupt ta­
ble. 

A special case of the two byte software interrupt INT 
n is the one byte INT 3, or breakpoint interrupt. By 
inserting this one byte instruction in a program, the 
user can set breakpoints in his program as a debug­
ging tool. 

A final type of software interrupt, is the single step 
interrupt. It is discussed in section 2.12. 

2.9.6 Interrupt and Exception 
Priorities 

Interrupts are externally-generated events. Maska­
ble Interrupts (on the INTR input) and Non-Maskable 
Interrupts (on the NMI input) are recognized at in­
struction boundaries. When NMI and maskable 
INTR are both recognized at the same instruction 
boundary, the 80386 invokes the NMI service rou­
tine first. If, after the NMI service routine has been 
invoked, maskable interrupts are still enabled, then 
the 80386 will invoke the appropriate interrupt serv­
ice routine. 

Table 2·6a. 80386 Priority for Invoking 
Service Routines in Case of 

Simultaneous El(ternal Interrupts 

1. NMI 

2.INTR 

Exceptions are internally-generated events. Excep­
tions are detected by the 80386 if, in the course of 
executing an instruction, the 80386 detects a prob­
lematic condition. The 80386 then immediately in­
vokes the appropriate exception service routine. The 
state of the 80386 is such that the instruction caus­
ing the exception can be restarted. If the exception 
service routine has taken care of the problematic 
condition, the instruction will execute without caus­
ing the same exception. 

It is possible for a single instruction to generate sev­
eral exceptions (for example, transferring a single 
operand could generate two page faults if the oper­
and location spans two "not present" pages). How­
ever, only one exception is generated upon each at­
tempt to execute the instruction. Each exception 
service routine should correct its corresponding ex­
ception, and restart the instruction. In this manner, 
exceptions are serviced until the instruction exe­
cutes successfully. 

As the 80386 executes instructions, it follows a con­
sistent cycle in checking for exceptions, as shown in 
Table 2-6b. This cycle is repeated as each instruc-
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tion is executed, and occurs in parallel with instruc­
tion decoding and execution. 

Table 2-6b. Sequence of Exception Checking 

Consider the case of the 80386 having just com­
pleted an instruction. It then performs the follow­
ing checks before reaching the point where the 
next instruction is completed: 

1. Check for Exception 1 Traps from the instruc­
tion just completed (single-step via Trap Flag, 
or Data Breakpoints set in the Debug Regis­
ters). 

2. Check for external NMI and INTR. 

3. Check for Exception 1 Faults in the next in­
struction (Instruction Execution Breakpoint set 
in the Debug Registers for the next instruc­
tion). 

4. Check for Segmentation Faults that prevented 
fetching the entire next instruction (exceptions 
11 or 13). 

5. Check for Page Faults that prevented fetching 
the entire next instruction (exception 14). 

6. Check for Faults decoding the next instruction 
(exception 6 if illegal opcode; exception 6 if in 
Real Mode or in Virtual 8086 Mode and at­
tempting to execute an instruction for Protect­
ed Mode only (see 4.6.4); or exception 13 if 
instruction is longer than 15 bytes, or privilege 
violation in Protected Mode (Le. not at IOPL or 
at CPL=O). 

7. If WAIT opcode, check if TS=1 and MP=1 
(exception 7 if both are 1). 

B. If ESCAPE opcode for numeric coprocessor, 
check if EM = 1 or TS = 1 (exception 7 if either 
are 1). 

9. If WAIT opcode or ESCAPE opcode for nu­
meric coprocessor, check ERROR # input sig­
nal (exception 16 if ERROR # input is assert­
ed). 

10. Check in the following order for each memo­
ry reference required by the instruction: 

a. Check for Segmentation Faults that pre­
vent transferring the entire memory quanti­
ty (exceptions 11, 12, 13). 

b. Check for Page Faults that prevent trans­
ferring the entire memory quantity (excep­
tion 14). 

Note that the order stated supports the 
concept of the paging mechanism being 
"underneath" under segmentation mecha­
nism. Therefore, for any given code or 
data reference in memory, segmentation 
exceptions are generated before paging 
exceptions are generated. 
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2.9.7 Instruction Restart 

The 80386 fully supports restarting all instructions 
after faults. If an exception is detected in the instruc­
tion to be executed (exception categories 4 through 
10 in Table 2-6c), the 80386 invokes the appropriate 
exception service routine. The 80386 is in a state 
that permits restart of the instruction, for all cases 
but those in Table 2-6c. Note that all such cases are 
easily avoided by proper design of the operating sys­
tem. 

Table 2-6c. Conditions Preventing 
Instruction Restart 

A. An instruction causes a task switch to a task 
whose Task State Segment is partially "not 
present". (An entirely "not present" TSS is re­
startable.) Partially present TSS's can be 
avoided either by keeping the TSS's of such 
tasks present in memory, or by aligning TSS 
segments to reside entirely within a single 4K 
page (for TSS segments of 4K bytes or less). 

B. A coprocessor operand wraps around the top 
of a 64K-byte segment or a 4G-byte segment, 
and spans three pages, and the page holding 
the middle portion of the operand is "not pres­
ent." This condition can be avoided by starting 
at a page boundary any segments containing 
coprocessor operands if the segments are ap­
proximately 64K-200 bytes or larger (i.e. large 
enough for wraparound of the coprocessor 
operand to possibly occur). 

Note that these conditions are avoided by using 
the operating system designs mentioned in this 
table. 

2.9.8 Double Fault 

A Double Fault (exception 8) results when the proc­
essor attempts to invoke an exception service rou­
tine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing so, detects an exception 
other than a Page Fault (exception 14). 

One other cause of generating a Double Fault (ex­
ception 8) is the 80386 detecting any other excep­
tion when it is attempting to invoke the Page Fault 
(exception 14) service routine (for example, if a Page 
Fault is detected when the 80386 attempts to invoke 
the Page Fault service routine). Of course in any 
functional system, not only in 80386-based systems, 
the entire page fault service routine must remain 
"present" in memory. 

When a Double Fault occurs, the 80386 invokes the 
exception service routine for exception 8. 
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2.10 RESET AND INITIALIZATION 

When the processor is initialized or Reset the regis­
ters have the values shown in Table 2-7. The 80386 
will then start executing instructions near the top of 
physical memory, at location FFFFFFFOH. When the 
first InterSegment Jump or Call is executed, address 
lines A20-31 will drop low for CS-relative memory 
cycles, and the 80386 will only execute instructions 
in the lower one megabyte of physical memory. This 
allows the system designer to use a ROM at the top 
of physical memory to initialize the system and take 
care of Resets. 

RESET forces the 80386 to terminate all execution 
and local bus activity. No instruction execution or 
bus activity will occur as long as Reset is active. 
Between 350 and 450 CLK2 periods after Reset be­
comes inactive the 80386 will start executing in­
structions at the top of physical memory. 

Table 2·7. Register Values after Reset 

Flag Word 
Machine Status Word (CRO) 
Instruction Pointer 
Code Segment 
Data Segment 
Stack Segment 
Extra Segment (ES) 
Extra Segment (FS) 
Extra Segment (GS) 
DX register 

All other registers 

NOTES: 

UUUU0002H Note 1 
UUUUUUUOH Note 2 

OOOOFFFOH 
FOOOH Note 3 
OOOOH 
OOOOH 
OOOOH 
OOOOH 
OOOOH 

component and 
stepping ID Note 5 

undefined Note 4 

1. EFLAG Register. The upper 14 bits of the EFLAGS reg­
ister are undefined, VM (Bit 17) and RF (BIT) 16 are a as 
are all other defined flag bits. 
2. CRO: (Machine Status Word). All of the defined fields in 
the CRO are a (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and 
PE Bit 0) except for ET Bit 4 (processor ex1ension type). 
The ET Bit is set during Reset according to the type of Co­
processor in the system. If the coprocessor is an 80387 
then ET will be 1, if the coprocessor is an 80287 or no 
coprocessor is present then ET will be O. All other bits are 
undefined. 
3. The Code Segment Register (CS) will have its Base Ad­
dress set to FFFFOOOOH and Limit set to OFFFFH. 
4. All undefined bits are Intel Reserved and should not be 
used. 
5. OX register always holds component and stepping iden­
tifier (see 5.7). EAX register holds self-test signature if self­
test was requested (see 5.6). 
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2.11 TESTABILITY 

2.11.1 Self-Test 

The 80386 has the capability to perform a self-test. 
The self-test checks the function of all of the Control 
ROM and most of the non-random logic of the part. 
Approximately one-half of the 80386 can be tested 
during self-test. 

Self-Test is initiated on the 80386 when the RESET 
pin transitions from HIGH to LOW, and the BUSY # 
pin is low. The self-test takes about 2'*19 clocks, or 
approximately 33 milliseconds with a 16 MHz 80386. 
At the completion of self-test the processor per­
forms reset and begins normal operation. The part 
has successfully passed self-test if the contents of 
the EAX register are zero (0). If the results of EAX 
are not zero then the self-test has detected a flaw in 
the part. 

2.11.2 TLB Testing 

The 80386 provides a mechanism for testing the 
Translation Lookaside Buffer (TLB) if desired. This 
particular mechanism is unique to the 80386 and 
may not be continued in the same way in future 
processors. When testing the TLB it is recommend­
ed that paging be turned off (PG = 0 in CRO) to 
avoid interference with the test data being written to 
the TLB. 

There are two TLB testing operations: 1) write en­
tries into the TLB, and, 2) perform TLB lookups. Two 
Test Registers, shown in Figure 2-12, are provided 
for the purpose of testing. TR6 is the "test command 
register", and TR7 is the "test data register". The 
fields within these registers are defined below. 

c: This is the command bit. For a write into TR6 to 
cause an immediate write into the TLB entry, write a 
o to this bit. For a write into TR6 to cause an immedi­
ate TLB lookup, write a 1 to this bit. 

Linear Address: This is the tag field of the TLB. On 
a TLB write, a TLB entry is allocated to this linear 
address and the rest of that TLB entry is set per the 
value of TR7 and the value just written into TR6. On 
a TLB lookup, the TLB is interrogated per this value 
and if one and only one TLB entry matches, the rest 
of the fields of TR6 and TR7 are set from the match­
ing TLB entry. 

Physical Address: This is the data field of the TLB. 
On a write to the TLB, the TLB entry allocated to the 
linear address in TR6 is set to this value. On a TLB 
lookup, the data field (physical address) from the 
TLB is read out to here. 
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PL: On a TLB write, PL= 1 causes the REP field of 
TR7 to select which of four associative blocks of the 
TLB is to be written, but PL= 0 allows the internal 
pointer in the paging unit to select which TLB block 
is written. On a TLB lookup, the PL bit indicates 
whether the lookup was a hit (PL gets set to 1) or a 
miss (PL gets reset to 0). 

V: The valid bit for this TLB entry. All valid bits can 
also be cleared by writing to CR3. 

D, D#: The dirty bit for/from the TLB entry. 

u, U #: The user bit for/from the TLB entry. 

W, W#: The writable bit for/from the TLB entry. 

For 0, U and W, both the attribute and its comple­
ment are provided as tag bits, to permit the option of 
a "don't care" on TLB lookups. The meaning of 
these pairs of bits is given in the following table: 

)( )(# 
Effect During Value of Bit 
TLB Loolcup )( after TLB Write 

0 0 Miss All Bit X Becomes Undefined 
0 1 Match if X = 0 Bit X Becomes 0 
1 0 Match if X = 1 Bit X Becomes 1 
1 1 Match all Bit X Becomes Undefined 

For writing a TLB entry: 

1. Write TR7 for the desired physical address, PL 
and REP values. 

2. Write TR6 with the appropriate linear address, 
etc. (be sure to write C = 0 for "write" com­
mand). 

For looking up (reading) a TLB entry: 

1. Write TR6 with the appropriate linear address (be 
sure to write C= 1 for "lookup" command). 

2. Read TR7 and TR6. If the PL bit in TR7 indicates 
a hit, then the other values reveal the TLB con­
tents. If PL indicates a miss, then the other values 
in TR7 and TR6 are indeterminate. 

2.12 DEBUGGING SUPPORT 

The 80386 provides several features which simplify 
the debugging process. The three categories of on­
chip debugging aids are: 

1) the code execution breakpoint opcode (OCCH), 

2) the single-step capability provided by the TF bit in 
the flag register, and 

3) the code and data breakpoint capability provided 
by the Debug Registers DRO-3, DR6, and DR7. 
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31 12 11 0 

LINEAR ADDRESS 
V 0 0 u u w w 

0 01 0 0 C 
# # # 

TR6 

PHYSICAL ADDRESS 0 0 0 0 0 0 0 
P 

REP 0 0 
L 

TR? 

NOTE: [£] indicates Intel reserved: Do not define; SEE SECTION 2.3.10 

Figure 2-12. Test Registers 

2.12.1 Breakpoint Instruction 

A single·byte-opcode breakpoint instruction is avail­
able for use by software debuggers. The breakpoint 
opcode is OCCh, and generates an exception 3 trap 
when executed. In typical use, a debugger program 
can "plant" the breakpoint instruction at all desired 
code execution breakpoints. The single-byte break­
point opcode is an alias for the two-byte general 
software interrupt instruction, INT n, where n = 3. 
The only difference between INT 3 (OCCh) and INT n 
is that INT 3 is never IOPL-sensitive but INT n is 
IOPL-sensitive in Protected Mode and Virtual 8086 
Mode. 

2.12.2 Single-Step Trap 

If the single-step flag (TF, bit 8) in the EFLAG regis· 
ter is found to be set at the end of an instruction, a 
single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1. Pre­
cisely, exception 1 occurs as a trap after the instruc­
tion following the instruction which set TF. In typical 
practice, a debugger sets the TF bit of a flag register 
image on the debugger's stack. It then typically 
transfers control to the user program and loads the 
flag image with a signal instruction, the IRET instruc­
tion. The single-step trap occurs after executing one 
instruction of the user program. 

Since the exception 1 occurs as a trap (that is, it 
occurs after the instruction has already executed), 
the CS:EIP pushed onto the debugger's stack points 
to the next unexecuted instruction of the program 
being debugged. An exception 1 handler, merely by 
ending with an IRET instruction, can therefore effi­
ciently support single-stepping through a user pro­
gram. 

2.12.3 Debug Registers 

The Debug Registers are an advanced debugging 
feature of the 80386. They allow data access break­
points as well as code execution breakpoints. Since 
the breakpoints are indicated by on-chip registers, 
an instruction execution breakpoint can be placed in 
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ROM code or in code shared by several tasks, nei­
ther of which can be supported by the INT3 break­
point opcode. 

The 80386 contains six Debug Registers, providing 
the ability to specify up to four distinct breakpoints 
addresses, breakpoint control options, and read 
breakpoint status. Initially after reset, breakpoints 
are in the disabled state. Therefore, no breakpoints 
will occur unless the debug registers are pro­
grammed. Breakpoints set up in the Debug Regis­
ters are autovectored to exception number 1. 

2.12.3.1 LINEAR ADDRESS BREAKPOINT 
REGISTERS (DRO-DR3) 

Up to four breakpoint addresses can be specified by 
writing into Debug Registers DRO-DR3, shown in 
Figure 2-13. The breakpoint addresses specified are 
32-bit linear addresses. 80386 hardware continuous­
ly compares the linear breakpoint addresses in 
DRO-DR3 with the linear addresses generated by 
executing software (a linear address is the result of 
computing the effective address and adding the 32-
bit segment base address). Note that if paging is not 
enabled the linear address equals the physical ad­
dress. If paging is enabled, the linear address is 
translated to a physical 32-bit address by the on­
chip paging unit. Regardless of whether paging is 
enabled or not, however, the breakpoint registers 
hold linear addresses. 

2.12.3.2 DEBUG CONTROL REGISTER (DR?) 

A Debug Control Register, DR? shown in Figure 
2-13, allows several debug control functions such as 
enabling the breakpoints and setting up other con­
trol options for the breakpoints. The fields within the 
Debug Control Register, DR?, are as follows: 

LENi (breakpoint length specification bits) 

A 2-bit LEN field exists for each of the four break­
points. LEN specifies the length of the associated 
breakpoint field. The choices for data breakpoints 
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu-
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31 16 15 0 

BREAKPOINT 0 LINEAR ADDRESS ORO 

BREAKPOINT 1 LINEAR ADDRESS DR1 

BREAKPOINT 2 LINEAR ADDRESS DR2 

BREAKPOINT 3 LINEAR ADDRESS DR3 

Intel reserved. Do not define. DR4 

Intel reserved. Do not define. DR5 

0 
B B B o 0 o 0 o 0 o 0 o B B B B DR6 
T S 0 3 210 

LEN I ~ I W I LEN I R I w I LEN I R I w I LEN I R I w 0 o G o 0 OG L G L G L G L G L 
DR? 333222111000 0 E E 3 322 1 100 

31 16 15 0 

NOTE: ~ indicates Intel reserved: Do not define; SEE SECTION 2.3.10 

Figure 2-13. Debug Registers 

tion breakpoints must have a length of 1 (LENi 
00). Encoding of the LENi field is as follows: 

Usage of Least 
LENi Brealcpoint Significant Bits in 

Encoding Field Width Brea!cpoint Address 
Register i, (i = 0 - 3) 

00 1 byte All 32-bits used to 
specify a single·byte 
breakpoint field. 

01 2 bytes A1-A31 used to 
specify a two· byte, 
word·aligned 
breakpoint field. AD in 
Breakpoint Address 
Register is not used. 

10 Undefined-
do not use 

this encoding 

11 4 bytes A2-A31 used to 
specify a four·byte, 
dword-aligned 
breakpoint field. AD 
and A 1 in Breakpoint 
Address Register are 
not used. 

The LENi field controls the size of breakpoint field i 
by controlling whether all low·order linear address 
bits in the breakpoint address register are used to 
detect the breakpoint event. Therefore, all break· 
point fields are aligned; 2·byte breakpoint fields be­
gin on Word boundaries, and 4-byte breakpoint 
fields begin on Dword boundaries. 
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The following is an example of various size break­
point fields. Assume the breakpoint linear address in 
DR2 is 00000005H. In that situation, the following 
illustration indicates the region of the breakpoint 
field for lengths of 1, 2, or 4 bytes. 

DR2 = 00000005H; LEN2 = OOB 

!= 31===! ==!b=kPt=fld2:! =:0 !:::::::;: 

DR2 = 00000005H; 
31 

LEN2 = 01B 

I 
o 

I 00000008H 

- bkpt fld2 ~ 00000004H 

I OOOOOOOOH L-____ ~ ____ L-____ L_ __ ~ 

DR2 = 00000005H; LEN2 = 11B 
31 

I I I 
0 

I I 00000008H - bkpt fld2 --l> 00000004H 

I I OOOOOOOOH 
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RWi (memory access qualifier bits) 

A 2-bit RW field exists for each of the four break­
points. The 2-bit RW field specifies the type of usage 
which must occur in order to activate the associated 
breakpoint. 

RW Usage 
Encoding Causing Breakpoint 

00 Instruction execution only 
01 Data writes only 
10 Undefined-do not use this encoding 
11 Data reads and writes only 

RW encoding 00 is used to set up an instruction 
execution breakpoint. RW encodings 01 or 11 are 
used to set up write-only or read/write data break­
points. 

Note that instruction execution breakpoints are 
taken as faults (i.e. before the instruction exe­
cutes), but data breakpoints are taken as traps 
(i.e. after the data transfer takes place). 

Using LENi and RWi to Set Data Breakpoint i 

A data breakpoint can be set up by writing the linear 
address into DRi (i = 0-3). For data breakpoints, 
RWi can = 01 (write-only) or 11 (write/read). LEN 
can = 00,01, or 11. 

If a data access entirely or partly falls within the data 
breakpoint field, the data breakpoint condition has 
occurred, and if the breakpoint is enabled, an excep­
tion 1 trap will occur. 

Using LENi and RWi to Set Instruction Execution 
Breakpoint i 

An instruction execution breakpoint can be set up by 
writing address of the beginning of the instruction 
(including prefixes if any) into DRi (i = 0-3). RWi 
must = 00 and LEN must = 00 for instruction exe­
cution breakpoints. 

If the instruction beginning at the breakpoint address 
is about to be executed, the instruction execution 
breakpoint condition has occurred, and if the break­
point is enabled, an exception 1 fault will occur be­
fore the instruction is executed. 

Note that an instruction execution breakpoint ad­
dress must be equal to the beginning byte address 
of an instruction (including prefixes) in order for the 
instruction execution breakpoint to occur. 

GD (Global Debug Register access detect) 

The Debug Registers can only be accessed in Real 
Mode or at privilege level 0 in Protected Mode. The 
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GD bit, when set, provides extra protection against 
any Debug Register access even in Real Mode or at 
privilege level 0 in Protected Mode. This additional 
protection feature is provided to guarantee that a 
software debugger (or ICE-386) can have full control 
over the Debug Register resources when required. 
The GD bit, when set, causes an exception 1 fault if 
an instruction attempts to read or write any Debug 
Register. The GD bit is then automatically cleared 
when the exception 1 handler is invoked, allowing 
the exception 1 handler free access to the debug 
registers. 

GE and LE (Exact data breakpoint match, global and 
local) 

If either GE or LE is set, any data breakpoint trap will 
be reported exactly after completion of the instruc­
tion that caused the operand transfer. Exact report­
ing is provided by forcing the 80386 execution unit to 
wait for completion of data operand transfers before 
beginning execution of the next instruction. 

If exact data breakpoint match is not selected, data 
breakpoints may not be reported until several in­
structions later or may not be reported at all. When 
enabling a data breakpoint, it is therefore recom­
mended to enable the exact data breakpoint match. 

When the 80386 performs a task switch, the LE bit is 
cleared. Thus, the LE bit supports fast task switching 
out of tasks, that have enabled the exact data break­
point match for their task-local breakpoints. The LE 
bit is cleared by the processor during a task switch, 
to avoid having exact data breakpoint match en­
abled in the new task. Note that exact data break­
point match must be re-enabled under software con­
trol. 

The 80386 GE bit is unaffected during a task switch. 
The GE bit supports exact data breakpoint match 
that is to remain enabled during all tasks executing 
in the system. 

Note that instruction execution breakpoints are al­
ways reported exactly, whether or not exact data 
breakpoint match is selected. 

Gi and Li (breakpoint enable, global and local) 

If either Gi or Li is set then the associated breakpoint 
(as defined by the linear address in DRi, the length 
in LENi and the usage criteria in RWi) is enabled. If 
either Gi or Li is set, and the 80386 detects the ith 
breakpoint condition, then the exception 1 handler is 
invoked. 

When the 80386 performs a task switch to a new 
TSS, all Li bits are cleared. Thus, the Li bits support 
fast task switching out of tasks that use some task­
local breakpoint registers. The Li bits are cleared by 
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the processor during a task switch, to avoid spurious 
exceptions in the new task. Note that the break­
points must be re-enabled under software control. 

All 80386 Gi bits are unaffected during a task switch. 
The Gi bits support breakpoints that are active in all 
tasks executing in the system. 

2.12.3.3 DEBUG STATUS REGISTER (DR6) 

A Debug Status Register, DR6 shown in Figure 2-13, 
allows the exception 1 handler to easily determine 
why it was invoked. Note the exception 1 handler 
can be invoked as a result of one of several events: 

1) DRO Breakpoint fault/trap. 

2) DR1 Breakpoint fault/trap. 

3) DR2 Breakpoint fault/trap. 

4) DR3 Breakpoint fault/trap. 

5) Single-step (TF) trap. 

6) Task switch trap. 

7) Fault due to attempted debug register access 
when GD= 1. 

The Debug Status Register contains single-bit flags 
for each of the possible events invoking exception 1. 
Note below that some of these events are faults (ex­
ception taken before the instruction is executed), 
while other events are traps (exception taken after 
the debug events occurred). 

The flags in DR6 are set by the hardware but never 
cleared by hardware. Exception 1 handler software 
should clear DR6 before returning to the user pro­
gram to avoid future confusion in identifying the 
source of exception 1. 

The fields within the Debug Status Register, DR6, 
are as follows: 

Bi (debug fault/trap due to breakpoint 0-3) 

Four breakpoint indicator flags, BO-B3, correspond 
one-to-one with the breakpoint registers in DRO­
DR3. A flag Bi is set when the condition described 
by DRi, LENi, and RWi occurs. 

If Gi or Li is set, and if the ith breakpoint is detected, 
the processor will invoke the exception 1 handler. 
The exception is handled as a fault if an instruction 
execution breakpoint occurred, or as a trap if a data 
breakpoint occurred. 

IMPORTANT NOTE: A flag Bi is set whenever the 
hardware detects a match condition on enabled 
breakpoint i. Whenever a match is detected on at 
least one enabled breakpoint i, the hardware imme­
diately sets all Bi bits corresponding to breakpoint 
conditions matching at that instant, whether enabled 
or not. Therefore, the exception 1 handler may see 
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that multiple Bi bits are set, but only set Bi bits corre­
sponding to enabled breakpoints (Li or Gi set) are 
true indications of why the exception 1 handler was 
invoked. 

BD (debug fault due to attempted register access 
when GD bit set) 

This bit is set if the exception 1 handler was invoked 
due to an instruction attempting to read or write to 
the debug registers when GD bit was set. If such an 
event occurs, then the GD bit is automatically 
cleared when the exception 1 handler is invoked, 
allowing handler access to the debug registers. 

BS (debug trap due to single-step) 

This bit is set if the exception 1 handler was invoked 
due to the TF bit in the flag register being set (for 
single-stepping). See section 2.12.2. 

BT (debug trap due to task switch) 

This bit is set if the exception 1 handler was invoked 
due to a task switch occurring to a task having a 386 
TSS with the T bit set. (See Figure 4-15a). Note the 
task switch into the new task occurs normally, but 
before the first instruction of the task is executed, 
the exception 1 handler is invoked. With respect to 
the task switch operation, the operation is consid­
ered to be a trap. 

2.12.3.4 USE OF RESUME FLAG (RF) IN FLAG 
REGISTER 

The Resume Flag (RF) in the flag word can sup­
press an instruction execution breakpoint when the 
exception 1 handler returns to a user program at a 
user address which is also an instruction execution 
breakpoint. See section 2.3.3. 

3. REAL MODE ARCHITECTURE 

3.1 REAL MODE INTRODUCTION 

When the processor is reset or powered up it is ini­
tialized in Real Mode. Real Mode has the same base 
architecture as the 8086, but allows access to the 
32-bit register set of the 80386. The addressing 
mechanism, memory size, interrupt handling, are all 
identical to the Real Mode on the 80286. 

All of the 80386 instructions are available in Real 
Mode (except those instructions listed in 4.6.4). The 
default operand size in Real Mode is 16-bits, just like 
the 8086. In order to use the 32-bit registers and 
addressing modes, override prefixes must be used. 
In addition, the segment size on the 80386 in Real 
Mode is 64K bytes so 32-bit effective addresses 
must have a value less the OOOOFFFFH. The primary 
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Figure 3-1. Real Address Mode Addressing 

purpose of Real Mode is to set up the processor for 
Protected Mode Operation. 

The LOCK prefix on the 80386, even in Real Mode, 
is more restrictive than on the 80286. This is due to 
the addition of paging on the 80386 in Protected 
Mode and Virtual 8086 Mode. Paging makes it im­
possible to guarantee that repeated string instruc­
tions can be LOCKed. The 80386 can't require that 
all pages holding the string be physically present in 
memory. Hence, a Page Fault (exception 14) might 
have to be taken during the repeated string instruc­
tion. Therefore the LOCK prefix can't be supported 
during repeated string instructions. 

These are the only instruction forms where the 
LOCK prefix is legal on the 80386: 

Opcode 
Operands 

(Dest, Source) 

BIT Test and 
Mem, Reg/immed 

SET/RESET/COMPLEMENT 
XCHG Reg, Mem 
XCHG Mem, Reg 
ADD, OR, ADC, SBB, Mem, Reg/immed 

AND, SUB, XOR 
NOT, NEG, INC, DEC Mem 

An exception 6 will be generated if a LOCK prefix is 
placed before any instruction form or opcode not 
listed above. The LOCK prefix allows indivisible 
read/modify/write operations on memory operands 
using the instructions above. For example, even the 
"ADD Reg/immed, Mem" is not LOCKable, because 
the Mem operand is not the destination (and there­
fore no memory read/modify/operation is being per­
formed). 
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Since, on the 80386, repeated string instructions are 
not LOCKable, it is not possible to LOCK the bus for 
a long period of time. Therefore, the LOCK prefix is 
not IOPL-sensitive on the 80386. The LOCK prefix 
can be used at any privilege level, but only on the 
instruction forms listed above. 

3.2 MEMORY ADDRESSING 

In Real Mode the maximum memory size is limited to 
1 megabyte. Thus, only address lines A2-A 19, 
BEO-BE are active. (Exception, the high address 
lines A20-A31 are high during CS-relative memory 
cycles until an intersegment jump or call is executed 
(see section 2.10)). 

Since paging is not allowed in Real Mode the linear 
addresses are the same as physical addresses. 
Physical addresses are formed in Real Mode by 
adding the contents of the appropriate segment reg­
ister which is shifted left by four bits to an effective 
address. This addition results in a physical address 
from OOOOOOOOH to 0010FFEFH. This is compatible 
with 80286 Real Mode. Since segment registers are 
shifted left by 4 bits this implies that Real Mode seg­
ments always start on 16 byte boundaries. 

All segments in Real Mode are exactly 64K bytes 
long, and may be read, written, or executed. The 
80386 will generate an exception 13 if a data oper­
and or instruction fetch occurs past the end of a 
segment. (i.e. if an operand has an offset greater the 
FFFFH, example a word with a low byte at FFFFH 
and the high byte at OOOOH) 

Segments may be overlapped in Real Mode. Thus, if 
a particular segment does not use all 64K bytes an­
other segment can be overlayed on top of the un­
used portion of the previous segment. This allows 
the programmer to minimize the amount of physical 
memory needed for a program. 
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3.3 RESERVED LOCATIONS 

There are two fixed areas in memory which are re­
served in Real address mode: system initialization 
area and the interrupt table area. Locations OOOOOH 
through 003FFH are reserved for interrupt vectors. 
Each one of the 256 possible interrupts has a 4-byte 
jump vector reserved for it. Locations FFFFFFFOH 
through FFFFFFFFH are reserved for system initiali­
zation. 

3.4 INTIERRUPTS 

Many of the exceptions shown in Table 2-5 and dis­
cussed in section 2.9 are not applicable to Real 
Mode operation, in particular exceptions 10, 11, 14, 
will not happen in Real Mode. Other exceptions 
have slightly different meanings in Real Mode; Table 
3-1 identifies these exceptions. 

3.5 SHUTDOWN AND HALT 

The HL T instruction stops program execution and 
prevents the processor from using the local bus until 
restarted. Either NMI, INTR with interrupts enabled 
(IF = 1), or RESET will force the 80386 out of halt. If 
interrupted, the saved CS:IP will point to the next 
instruction after the HL T. 

Shutdown will occur when a severe error is detected 
that prevents further processing. In Real Mode, 
shutdown can occur under two conditions: 

An interrupt or an exception occur (Exceptions 8 
or 13) and the interrupt vector is larger than the 
Interrupt Descriptor Table (i.e. There is not an in­
terrupt handler for the interrupt). 

A CALL, INT or PUSH instruction attempts to wrap 
around the stack segment when SP is not even. 
(e.g. pushing a value on the stack when SP = 
0001 resulting in a stack segment greater than 
FFFFH) 

An NMI input can bring the processor out of shut­
down if the Interrupt Descriptor Table limit is large 
enough to contain the NMI interrupt vector (at least 
0017H) and the stack has enough room to contain 
the vector and flag information (i.e. SP is greater 
than 0005H). Otherwise shutdown can only be exit­
ed via the RESET input. 

4. PROTIECTIED MODIE 
ARCHITIECTURE 

4.1 INTRODUCTION 

The complete capabilities of the 80386 are unlocked 
when the processor operates in Protected Virtual 
Address Mode (Protected Mode). Protected Mode 
vastly increases the linear address space to four gig­
abytes (232 bytes) and allows the running of virtual 
memory programs of almost unlimited size (64 tera­
bytes or 246 bytes). In addition Protected Mode al­
lows the 80386 to run all of the existing 8086 and 
80286 software, while providing a sophisticated 
memory management and a hardware-assisted pro­
tection mechanism. Protected Mode allows the use 
of additional instructions especially optimized for 
supporting multitasking operating systems. The base 
architecture of the 80386 remains the same, the reg­
isters, instructions, and addressing modes described 
in the previous sections are retained. The main dif­
ference between Protected Mode, and Real Mode 
from a programmer's view is the increased address 
space, and a different addressing mechanism. 

Table 3·1 

Function 
Interrupt Related Return 
Number Instructions Address Location 

Interrupt table limit too small 8 INT Vector is not Before 
within table limit Instruction 

CS, OS, ES, FF, GS 13 Word memory reference Before 
Segment overrun exception beyond offset = FFFFH. Instruction 

An attempt to execute 
past the end of CS segment. 

SS Segment overrun exception 12 Stack Reference Before 
beyond offset = FFFFH Instruction 
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4.2 ADDRESSING MECHANISM 

Like Real Mode, Protected Mode uses two compo­
nents to form the logical address, a 16-bit selector is 
used to determine the linear base address of a seg­
ment, the base address is added to a 32-bit effective 
address to form a 32-bit linear address. The linear 
address is then either used as the 32-bit physical 
address, or if paging is enabled the paging mecha­
nism maps the 32-bit linear address into a 32-bit 
physical address. 

The difference between the two modes lies in calcu­
lating the base address. In Protected Mode the se­
lector is used to specify an index into an operating 

48/32 BIT POINTER 

system defined table (see Figure 4-1). The table 
contains the 32-bit base address of a given seg­
ment. The physical address is formed by adding the 
base address obtained from the table to the offset. 

Paging provides an additional memory management 
mechanism which operates only in Protected Mode. 
Paging provides a means of managing the very large 
segments of the 80386. As such, paging operates 
beneath segmentation. The paging mechanism 
translates the protected linear address which comes 
from the segmentation unit into a physical address. 
Figure 4-2 shows the complete 80386 addressing 
mechanism with paging enabled. 
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Figure 4-1. Protected Mode Addressing 
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Figure 4-2. Paging and Segmentation 
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4.3 SEGMENTATION 

4.3.1 Segmentation Introduction 

Segmentation is one method of memory manage­
ment. Segmentation provides the basis for protec­
tion. Segments are used to encapsulate regions of 
memory which have common attributes. For exam­
ple, all of the code of a given program could be con­
tained in a segment, or an operating system table 
may reside in a segment. All information about a 
segment is stored in an 8 byte data structure called 
a descriptor. All of the descriptors in a system are 
contained in tables recognized by hardware. 

4.3.2 Terminology 

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level 0 is the most privileged level 
and level 3 is the least privileged. More privileged 
levels are numerically smaller than less privileged 
levels. 

RPL: Requestor Privilege Level-The privilege level 
of the original supplier of the selector. RPL is deter­
mined by the least two significant bits of a selector. 

DPL: Descriptor Privilege Level-This is the least 
privileged level at which a task may access that de­
scriptor (and the segment associated with that de­
scriptor). Descriptor Privilege Level is determined by 
bits 6:5 in the Access Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level at 
which a task is currently executing, which equals the 
privilege level of the code segment being executed. 

15 

LDTR I LOT DESCR 
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I lOT BASE 
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0 

0 

0 

0 

0 

CPL can also be determined by examining the low­
est 2 bits of the CS register, except for conforming 
code segments. 

EPL: Effective Privilege Level-The effective privi­
lege level is the least privileged of the RPL and DPL. 
Since smaller privilege level values indicate greater 
privilege, EPL is the numerical maximum of RPL and 
DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

4.3.3 Descriptor Tables 

4.3.3.1 DESCRIPTOR TABLES INTRODUCTION 

The descriptor tables define all of the segments 
which are used in an 80386 system. There are three 
types of tables on the 80386 which hold descriptors: 
the Global Descriptor Table, Local Descriptor Table, 
and the Interrupt Descriptor Table. All of the tables 
are variable length memory arrays. They can range 
in size between 8 bytes and 64K bytes. Each table 
can hold up to 8192 8 byte descriptors. The upper 
13 bits of a selector are used as an index into the 
descriptor table. The tables have registers associat­
ed with them which hold the 32-bit linear base ad­
dress, and the 16-bit limit of each table. 

Each of the tables has a register associated with it 
the GDTR, LDTR, and the IDTR (see Figure 4-3). 
The LGDT, LLDT, and LlDT instructions, load the 
base and limit of the Global, Local, and Interrupt De­
scriptor Tables, respectively, into the appropriate 
register. The SGDT, SLOT, and SlOT store the base 
and limit values. These tables are manipulated by 
the operating system. Therefore, the load descriptor 
table instructions are privileged instructions. 

--------------
15 0 

I LOT LIMIT 

l LOT BASE 
LINEAR ADDRESS 

32 
PROGRAM INVISIBLE 
AUTOMATICALLY LOADED 
FROM LOT DESCRIPTOR 

--------------
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Figure 4·3. Descriptor Table Registers 

35 



inter 80386 

4.3.3.2 GLOBAL DESCRIPTOR TABLE 

The Global Descriptor Table (GDT) contains de­
scriptors which are possibly available to all of the 
tasks in a system. The GDT can contain any type of 
segment descriptor except for descriptors which are 
used for servicing interrupts (Le. interrupt and trap 
descriptors). Every 3B6 system contains a GDT. 
Generally the GDT contains code and data seg­
ments used by the operating systems and task state 
segments, and descriptors for the LDTs in a system. 

The first slot of the Global Descriptor Table corre­
sponds to the null selector and is not used. The null 
selector defines a null pointer value. 

4.3.3.3 LOCAL DESCRIPTOR TABLE 

LDTs contain descriptors which are associated with 
a given task. Generally, operating systems are de­
signed so that each task has a separate LDT. The 
LDT may contain only code, data, stack, task gate, 
and call gate descriptors. LDTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while 
the GDT contains descriptors for segments which 
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not 
exist in either the current LDT or the GDT. This pro­
vides both isolation and protection for a task's seg­
ments, while still allowing global data to be shared 
among tasks. 

Unlike the 6 byte GDT or IDT registers which contain 
a base address and limit, the visible portion of the 
LDT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in 
the GDT. 
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4.3.3.4 INTERRUPT DESCRIPTOR TABLE 

The third table needed for B03B6 systems is the In­
terrupt Descriptor Table. (See Figure 4-4.) The IDT 
contains the descriptors which point to the location 
of up to 256 interrupt service routines. The IDT may 
contain only task gates, interrupt gates, and trap 
gates. The IDT should be at least 256 bytes in size in 
order to hold the descriptors for the 32 Intel Re­
served Interrupts. Every interrupt used by a system 
must have an entry in the IDT. The IDT entries are 
referenced via INT instructions, external interrupt 
vectors, and exceptions. (See 2.9 Interrupts). 
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Figure 4-4. Interrupt Descriptor 
Table Register Use 

4.3.4 Descriptors 

4.3.4.1 DESCRIPTOR ATTRIBUTE BITS 

The object to which the segment selector points to 
is called a descriptor. Descriptors are eight byte 
quantities which contain attributes about a given re­
gion of linear address space (Le. a segment). These 

o BYTE 
ADDRESS 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 o 

BASE 31 ... 24 G D 0 0 
LIMIT 

P DPL S TYPE A 
BASE 

19 ... 16 
I I I 

23 ... 16 
+4 

BASE Base Address of the segment 
LIMIT The length of the segment 
P Present Bit 1 = Present 0 = Not Present 
DPL Descriptor Privilege Level 0-3 
S Segment Descriptor 0 = System Descriptor 1 = Code or Data Segment Descriptor 
TYPE Type of Segment 
A Accessed Bit 
G Granularity Bit t = Segment length is page granular 0 = Segment length is byte granular 
D Default Operation Size (recognized in code segment descriptors only) 1 = 32·bit segment 0 = 16·bit segment 
o Bit must be zero (0) for compatibility with future processors 

Figure 4·5. Segment Descriptors 
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attributes include the 32-bit base linear address of 
the segment, the 20-bit length and granularity of the 
segment, the protection level, read, write or execute 
privileges, the default size of the operands (16-bit or 
32-bit), and the type of segment. All of the attribute 
information about a segment is contained in 12 bits 
in the segment descriptor. Figure 4-5 shows the gen­
eral format of a descriptor. All segments on the 
80386 have three attribute fields in common: the P 
bit, the DPL bit, and the S bit. The Present P bit is 1 
if the segment is loaded in physical memory, if P = 0 
then any attempt to access this segment causes a 
not present exception (exception 11). The Descrip­
tor Privilege Level DPL is a two-bit field which speci­
fies the protection level 0-3 associated with a seg­
ment. 

The 80386 has two main categories of segments 
system segments and non-system segments (for 
code and data). The segment S bit in the segment 
descriptor determines if a given segment is a system 
segment or a code or data segment. If the S bit is 1 
then the segment is either a code or data segment, if 
it is 0 then the segment is a system segment. 

4.3.4.2386 CODE, DATA DESCRIPTORS (S= 1) 

Figure 4-6 shows the general format of a code and 
data descriptor and Table 4-1 illustrates how the bits 
in the Access Rights Byte are interpreted. 
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LIMIT 
ACCESS BASE 

BASE 31 ... 24 G 0 0 0 
19 ... 16 
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23 ... 16 

BYTE 
+4 

DIB 1 ~ Default Instructions Attnbutes are 32·81ts 
o ~ Default Instruction Attributes are 16·8its 

G Granulanty Bit 1 - Segment length IS page granular 
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Field 
Definition 

Bit must be zero (0) for compatibility with future processors 

Figure 4-6. Segment Descriptors 

Table 4-1. Access Rights Byte Definition for Code and Data Descriptions 

Bit 
Name Function 

Position 

7 Present (P) P = 1 Segment is mapped into physical memory. 
P = 0 No mapping to physical memory exits, base and limit are 

not used. 
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 

Level (DPL) 
4 Segment Descrip- S = 1 Code or Data (includes stacks) segment descriptor 

tor (S) S=O System Segment Descriptor or Gate Descriptor 

3 Executable (E) E ~ 0 D'''';ptm typ' ;, data "gm,nt r 
2 Expansion Direc- ED = 0 Expand up segment, offsets must be ,,; limit. Data 

tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment 
1 Writeable (W) W = 0 Data segment may not be written into. (S = 1, 

W = 1 Data segment may be written into. E = 0) 

3 Executable (E) E = 1 Descriptor type is code segment: 

r 2 Conforming (C) C = 1 Code segment may only be executed Code 
when CPL :2: DPL and CPL Segment 
remains unchanged. (S = 1, 

1 Readable (R) R=O Code segment may not be read. E = 1) 
R = 1 Code segment may be read. 

0 Accessed (A) A=O Segment has not been accessed. 
A=1 Segment selector has been loaded into segment register 

or used by selector test instructions. 
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Code and data segments have several descriptor 
fields in common. The accessed A bit is set whenev­
er the processor accesses a descriptor. The A bit is 
used by operating systems to keep usage statistics 
on a given segment. The G bit, or granularity bit, 
specifies if a segment length is byte-granular or 
page-granular. 80386 segments can be one mega­
byte long with byte granularity (G = 0) or four giga­
bytes with page granularity (G = 1), (i.e., 220 pages 
each page is 4K bytes in length). The granularity is 
totally unrelated to paging. A 80386 system can con­
sist of segments with byte granularity, and page 
granularity, whether or not paging is enabled. 

The executable E bit tells if a segment is a code or 
data segment. A code segment (E = 1 , S = 1) may be 
execute-only or execute/read as determined by the 
Read R bit. Code segments are execute only if 
R = 0, and execute/read if R = 1. Code segments 
may never be written into. 

NOTE: 
Code segments may be modified via aliases. Alias­
es are writeable data segments which occupy the 
same range of linear address space as the code 
segment. 

The D bit indicates the default length for operands 
and effective addresses. If D = 1 then 32-bit oper­
ands and 32-bit addressing modes are assumed. If 
D = 0 then 16-bit operands and 16-bit addressing 
modes are assumed. Therefore all existing 286 code 
segments will execute on the 80386 assuming the D 
bit is set o. 

Another attribute of code segments is determined by 
the conforming C bit. Conforming segments, C = 1, 
can be executed and shared by programs at differ­
ent privilege levels. (See section 4.4 Protection.) 

31 

SEGMENT BASE 15 ... 0 

BASE 31 ... 24 

Type 

o 
1 
2 
3 
4 
5 
6 
7 

Defines 

Invalid 
Available 286 TSS 
LDT 
Busy 286 TSS 
286 Call Gate 
Task Gate (for 286 or 386 Task) 
286 Interrupt Gate 
286 Trap Gate 

16 

LIMIT 
19 ... 16 

Segments identified as data segments (E = 0, S = 1) 
are used for two types of 80386 segments: stack 
and data segments. The expansion direction (ED) bit 
specifies if a segment expands downward (stack) or 
upward (data). If a segment is a stack segment all 
offsets must be greater than the segment limit. On a 
data segment all offsets must be less than or equal 
to the limit. In other words, stack segments start at 
the base linear address plus the maximum segment 
limit and grow down to the base linear address plus 
the limit. On the other hand, data segments start at 
the base linear address and expand to the base lin­
ear address plus limit. 

The write W bit controls the ability to write into a 
segment. Data segments are read-only if W = O. The 
stack segment must have W = 1. 

The B bit controls the size of the stack pointer regis­
ter. If B = 1, then PUSHes, POPs, and CALLs all use 
the 32-bit ESP register for stack references and as­
sume an upper limit of FFFFFFFFH. If B = 0, stack 
instructions all use the 16-bit SP register and as­
sume an upper limit of FFFFH. 

4.3.4.3 SYSTEM DESCRIPTOR FORMATS 

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 4-7 
shows the general format of system segment de­
scriptors, and the various types of system segments. 
80386 system descriptors contain a 32-bit base lin­
ear address and a 20-bit segment limit. 80286 sys­
tem descriptors have a 24-bit base address and a 
16-bit segment limit. 80286 system descriptors are 
identified by the upper 16 bits being all zero. 

o 
SEGMENT LIMIT 15 ... 0 o 

P 

Type 

8 
9 
A 
B 
C 
D 
E 
F 

Defines 

Invalid 

TYPE 

Available 386 TSS 
Undefined (Intel Reserved) 
Busy 386 TSS 
386 Call Gate 
Undefined (Intel Reserved) 
386 Interrupt Gate 
386 Trap Gate 

BASE 
23 ... 16 

+4 

Figure 4·7. System Segments Descriptors 
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4.3.4.4 LDT DESCRIPTORS (S = 0, TYPE = 2) 

LDT descriptors (S = 0 TYPE = 2) contain informa­
tion about Local Descriptor Tables. LDTs contain a 
table of segment descriptors, unique to a particular 
task. Since the instruction to load the LDTR is only 
available at privilege level 0, the DPL field is ignored. 
LDT descriptors are only allowed in the Global De­
scriptor Table (GDT). 

4.3.4.5 TSS DESCRIPTORS (5=0, 
TVPE= 1, 3, 9, B) 

A Task State Segment (TSS) descriptor contains in­
formation about the location, size, and privilege level 
of a Task State Segment (TSS). A TSS in turn is a 
special fixed format segment which contains all the 
state information for a task and a linkage field to 
permit nesting tasks. The TYPE field is used to indi­
cate whether the task is currently BUSY (Le. on a 
chain of active tasks) or the TSS is available. The 
TYPE field also indicates if the segment contains a 
286 or a 386 TSS. The Task Register (TR) contains 
the selector which points to the current Task State 
Segment. 

4.3.4.6 GATE DESCRIPTORS (S=O, 
TYPE=4-7, C, F) 

Gates are used to control access to entry points 
within the target code segment. The various types of 
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gate descriptors are call gates, task gates, 
interrupt gates, and trap gates. Gates provide a 
level of indirection between the source and destina­
tion of the control transfer. This indirection allows 
the processor to automatically perform protection 
checks. It also allows system designers to control 
entry points to the operating system. Call gates are 
used to change privilege levels (see section 4.4 
Protection), task gates are used to perform a task 
switch, and interrupt and trap gates are used to 
specify interrupt service routines. 

Figure 4-8 shows the format of the four types of gate 
descriptors. Call gates are primarily used to transfer 
program control to a more privileged level. The call 
gate descriptor consists of three fields: the access 
byte, a long pointer (selector and offset) which 
points to the start of a routine and a word count 
which specifies how many parameters are to be cop­
ied from the caller's stack to the stack of the called 
routine. The word count field is only used by call 
gates when there is a change in the privilege level, 
other types of gates ignore the word count field. 

I nterrupt and trap gates use the destination selector 
and destination offset fields of the gate descriptor as 
a pointer to the start of the interrupt or trap handler 
routines. The difference between interrupt gates and 
trap gates is that the interrupt gate disables inter­
rupts (resets the IF bit) while the trap gate does not. 

8 5 o 
SELECTOR OFFSET 15 ... 0 o 

OFFSET 31 ... 16 

Name 
Type 

P 

Value 
4 
5 
6 
7 
C 
E 
F 
o 

P DPL 

Gate Descriptor Fields 
Description 

286 call gate 
Task gate (for 286 or 386 task) 
286 interrupt gate 
286 trap gate 
386 call gate 
386 interrupt gate 
386 trap gate 
Descriptor contents are not valid 
Descriptor contents are valid 

WORD 
0 TYPE 0 0 0 COUNT +4 

4 ... 0 

DPL-Ieast privileged level at which a task may access the gate. WORD COUNT 0-31-the number of parameters to copy from caller's stack 
to the called procedure's stack. The parameters are 32-bit quantities for 386 gates, and 16-bit quantities for 286 gates. 

DESTINATION 16-bit Selector to the target code segment 
SELECTOR selector or 

DESTINATION 
OFFSET 

offset 
16-bit 286 
32-bit 386 

Selector to the target task state segment for task gate 

Entry point within the target code segment 

Figure 4·8. Gate Descriptor Formats 
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Task gates are used to switch tasks. Task gates 
may only refer to a task state segment (see section 
4.4.6 Task Switching) therefore only the destination 
selector portion of a task gate descriptor is used, 
and the destination offset is ignored. 

Exception 13 is generated when a destination selec­
tor does not refer to a correct descriptor type, i.e., a 
code segment for an interrupt, trap or call gate, a 
TSS for a task gate. 

The access byte format is the same for all gate de­
scriptors. P = 1 indicates that the gate contents are 
valid. P = 0 indicates the contents are not valid and 
causes exception 11 if referenced. DPL is the de­
scriptor privilege level and specifies when this de­
scriptor may be used by a task (see section 4.4 
Protection). The S field, bit 4 of the access rights 
byte, must be 0 to indicate a system control descrip­
tor. The type field specifies the descriptor type as 
indicated in Figure 4-8. 

4.3.4.7 DIFFERENCES BETWEEN 386 AND 286 
DESCRIPTORS 

In order to provide operating system compatibility 
between the 80286 and 80386, the 386 supports all 
of the 80286 segment descriptors. Figure 4-9 shows 
the general format of an 80286 system segment de­
scriptor. The only differences between 286 and 386 
descriptor formats are that the values of the type 
fields, and the limit and base address fields have 
been expanded for the 386. The 80286 system seg­
ment descriptors contained a 24-bit base address 
and 16-bit limit, while the 386 system segment de­
scriptors have a 32-bit base address, a 20-bit limit 
field, and a granularity bit. 

By supporting 80286 system segments the 80386 is 
able to execute 286 application programs on a 
80386 operating system. This is possible because 
the processor automatically understands which de-
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SEGMENT BASE 15 ... 0 

Intel Reserved 
Set to 0 

BASE 
LIMIT 
P 

Base Address of the segment 
The length of the segment 
Present Bit 1 = Present 0 = Not Present 

scriptors are 286-style descriptors and which de­
scriptors are 386-style descriptors. In particular, if 
the upper word of a descriptor is zero, then that de­
scriptor is a 286-style descriptor. 

The only other differences between 286-style de­
scriptors and 386 descriptors is the interpretation of 
the word count field of call gates and the B bit. The 
word count field specifies the number of 16-bit quan­
tities to copy for 286 call gates and 32-bit quantities 
for 386 call gates. The B bit controls the size of 
PUSHes when using a call gate; if B = 0 PUSHes are 
16 bits, if B = 1 PUSHes are 32 bits. 

4.3.4.8 SELECTOR FIELDS 

A selector in Protected Mode has three fields: Local 
or Global Descriptor Table Indicator (TI), Descriptor 
Entry Index (Index), and Requestor (the selector's) 
Privilege Level (RPL) as shown in Figure 4-10. The 
TI bits select one of two memory-based tables of 
descriptors (the Global Descriptor Table or the Local 
Descriptor Table). The Index selects one of 8K de­
scriptors in the appropriate descriptor table. The 
RPL bits allow high speed testing of the selector's 
privilege attributes. 

4.3.4.9 SEGMENT DESCRIPTOR CACHE 

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the 8-byte descriptor associated 
with that selector is automatically loaded (cached) 
on the chip. Once loaded, all references to that seg­
ment use the cached descriptor information instead 
of reaccessing the descriptor. The contents of the 
descriptor cache are not visible to the programmer. 
Since descriptor caches only change when a seg­
ment register is changed, programs which modify 
the descriptor tables must reload the appropriate 
segment registers after changing a descriptor's val­
ue. 

SEGMENT LIMIT 15 ... 0 

P \ DPL lsi TYPE \ BASE 
23 ... 16 

DPL 
S 
TYPE 

.. 
DeSCriptor PnVllege Level 0-3 
System Descriptor 0 = System 1 = User 
Type of Segment 

o 
o 

+4 

Figure 4-9. 286 Code and Data Segment Descriptors 
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REGISTER 
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SELECTOR 

15 4 3 2 1 a 

I 0 I 0 ---- a I a 11 11 nil R~L I . 
INDEX 

N 

6 

5 

4 

~ 

2 

1 

a 

. 
TABLE 
INDICATOR 

TI-1 

A 

DESC~IPTOR 

LOCAL 
DESCRIPTOR 

TABLE 

N 

DESCRIPTOR 
NUMBER 

6 

5 

4 

3 

2 

1 

0 

TI-a! 

NULL 

GLOBAL 
DESCRIPTOR 

TABLE 

Figure 4·10. El(smple Descriptor Selection 
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4.3.4.10 SEGMENT DESCRIPTOR REGISTER 
SETTINGS 

The contents of the segment descriptor cache vary 
depending on the mode the 80386 is operating in. 
When operating in Real Address Mode, the segment 
base, limit, and other attributes within the segment 
cache registers are defined as shown in Figure 4-11 . 

For compatiblity with the 8086 architecture, the base 
is set to sixteen times the current selector value, the 
limit is fixed at OOOOFFFFH, and the attributes are 
fixed so as to indicate the segment is present and 
fully usable. In Real Address Mode, the internal 
"privilege level" is always fixed to the highest level, 
level 0, so I/O and other privileged opcodes may be 
executed. 

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32 - BIT BASE 

(UPDATED DURING SELECTOR 
LOAD INTO SEGMENT REGISTER) 

32 - BIT LIMIT 

(FIXED) 

OTHER ATIRIBUTES 

(FIXED) 

CONFORMING PRIVILEGE -----------------------, 
STACKSIZE----------------------------, 
EXECUTABLE------------------------, 
WRITEABLE-----------------------, 
R~DABLE-----------------------, 

EXPANSION DIRECTION 

GRANULARITY 1 
ACCESSED 1 
~~~~~~~E _L~~E~ ___ ~A~~ ___________ ~I~I! ___ ttl _ __ 
CS 16X CURRENT CS SELECTOR" OOOOFFFFH Y 0 Y B U Y Y Y - N 

SS 16X CURRENT SS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N W -
DS 16X CURRENT DS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -
ES 16X CURRENT ES SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -
FS 16X CURRENT FS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -
GS 16X CURRENT GS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -

231630-60 

'Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (e.g. intersegment CALL. or 
intersegment JMP, or INT). (See Figure 4-13 Example.) 

Key: Y = yes 
N = no 
o = privilege level 0 
1 = privilege level 1 
2 = privilege level 2 
3 = privilege level 3 
U = expand up 

D = expand down 
B = byte granularity 
P = page granularity 
W = push/pop 16-bit words 
F = push/pop 32·bit dwords 
- = does not apply to that segment cache register 

Figure 4-11. Segment Descriptor Caches for Real Address Mode 
(Segment Limit and Attributes are Fixed) 
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When operating in Protected Mode, the segment 
base, limit, and other attributes within the segment 
cache registers are defined as shown in Figure 4-12. 
In Protected Mode, each of these fields are defined 

according to the contents of the segment descriptor 
indexed by the selector value loaded into the seg­
ment register. 

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32 - BIT BASE 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

32 - BIT LIMIT 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

OTHER ATTRIBUTES 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

CONFORMING PRIVILEGE -----------------------., 
STACK SIZE-----------------------, 
EXECUTABLE-----------------------, 

WRITEABLE --------------------~ 
READABLE--------------------, 

EXPANSION DIRECTION 1 
GRANULARITY 

ACCESSED 1 
~:!~~~~E _ L~~E~ ~~s~ ___________ :I~I! ______ ~ J 1 ___ _ 
CS BASE PER SEG DESCR LIMIT PER SEG DESCR P d d d d d N 

SS BASE PER SEG DESCR LIMIT PER SEG DESCR P d d d d r w 

OS 

ES 

FS 

GS 

Key: Y = fixed yes 
N = fixed no 

BASE PER SEG DESCR 

BASE PER SEG DESCR 

BASE PER SEG DESCR 

BASE PER SEG DESCR 

d = per segment descriptor 

LIMIT PER SEG DESCR p d d 

LIMIT PER SEG DESCR p d d 

LIMIT PER SEG DESCR P d d 

LIMIT PER SEG DESCR p d d 

p = per segment descriptor; descriptor must indicate "present" to avoid exception 11 
(exception 12 in case of SS) 

d 

d 

d 

d 

r = per segment descriptor, but descriptor must indicate "readable" to avoid exception 13 
(special case for SS) 

w = per segment descriptor, but descriptor must indicate "writable" to avoid exception 13 
(special case for SS) 

- = does not apply to that segment cache register 

d d d 

d d d 

d d d 

d d d 

Y - d 

N d -
N - -
N - -
N - -
N - -

231630-61 

Figure 4-12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor) 
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When operating in a Virtual 8086 Mode within the 
Protected Mode, the segment base, limit, and other 
attributes within the segment cache registers are de­
fined as shown in Figure 4-13. For compatibility with 
the 8086 architecture, the base is set to sixteen 
times the current selector value, the limit is fixed at 

OOOOFFFFH, and the attributes are fixed so as to 
indicate the segment is present and fully usable. The 
virtual program executes at lowest privilege level, 
level 3, to allow trapping of all IOPL-sensitive in­
structions and level-a-only instructions. 

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32- BIT BASE 

(UPDATED DURING SELECTOR 
LOAD INTO SEGMENT REGISTER) 

32 - BIT LIMIT 

(FIXED) 

OTHER ATIRIBUTES 

(FIXED) 

CONFORMING PRIVILEGE ----------------------, 
STACK SIZE-----------------------. 
EXECUTABLE----------------------, 
WRITEABLE---------------------, 
READABLE--------------------, 
EXPANSION DIRECTION 

GRANULARITY 1 
ACCESSED 1 
~~?~~~~E _ L~~E~ ___ B~~E ____________ ~I~I~ ___ t J 1 _ __ 
CS 16X CURRENT CS SELECTOR OOOOFFFFH Y 3 Y B U Y Y Y - N 

SS 16X CURRENT SS SELECTOR OOOOFFFFH Y 3 Y B U Y Y N W -

Key: Y = yes 
N = no 

OS 

ES 

FS 

GS 

16X CURRENT OS SELECTOR 

16X CURRENT ES SELECTOR 

16X CURRENT FS SELECTOR 

16X CURRENT GS SELECTOR 

OOOOFFFFH Y 3 Y B U Y Y N 

OOOOFFFFH Y 3 Y B 

OOOOFFFFH Y 3 Y R 

OOOOFFFFH Y 3 Y B 

D = expand down 
B = byte granularity 
P = page granularity 

U 

U 

U 

W = push/ pop 16·bit words 
F = push/pop 32·bit dwords 

Y Y N 

Y Y N 

Y Y N 

- -
- -
- -
- -

231630-62 

o = privilege level 0 
1 = privilege level 1 
2 = privilege level 2 
3 = privilege level 3 
U = expand up 

- = does not apply to that segment cache register 

Figure 4-13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode 
(Segment Limit and Attributes are Fixed) 
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4.4 PROTECTION 

4.4.1 Protection Concepts 

CPU 
ENFORCED 
SOFTWARE 
INTERFACES 

HIGH SPEED 
OPERATING 
SYSTEM 
INTERFACE 

APPLICATIONS 

231630-63 

Figure 4-14. Four-Level Hierachical Protection 

The 80386 has four levels of protection which are 
optimized to support the needs of a mUlti-tasking op­
erating system to isolate and protect user programs 
from each other and the operating system. The privi­
lege levels control the use of privileged instructions, 
I/O instructions, and access to segments and seg­
ment descriptors. Unlike traditional microprocessor­
based systems where this protection is achieved 
only through the use of complex external hardware 
and software the 80386 provides the protection as 
part of its integrated Memory Management Unit. The 
80386 offers an additional type of protection on a 
page basis, when paging is enabled (See section 
4.5.3 Page Level Protection). 

The four-level hierarchical privilege system is illus­
trated in Figure 4-14. It is an extension of the user / 
supervisor privilege mode commonly used by mini­
computers and, in fact, the user/supervisor mode is 
fully supported by the 80386 paging mechanism. 
The privilege levels (PL) are numbered 0 through 3. 
Level 0 is the most privileged or trusted level. 

4.4.2 Rules of Privilege 

The 80386 controls access to both data and proce­
dures between levels of a task, according to the fol­
lowing rules. 

o Data stored in a segment with privilege level p can 
be accessed only by code executing at a privilege 
level at least as privileged as p. 

• A code segment/procedure with privilege level p 
can only be called by a task executing at the same 
or a lesser privilege level than p. 
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4.4.3 Privilege Levels 

4.4_3.1 TASK PRIVILEGE 

At any point in time, a task on the 80386 always 
executes at one of the four privilege levels. The Cur­
rent Privilege Level (CPL) specifies the task's privi­
lege level. A task's CPL may only be changed by 
control transfers through gate descriptors to a code 
segment with a different privilege level. (See section 
4.4.4 Privilege Level Transfers) Thus, an applica­
tion program running at PL = 3 may call an operat­
ing system routine at PL = 1 (via a gate) which 
would cause the task's CPL to be set to 1 until the 
operating system routine was finished. 

4.4.3.2 SELECTOR PRIVILEGE (RPL) 

The privilege level of a selector is specified by the 
RPL field. The RPL is the two least significant bits of 
the selector. The selector's RPL is only used to es­
tablish a less trusted privilege level than the current 
privilege level for the use of a segment. This level is 
called the task's effective privilege level (EPL). The 
EPL is defined as being the least privileged (i.e. nu­
merically larger) level of a task's CPL and a selec­
tor's RPL. Thus, if selector's RPL = 0 then the CPL 
always specifies the privilege level for making an ac­
cess using the selector. On the other hand if RPL = 
3 then a selector can only access segments at level 
3 regardless of the task's CPL. The RPL is most 
commonly used to verify that pointers passed to an 
operating system procedure do not access data that 
is of higher privilege than the procedure that origi­
nated the pointer. Since the originator of a selector 
can specify any RPL value, the Adjust RPL (ARPL) 
instruction is provided to force the RPL bits to the 
originator's CPL. 

4.4.3_3 I/O PRIVILEGE AND 1/0 PERMISSION 
BITMAP 

The 110 privilege level (IOPL, a 2-bit field in the 
EFLAG register) defines the least privileged level at 
which I/O instructions can be unconditionally per­
formed. 110 instructions can be unconditionally per­
formed when CPL s: 10PL. (The I/O instructions are 
IN, OUT, INS, OUTS, REP INS, and REP OUTS.) 
When CPL > 10PL, and the current task is associat­
ed with a 286 TSS, attempted 1/0 instructions cause 
an exception 13 fault. When CPL > 10PL, and the 
current task is associated with a 386 TSS, the I/O 
Permission Bitmap (part of a 386 TSS) is consulted 
on whether I/O to the port is allowed, or an excep­
tion 13 fault is to be generated instead. For diagrams 
of the 1/0 Permission Bitmap, refer to Figures 4-15a 
and 4-15b. For further information on how the 110 
Permission Bitmap is used in Protected Mode or in 
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Virtual 8086 Mode, refer to section 4.6.4 Protection 
and 110 Permission Bitmap. 

The 110 privilege level (IOPL) also affects whether 
several other instructions can be executed or cause 
an exception 13 fault instead. These instructions are 
called "IOPL·sensitive" instructions and they are 
CLI and STI. (Note that the LOCK prefix is not 10PL· 
sensitive on the 80386.) 

The 10PL also affects whether the IF (interrupts en· 
able flag) bit can be changed by loading a value into 
the EFLAGS register. When CPL os: 10PL, then the 
IF bit can be changed by loading a new value into 
the EFLAGS register. When CPL > 10PL, the IF bit 
cannot be changed by a new value POP'ed into (or 
otherwise loaded into) the EFLAGS register; the IF 
bit merely remains unchanged and no exception is 
generated. 

Table 4-2. Pointer Test Instructions 

Instruction Operands Function 

ARPL Selector, Adjust Requested Privi-
Register lege Level: adjusts the 

RPL of the selector to the 
numeric maximum of 
current selector RPL value 
and the RPL value in the 
register. Set zero flag if 
selector RPL was 
changed. 

VERR Selector VERify for Read: sets the 
zero flag if the segment 
referred to by the selector 
can be read. 

VERW Selector VERify for Write: sets the 
zero flag if the segment 
referred to by the selector 
can be written. 

LSL Register, Load Segment Limit: reads 
Selector the segment limit into the 

register if privilege rules 
and descriptor type allow. 
Set zero flag if successful. 

LAR Register, Load Access Rights: reads 
Selector the descriptor access 

rights byte into the register 
if privilege rules allow. Set 
zero flag if successful. 
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4.4.3.4 PRIVILEGE VALIDATION 

The 80386 provides several instructions to speed 
pointer testing and help maintain system integrity by 
verifying that the selector value refers to an appro· 
priate segment. Table 4-2 summarizes the selector 
validation procedures available for the 80386. 

This pointer verification prevents the common prob­
lem of an application at PL = 3 calling a operating 
systems routine at PL = 0 and passing the operat­
ing system routine a "bad" pointer which corrupts a 
data structure belonging to the operating system. If 
the operating system routine uses the ARPL instruc­
tion to ensure that the RPL of the selector has no 
greater privilege than that of the caller, then this 
problem can be avoided. 

4.4.3.5 DESCRIPTOR ACCESS 

There are basically two types of segment accesses: 
those involving code segments such as control 
transfers, and those involving data accesses. Deter· 
mining the ability of a task to access a segment in­
volves the type of segment to be accessed, the in­
struction used, the type of descriptor used and CPL, 
RPL, and DPL as described above. 

Any time an instruction loads data segment registers 
(DS, ES, FS, GS) the 80386 makes protection vali­
dation checks. Selectors loaded in the DS, ES, FS, 
GS registers must refer only to data segments or 
readable code segments. The data access rules are 
specified in section 4.2.2 Rules of Privilege. The 
only exception to those rules is readable conforming 
code segments which can be accessed at any privi­
lege level. 

Finally the privilege validation checks are performed. 
The CPL is compared to the EPL and if the EPL is 
more privileged than the CPL an exception 13 (gen­
eral protection fault) is generated. 

The rules regarding the stack segment are slightly 
different than those involving data segments. In­
structions that load selectors into SS must refer to 
data segment descriptors for writeable data seg­
ments. The DPL and RPL must equal the CPL. All 
other descriptor types or a privilege level violation 
will cause exception 13. A stack not present fault 
causes exception 12. Note that an exception 11 is 
used for a not-present code or data segment. 

4.4.4 Privilege Level Transfers 

Inter-segment control transfers occur when a selec­
tor is loaded in the CS register. For a typical system 
most of these transfers are simply the result of a call 
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Table 4-3. Descriptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege level 

Intersegment to the same or higher privilege level 
Interrupt within task may change CPL 

Intersegment to a lower privilege level 
(changes task CPL) 

Task Switch 

'NT (Nested Task bit of flag register) ~ 0 
"NT (Nested Task bit of flag register) ~ 1 

or a jump to another routine. There are five types of 
control transfers which are summarized in Table 4-3. 
Many of these transfers result in a privilege level 
transfer. Changing privilege levels is done only via 
control transfers, by using gates, task switches, and 
interrupt or trap gates. 

Control transfers can only occur if the operation 
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage 
rules will cause an exception 13 (e.g. JMP through a 
call gate, or IRET from a normal subroutine call). 

In order to provide further system security, all control 
transfers are also subject to the privilege rules. 

The privilege rules require that: 

- Privilege level transitions can only occur via 
gates. 

- JMPs can be made to a non-conforming code 
segment with the same privilege or to a conform­
ing code segment with greater or equal privilege. 

- CALLs can be made to a non-conforming code 
segment with the same privilege or via a gate to a 
more privileged level. 

- Interrupts handled within the task obey the same 
privilege rules as CALLs. 

- Conforming Code segments are accessible by 
privilege levels which are the same or less privi­
leged than the conforming-code segment's OPL. 

- Both the requested privilege level (RPL) in the 
selector pOinting to the gate and the task's CPL 

Operation Types 
Descriptor Descriptor 

Referenced Table 

JMP, CALL, RET, IRET', Code Segment GOT/LOT 

CALL Call Gate GOT/LOT 

Interrupt Instruction, Trap or lOT 
Exception, External Interrupt 
Interrupt Gate 

RET,IRET' Code Segment GOT/LOT 

CALL, JMP Task State GOT 
Segment 

CALL, JMP Task Gate GOT/LOT 

IRET" Task Gate lOT 
Interrupt Instruction, 
Exception, External 
Interrupt 
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must be of equal or greater privilege than the 
gate's OPL. 

- The code segment selected in the gate must be 
the same or more privileged than the task's CPL. 

- Return instructions that do not switch tasks can 
only return control to a code segment with same 
or less privilege. 

- Task switches can be performed by a CALL, 
JMP, or INT which references either a task gate 
or task state segment who's OPL is less privi­
leged or the same privilege as the old task's CPL. 

Any control transfer that changes CPL within a task 
causes a change of stacks as a result of the privi­
lege level change. The initial values of SS:ESP for 
privilege levels 0, 1, and 2 are retained in the task 
state segment (see section 4.4.6 Task Switching). 
During a JMP or CALL control transfer, the new 
stack pointer is loaded into the SS and ESP regis­
ters and the previous stack pointer is pushed onto 
the new stack. 

When RETurning to the original privilege level, use 
of the lower-privileged stack is restored as part of 
the RET or IRET instruction operation. For subrou­
tine calls that pass parameters on the stack and 
cross privilege levels, a fixed number of words (as 
specified in the gate's word count field) are copied 
from the previous stack to the current stack. The 
inter-segment RET instruction with a stack adjust­
ment value will correctly restore the previous stack 
pointer upon return. 
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Figure 4-15a. 386 TSS and TSS Registers 
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31 

63 

95 

127 

31302928272625242322212019181716151413121110987654321 0 

1 1 1 1 0 1 1 0 o 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 o 0 0 0 0 0 1 1 

0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 o 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 000 o 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 

1 1 1 1 1 1 1 1 

'l' etc. 'l' 

1/0 Ports Accessible: 2 ---> 9, 12, 13, 15, 20 ---> 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 ---> 60, 62, 63, 96 ---> 127 231630-71 

Figure 4-15b. Sample I/O Permission Bit Map 

4.4.5 Call Ga~es 

Gates provide protected, indirect CALLs. One of the 
major uses of gates is to provide a secure method of 
privilege transfers within a task. Since the operating 
system defines all of the gates in a system, it can 
ensure that all gates only allow entry into a few trust­
ed procedures (such as those which allocate memo­
ry, or perform I/O). 

Gate descriptors follow the data access rules of priv­
ilege; that is, gates can be accessed by a task if the 
EPL, is equal to or more privileged than the gate 
descriptor's OPL. Gates follow the control transfer 
rules of privilege and therefore may only transfer 
control to a more privileged level. 

Call Gates are accessed via a CALL instruction and 
are syntactically identical to calling a normal subrou­
tine. When an inter-level 386 call gate is activated, 
the following actions occur. 

1. Load CS:EIP from gate check for validity 

2. SS is pushed zero-extended to 32 bits 

3. ESP is pushed 

4. Copy Word Count 32-bit parameters from the 
old stack to the new stack 

5. Push Return address on stack 

The procedure is identical for 286 Call gates, except 
that 16-bit parameters are copied and 16-bit regis­
ters are pushed. 

Interrupt Gates and Trap gates work in a similar 
fashion as the call gates, except there is no copying 
of parameters. The only difference between Trap 
and Interrupt gates is that control transfers through 
an Interrupt gate disable further interrupts (i.e. the IF 
bit is set to 0), and Trap gates leave the interrupt 
status unchanged. 

4.4.6 Task Switching 

A very important attribute of any multi-tasking/multi­
user operating systems is its ability to rapidly switch 
between tasks or processes. The 80386 directly 
supports this operation by providing a task switch 
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instruction in hardware. The 80386 task switch oper­
ation saves the entire state of the machine (all of the 
registers, address space, and a link to the previous 
task), loads a new execution state, performs protec­
tion checks, and commences execution in the new 
task, in about 17 microseconds. Like transfer of con­
trol via gates, the task switch operation is invoked by 
executing an inter-segment JMP or CALL instruction 
which refers to a Task State Segment (TSS), or a 
task gate descriptor in the GOT or LOT. An INT n 
instruction, exception, trap, or external interrupt may 
also invoke the task switch operation if there is a 
task gate descriptor in the associated lOT descriptor 
slot. 

The TSS descriptor points to a segment (see Figure 
4-1 5) containing the entire 80386 execution state 
while a task gate descriptor contains a TSS selector. 
The 80386 supports both 286 and 386 style TSSs. 
Figure 4-16 shows a 286 TSS. The limit of a 386 
TSS must be greater than 0064H (002BH for a 286 
TSS), and can be as large as 4 Gigabytes. In the 
additional TSS space, the operating system is free 
to store additional information such as the reason 
the task is inactive, time the task has spent running, 
and open files belong to the task. 

Each task must have a TSS associated with it. The 
current TSS is identified by a special register in the 
80386 called the Task State Segment Register (TR). 
This register contains a selector referring to the task 
state segment descriptor that defines the current 
TSS. A hidden base and limit register associated 
with TR are loaded whenever TR is loaded with a 
new selector. Returning from a task is accomplished 
by the IRET instruction. When IRET is executed, 
control is returned to the task which was interrupted. 
The current executing task's state is saved in the 
TSS and the old task state is restored from its TSS. 

Several bits in the flag register and machine status 
word (CRO) give information about the state of a 
task which are useful to the operating system. The 
Nested Task (NT) (bit 14 in EFLAGS) controls the 
function of the IRET instruction. If NT = 0, the IRET 
instruction performs the regular return; when NT = 

1, IRET performs a task switch operation back to the 
previous task. The NT bit is set or reset in the follow­
ing fashion: 
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Figure 4·16. 286 TSS 

When a GALL or INT instruction initiates a task 
switch, the new TSS will be marked busy and the 
back link field of the new TSS set to the old TSS 
selector. The NT bit of the new task is set by GALL 
or INT initiated task switches. An interrupt that does 
not cause a task switch will clear NT. (The NT bit will 
be restored after execution of the interrupt handler) 
NT may also be set or cleared by POPF or IRET 
instructions. 

The 386 task state segment is marked busy by 
changing the descriptor type field from TYPE 9H to 
TYPE BH. A 286 TSS is marked busy by changing 
the descriptor type field from TYPE 1 to TYPE 3. 
Use of a selector that references a busy task state 
segment causes an exception 13. 

The Virtual Mode (VM) bit 17 is used to indicate if a 
task, is a virtual 8086 task. If VM = 1, then the tasks 
will use the Real Mode addressing mechanism. The 
virtual 8086 environment is only entered and exited 
via a task switch (see section 4.6 Virtual Mode). 

The coprocessor's state is not automatically saved 
when a task switch occurs, because the incoming 
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task may not use the coprocessor. The Task 
Switched (TS) Bit (bit 3 in the GRO) helps deal with 
the coprocessor's state in a multi-tasking environ­
ment. Whenever the 80386 switches tasks, it sets 
the TS bit. The 80386 detects the first use of a proc­
essor extension instruction after a task switch and 
causes the processor extension not available excep­
tion 7. The exception handler for exception 7 may 
then decide whether to save the state of the co­
processor. A processor extension not present ex­
ception (7) will occur when attempting to execute an 
ESG or WAIT instruction if the Task Switched and 
Monitor coprocessor extension bits are both set (i.e. 
TS = 1 and MP = 1). 

The T bit in the 386 TSS indicates that the processor 
should generate a debug exception when switching 
to a task. If T = 1 then upon entry to a new task a 
debug exception 1 will be generated. 

4.4.7 Initialization and Transition to 
Protected Mode 

Since the 80386 begins executing in Real Mode im­
mediately after RESET it is necessary to initialize the 
system tables and registers with the appropriate val­
ues. 

The GOT and lOT registers must refer to a valid GOT 
and lOT. The lOT should be at least 256 bytes long, 
and GOT must contain descriptors for the initial 
code, and data segments. Figure 4-17 shows the 
tables and Figure 4-18 the descriptors needed for a 
simple Protected Mode 80386 system. It has a sin­
gle code and single data/stack segment each four 
gigabytes long and a single privilege level PL = O. 

The actual method of enabling Protected Mode is to 
load GRO with the PE bit set, via the MOV GRO, R/M 
instruction. This puts the 80386 in Protected Mode. 

After enabling Protected Mode, the next instruction 
should execute an intersegment JMP to load the GS 
register and flush the instruction decode queue. The 
final step is to load all of the data segment registers 
with the initial selector values. 

An alternate approach to entering Protected Mode 
which is especially appropriate for multi-tasking op­
erating systems, is to use the built in task-switch to 
load all of the registers. In this case the GOT would 
contain two TSS descriptors in addition to the code 
and data descriptors needed for the first task. The 
first JMP instruction in Protected Mode would jump 
to the TSS causing a task switch and loading all of 
the registers with the values stored in the TSS. The 
Task State Segment Register should be initialized to 
point to a valid TSS descriptor since a task switch 
saves the state of the current task in a task state 
segment. 
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Figure 4-17. Simple Protected System 
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Figure 4-18. GOT Descriptors for Simple System 

4.4.8 Tools for Building Protected 
Systems 

In order to simplify the design of a protected multi· 
tasking system, Intel provides a tool which allows 
the system designer an easy method of constructing 
the data structures needed for a Protected Mode 
80386 system. This tool is the builder BLD·386TM. 
BLD·386 lets the operating system writer specify all 
of the segment descriptors discussed in the previous 
sections (LOTs, lOTs, GDTs, Gates, and TSSs) in a 
high·level language. 
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4.5 PAGING 

4.5.1 Paging Concepts 

Paging is another type of memory management use· 
ful for virtual memory multitasking operating sys­
tems. Unlike segmentation which modularizes pro­
grams and data into variable length segments, pa-
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ging divides programs into multiple uniform size 
pages. Pages bear no direct relation to the logical 
structure of a program. While segment selectors can 
be considered the logical "name" of a program 
module or data structure, a page most likely corre­
sponds to only a portion of a module or data struc­
ture. 

By taking advantage of the locality of reference dis­
played by most programs, only a small number of 
pages from each active task need be in memory at 
anyone moment. 

4.5.2 Paging Organization 

4.5.2.1 PAGE MECHANISM 

The 80386 uses two levels of tables to translate the 
linear address (from the segmentation unit) into a 
physical address. There are three components to 
the paging mechanism of the 80386: the page direc­
tory, the page tables, and the page itself (page 
frame). All memory-resident elements of the 80386 
paging mechanism are the same size, namely, 4K 
bytes. A uniform size for all of the elements simpli­
fies memory allocation and reallocation schemes, 
since there is no problem with memory fragmenta­
tion. Figure 4-19 shows how the paging mechanism 
works. 

4.5.2.2 PAGE DESCRIPTOR BASE REGISTER 

CR2 is the Page Fault Linear Address register. It 
holds the 32-bit linear address which caused the last 
page fault detected. 

CR3 is the Page Directory Physical Base Address 
Register. It contains the physical starting address of 
the Page Directory. The lower 12 bits of CR3 are 
always zero to ensure that the Page Directory is al­
ways page aligned. Loading it via a MOV CR3, reg 
instruction causes the Page Table Entry cache to be 
flushed, as will a task switch through a TSS which 
changes the value of CRO. (See 4.5.4 Translation 
Lool<aside Buffer). 

4.5.2.3 PAGE DIRECTORY 

The Page Directory is 4K bytes long and allows up to 
1024 Page Directory Entries. Each Page Directory 
Entry contains the address of the next level of ta­
bles, the Page Tables and information about the 
page table. The contents of a Page Directory Entry 
are shown in Figure 4-20. The upper 10 bits of the 
linear address (A22-A31) are used as an index to 
select the correct Page Directory Entry. 

TWO LEVEL PAGING SCHEME 

31 22 12 0 

~ DIRECTORY I TABLE I OFFSET I 
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ADDRESS 
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l 12 
10 

'1: 31 
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31 'r 31 0 
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Figure 4-19. Paging Mechanism 
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Figure 4-20. Page Directory Entry (POints to Page Table) 
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Figure 4-21. Page Table Entry (Points to Page) 

4.5.2.4 PAGE TABLES 

Each Page Table is 4K bytes and holds up to 1024 
Page Table Entries. Page Table Entries contain the 
starting address of the page frame and statistical 
information about the page (see Figure 4-21). Ad­
dress bits A12-A21 are used as an index to select 
one of the 1024 Page Table Entries. The 20 upper­
bit page frame address is concatenated with the 
lower 12 bits of the linear address to form the physi­
cal address. Page tables can be shared between 
tasks and swapped to disks. 

4.5.2.5 PAGE DIRECTORY/TABLE ENTRIES 

The lower 12 bits of the Page Table Entries and 
Page Directory Entries contain statistical information 
about pages and page tables respectively. The P 
(Present) bit 0 indicates if a Page Directory or Page 
Table entry can be used in address translation. If 
P = 1 the entry can be used for address translation 
if P= 0 the entry can not be used for translation, 
and all of the other bits are available for use by the 
software. For example the remaining 31 bits could 
be used to indicate where on the disk the page is 
stored. 

The A (Accessed) bit 5, is set by the 80386 for both 
types of entries before a read or write access occurs 
to an address covered by the entry. The D (Dirty) bit 
6 is set to 1 before a write to an address covered by 
that page table entry occurs. The D bit is undefined 
for Page Directory Entries. When the P, A and D bits 
are updated by the 80386, the processor generates 
a Read-Modify-Write cycle which locks the bus and 
prevents conflicts with other processors or perpheri­
als. Software which modifies these bits should use 
the LOCK prefix to ensure the integrity of the page 
tables in multi-master systems. 

The 3 bits marked OS Reserved in Figure 4-20 and 
Figure 4-21 (bits 9-11) are software definable. OSs 
are free to use these bits for whatever purpose they 
wish. An example use of the OS Reserved bits 
would be to store information about page aging. By 
keeping track of how long a page has been in mem­
ory since being accessed, an operating system can 
implement a page replacement algorithm like Least 
Recently Used. 

The (User/Supervisor) U/S bit 2 and the (Read/ 
Write) R/W bit 1 are used to provide protection attri­
butes for individual pages. 
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4.5.3 Page Level Protection 
(R/W, U/S Bits) 

The 80386 provides a set of protection attributes for 
paging systems. The paging mechanism distin­
guishes between two levels of protection: User 
which corresponds to level 3 of the segmentation 
based protection, and supervisor which encompass­
es all of the other protection levels (0, 1, 2). Pro­
grams executing at Level 0, 1 or 2 bypass the page 
protection, although segmentation based protection 
is still enforced by the hardware. 

The U/S and R/W bits are used to provide Us­
er/Supervisor and Read/Write protection for individ­
ual pages or for all pages covered by a Page Table 
Directory Entry. The U/S and R/W bits in the first 
level Page Directory Table apply to all pages de­
scribed by the page table pointed to by that directory 
entry. The U/S and R/W bits in the second level 
Page Table Entry apply only to the page described 
by that entry. The U/S and R/W bits for a given 
page are obtained by taking the most restrictive of 
the U/S and R/W from the Page Directory Table 
Entries and the Page Table Entries and using these 
bits to address the page. 

Example: If the U/S and R/W bits for the Page Di­
rectory entry were 10 and the U/S and R/W bits for 
the Page Table Entry were 01, the access rights for 
the page would be 01, the numerically smaller of the 
two. Table 4-4 shows the affect of the U/S and R/W 
bits on accessing memory. 

Table 4-4. Protection Provided by R/W and U/S 

U/S R/W 
Permitted Permitted Access 

Level 3 Levels 0, 1, or 2 

0 0 None Read/Write 
0 1 None Read/Write 
1 0 Read-Only Read/Write 
1 1 Read/Write Read/Write 

However a given segment can be easily made read­
only for level 0, 1, or 2 via the use of segmented 
protection mechanisms. (Section 4.4 Protection). 
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4.5.4 Translation Lookaside Buffer 

The 80386 paging hardware is designed to support 
demand paged virtual memory systems. However, 
performance would degrade substantially if the proc­
essor was required to access two levels of tables for 
every memory reference. To solve this problem, the 
80386 keeps a cache of the most recently accessed 
pages, this cache is called the Translation Looka­
side Buffer (TLB). The TLB is a four-way set associa­
tive 32-entry page table cache. It automatically 
keeps the most commonly used Page Table Entries 
in the processor. The 32-entry TLB coupled with a 
4K page size, results in coverage of 128K bytes of 
memory addresses. For many common multi-tasking 
systems, the TLB will have a hit rate of about 98%. 
This means that the processor will only have to ac­
cess the two-level page structure on 2% of all mem­
ory references. Figure 4-22 illustrates how the TLB 
complements the 80386's paging mechanism. 

4.5.5 Paging Operation 

32 ENTRIES 
PHYSICAL 
~EMORY 

TRANSLATION 

A~~~~~S --+- LODKASIOE 
BUFFER HIT 

MISS 

31 0 

U t--

4 

PAGE PAGE 
DIRECTORY TABLE 

098% HIT RATE 

231630-68 

Figure 4-22. Translation Lookaside Buffer 

The paging hardware operates in the following fash· 
ion. The paging unit hardware receives a 32-bit lin­
ear address from the segmentation unit. The upper 
20 linear address bits are compared with all 32 en­
tries in the TLB to determine if there is a match. If 
there is a match (Le. a TLB hit), then the 32-bit phys· 
ical address is calculated and will be placed on the 
address bus. 

However, if the page table entry is not in the TLB, 
the 80386 will read the appropriate Page Directory 
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Entry. If P = 1 on the Page Directory Entry indicat­
ing that the page table is in memory, then the 80386 
will read the appropriate Page Table Entry and set 
the Access bit. If P = 1 on the Page Table Entry 
indicating that the page is in memory, the 80386 will 
update the Access and Dirty bits as needed and 
fetch the operand. The upper 20 bits of the linear 
address, read from the page table, will be stored in 
the TLB for future accesses. However, if P = 0 for 
either the Page Directory Entry or the Page Table 
Entry, then the processor will generate a page fault, 
an Exception 14. 

The processor will also generate an exception 14, 
page fault, if the memory reference violated the 
page protection attributes (Le. U/S or R/W) (e.g. try­
ing to write to a read-only page). CR2 will hold the 
linear address which caused the page fault. Since 
Exception 14 is classified as a fault, CS: EIP will 
point to the instruction causing the page fault. The 
16-bit error code pushed as part of the page fault 
handler will contain status bits which indicate the 
cause of the page fault. 

The 16-bit error code is used by the operating sys­
tem to determine how to handle the page fault Fig­
ure 4-23A shows the format of the page-fault error 
code and the interpretation of the bits. 

NOTE: 
Even though the bits in the error code (U/S, W/R, 
and P) have similar names as the bits in the Page 
Directory/Table Entries, the interpretation of the er­
ror code bits is different. Figure 4-23B indicates 
what type of access caused the page fault. 

15 3 2 1 0 

lulululululululululululululul~I:lpl 
Figure 4-23A. Page Fault Error Code Format 

U/S: The UlS bit indicates whether the access 
causing the fault occurred when the processor was 
executing in User Mode (U/S = 1) or in Supervisor 
mode (U/S = 0) 

W/R: The W/R bit indicates whether the access 
causing the fault was a Read (W/R = 0) or a Write 
(W/R = 1) 

P: The P bit indicates whether a page fault was 
caused by a not-present page (P = 0), or by a page 
level protection violation (P = 1) 

U: UNDEFINED 
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U/S W/R Access Type 

0 0 Supervisor' Read 
0 1 Supervisor Write 
1 0 User Read 
1 1 User Write 

'Descriptor table access will fault with u/s 0, even lithe program 
is executing at level 3. 

Figure 4-238. Type of Access 
Causing Page Fault 

4.5.6 Operating System 
Responsibilities 

The 80386 takes care of the page address transla­
tion process, relieving the burden from an operating 
system in a demand-paged system. The operating 
system is responsible for setting up the initial page 
tables, and handling any page faults. The operating 
system also is required to invalidate (i.e. flush) the 
TLB when any changes are made tD any of the page 
table entries. The operating system must reload 
CR3 to cause the TLB to be flushed. 

Setting up the tables is simply a matter of loading 
CR3 with the address of the Page Directory, and 
allocating space for the Page Directory and the 
Page Tables. The primary responsibility of th~ oper­
ating system is to implement a swapping policy and 
handle all of the page faults. 

A final concern of the operating system is to ensure 
that the TLB cache matches the information in the 
paging tables. In particular, any time the operating 
system sets the P present bit of page table entry to 
zero, the TLB must be flushed. Operating systems 
may want to take advantage of the fact that CR3 is 
stored as part of a TSS, to give every task or group 
of tasks its own set of page tables. 

4.6 VIRTUAL 8086 ENVIRONMENT 

4.6.1 Executing 8086 Programs 

The 80386 allows the execution of 8086 application 
programs in both Real Mode and in the Virtual 8086 
Mode (Virtual Mode). Of the two methods, Virtual 
8086 Mode offers the system designer the most 
flexibility. The Virtual 8086 Mode allows the execu­
tion of 8086 applications, while still allowing the sys­
tem designer to take full advantage of the 80386 
protection mechanism. In particular, the 80386 al­
lows the simultaneous execution of 8086 operating 
systems and its applications, and an 80386 ope rat-
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ing system and both 80286 and 80386 applications. 
Thus, in a multi-user 80386 computer, one person 
could be running an MS-DOS spreadsheet, another 
person using MS-DOS, and a third person could be 
running multiple Unix utilities and applications. Each 
person in this scenario would believe that he had the 
computer completely to himself. Figure 4-24 Illus­
trates this concept. 

4.6.2 Virtual 8086 Mode Addressing 
Mechanism 

One of the major differences between 80386 Real 
and Protected modes is how the segment selectors 
are interpreted. When the processor is executing in 
Virtual 8086 Mode the segment registers are used in 
an identical fashion to Real Mode. The contents of 
the segment register is shifted left 4 bits and added 
to the offset to form the segment base linear ad­
dress. 

The 80386 allows the operating system to specify 
which programs use the 8086 style address mecha­
nism, and which programs use Protected Mode ad­
dressing, on a per task basis. Through the use of 
paging, the one megabyte address space of the Vir­
tual Mode task can be mapped to anywhere in the 4 
gigabyte linear address space ?f the 80386. Like 
Real Mode, Virtual Mode effeclive addresses (I.e., 
segment offsets) that exceed 64K byte will cause an 
exception 13. However, these restrictions should ~ot 
prove to be important, because most tasks running 
in Virtual 8086 Mode will simply be existing 8086 
application programs. 

4.6.3 Paging In Virtual Mode 

The paging hardware allows the concurrent running 
of multiple Virtual Mode tasks, and provides protec­
tion and operating system isolation. Although it is 
not strictly necessary to have the paging hardware 
enabled to run Virtual Mode tasks, it is needed In 
order to run multiple Virtual Mode tasks or to relo­
cate the address space of a Virtual Mode task to 
physical address space greater than one megabyte. 

The paging hardware allows the 20-bit linear ad­
dress produced by a Virtual Mode program to be 
divided into up to 256 pages. Each one of the pages 
can be located anywhere within the maximum 4 giga­
byte physical address space of the 80386. In ~ddi­
tion, since CR3 (the Page Directory Base Register) 
is loaded by a task switch, each Virtual Mode task 
can use a different mapping scheme to map pages 
to different physical locations. Finally, the paging 
hardware allows the sharing of the 8086 operating 
system code between multiple 8086 applications. 
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Figure 4-24. Virtual 8086 Environment Memory Management 

Figure 4·24 shows how the 80386 paging hardware 
enables multiple 8086 programs to run under a virtu· 
al memory demand paged system. 

4.6.4 Protection and 1/0 Permission 
Bitmap 

All Virtual 8086 Mode programs execute at privilege 
level 3, the level of least privilege. As such, Virtual 
8086 Mode programs are subject to all of the protec­
tion checks defined in Protected Mode. (This is dif­
ferent from Real Mode which implicitly is executing 
at privilege level 0, the level of greatest privilege.) 
Thus, an attempt to execute a privileged instruction 
when in Virtual 8086 Mode will cause an exception 
13 fault. 

The following are privileged instructions, which may 
be executed only at Privilege Level o. Therefore, at­
tempting to execute these instructions in Virtual 
8086 Mode (or anytime CPL > 0) causes an excep­
tion 13 fault: 

LIDT: MOV DRn,reg: MOV reg,DRn: 
LGDT: MOV TRn,reg: MOV reg,TRn: 
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LMSW: 
CLTS; 
HLT: 

MOV CRn,reg: MOV reg,CRn. 

Several instructions, particularly those applying to 
the multitasking model and protection model, are 
available only in Protected Mode. Therefore, at­
tempting to execute the following instructions in 
Real Mode or in Virtual 8086 Mode generates an 
exception 6 fault: 

LTR; 
LLDT; 
LAR: 
LSL; 
ARPL. 

STR; 
SLDT; 
VERR: 
VERW; 

The instructions which are IOPL-sensitive in Protect­
ed Mode are: 

IN; STI: 
OUT; CLI 
INS: 
OUTS; 
REP INS; 
REP OUTS; 
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In Virtual 8086 Mode, a slightly different set of in­
structions are made 10PL-sensitive. The following in­
structions are 10PL-sensitive in Virtual 8086 Mode: 

INT n; STI; 
PUSHF; eLI; 
POPF; IRET 

The PUSHF, POPF, and IRET instructions are 10PL­
sensitive in Virtual 8086 Mode only. This provision 
allows the IF flag (interrupt enable flag) to be virtual­
ized to the Virtual 8086 Mode program. The INT n 
software interrupt instruction is also 10PL-sensitive 
in Virtual 8086 Mode. Note, however, that the INT 3 
(opcode OCCH), INTO, and BOUND instructions are 
not 10PL-sensitive in Virtual 8086 mode (they aren't 
10PL sensitive in Protected Mode either). 

Note that the I/O instructions (IN, OUT, INS, OUTS, 
REP INS, and REP OUTS) are not 10PL-sensitive in 
Virtual 8086 mode. Rather, the I/O instructions be­
come automatically sensitive to the I/O Permission 
Bitmap contained in the 386 Task State Segment. 
The I/O Permission Bitmap, automatically used by 
the 80386 in Virtual 8086 Mode, is illustrated by Fig­
ures 4.15a and 4-15b. 

The I/O Permission Bitmap can be viewed as a 0-
64 Kbit bit string, which begins in memory at offset 
BiLMap_Offset in the current TSS. the 16-bit 
pointer BiLMap_Offset (15:0) is found in the word 
beginning at offset 66H (102 decimal) from the TSS 
base, as shown in Figure 4-15a. 

Each bit in the I/O Permission Bitmap corresponds 
to a single byte-wide I/O port, as illustrated in Figure 
4-15a. If a bit is 0, I/O to the corresponding byte­
wide port can occur without generating an excep­
tion. Otherwise the I/O instruction causes an excep­
tion 13 fault. Since every byte-wide I/O port must be 
protectable, all bits corresponding to a word-wide or 
dword-wide port must be a for the word-wide or 
dword-wide I/O to.be permitted. If all the referenced 
bits are 0, the I/O will be allowed. If any referenced 
bits are 1, the attempted I/O will cause an exception 
13 fault. 

Due to the use of a pointer to the base of the I/O 
Permission Bitmap, the bitmap may be located any­
where within the TSS, or may be ignored completely 
by pointing the BiLMap_Offset (15:0) beyond the 
limit of the TSS segment. In the same manner, only 
a small portion of the 64K I/O space need have an 
associated map bit, by adjusting the TSS limit to 
truncate the bitmap. This eliminates the commitment 
of 8K of memory when a complete bitmap is not 
required, while allowing the fully general case if de­
sired. 
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EXAMPLE OF BITMAP FOR I/O PORTS 0-255: 
Setting the TSS limit to {biLMap_Offset + 31 
+ 1"l [0' see note below] will allow a 32-byte bit­
map for the I/O ports #0-255, plus a terminator 
byte of all 1 's [" see note below]. This allows the 
I/O bitmap to control I/O Permission to I/O port 0-
255 while causing an exception 13 fault on attempt­
ed I/O to any I/O port 256 through 65,565. 

"IMPORTANT IMPLEMENTATION NOTE: Beyond 
the last byte of I/O mapping information in the I/O 
Permission Bitmap must be a byte containing all 1 'so 
The byte of all 1 's must be within the limit of the 386 
TSS segment (see Figure 4-15a). 

4.6.5 Interrupt Handling 

In order to fully support the emulation of an 8086 
machine, interrupts in Virtual 8086 Mode are han­
dled in a unique fashion. When running in Virtual 
Mode all interrupts and exceptions involve a privi­
lege change back to the host 80386 operating sys­
tem. The 80386 operating system determines if the 
interrupt comes from a Protected Mode application 
or from a Virtual Mode program by examining the 
VM bit in the EFLAGS image stored on the stack. 

When a Virtual Mode program is interrupted and ex­
ecution passes to the interrupt routine at level 0, the 
VM bit is cleared. However, the VM bit is still set in 
the EFLAG image on the stack. 

The 80386 operating system in turn handles the ex­
ception or interrupt and then returns control to the 
8086 program. The 80386 operating system may 
choose to let the 8086 operating system handle the 
interrupt or it may emulate the function of the inter­
rupt handler. For example, many 8086 operating 
system calls are accessed by PUSHing parameters 
on the stack, and then executing an INT n instruc­
tion. If the 10PL is set to a then all INT n instructions 
will be intercepted by the 80386 operating system. 
The 80386 operating system could emulate the 
8086 operating system's call. Figure 4-25 shows 
how the 80386 operating system could intercept an 
8086 operating system's call to "Open a File". 

An 80386 operating system can provide a Virtual 
8086 Environment which is totally transparent to the 
application software via intercepting and then emu­
lating 8086 operating system's calls, and intercept­
ing IN and OUT instructions. 

4.6.6 Entering and Leaving Virtual 
8086 Mode 

Virtual 8086 mode is entered by executing an IRET 
instruction (at CPL=O), or Task Switch (at any CPL) 
to a 386 task whose 386 TSS has a FLAGS image 
containing a 1 in the VM bit position while the proc-
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essor is executing in Protected Mode. That is, one 
way to enter Virtual 8086 mode is to switch to a task 
with a 386 TSS that has a 1 in the VM bit in the 
EFLAGS image. The other way is to execute a 32-bit 
IRET instruction at privilege level 0, where the stack 
has a 1 in the VM bit in the EFLAGS image. POPF 
does not affect the VM bit, even if the processor is in 
Protected Mode or level 0, and so cannot be used to 
enter Virtual 8086 Mode. PUSHF always pushes a 0 
in the VM bit, even if the processor is in Virtual 8086 
Mode, so that a program cannot tell if it is executing 
in REAL mode, or in Virtual 8086 mode. 

The VM bit can be set by executing an IRET instruc­
tion only at privilege level 0, or by any instruction or 
Interrupt which causes a task switch in Protected 
Mode (with VM = 1 in the new FLAGS image), and 
can be cleared only by an interrupt or exception in 
Virtual 8086 Mode. IRET and POPF instructions exe­
cuted in REAL mode or Virtual 8086 mode will not 
change the value in the VM bit. 

The transition out of virtual 8086 mode to 386 pro­
tected mode occurs only on receipt of an interrupt or 
exception (such as due to a sensitive instruction). In 
Virtual 8086 mode, all interrupts and exceptions vec­
tor through the protected mode lOT, and enter an 
interrupt handler in protected 386 mode. That is, as 
part of interrupt processing, the VM bit is cleared. 

Because the matching IRET must occur from level 0, 
if an Interrupt or Trap Gate is used to field an inter­
rupt or exception out of Virtual 8086 mode, the Gate 
must perform an inter-level interrupt only to level O. 
Interrupt or Trap Gates through conforming seg­
ments, or through segments with OPL> 0, will raise a 
GP fault with the CS selector as the error code. 

4.6.6.1 TASK SWITCHES TO/FROM VIRTUAL 
8086 MODE 

Tasks which can execute in virtual 8086 mode must 
be described by a TSS with the new 386 format 
(TYPE 9 or 11 descriptor). 

A task switch out of virtual 8086 mode will operate 
exactly the same as any other task switch out of a 
task with a 386 TSS. All of the programmer visible 
state, including the FLAGS register with the VM bit 
set to 1, is stored in the TSS. The segment registers 
in the TSS will contain 8086 segment base values 
rather than selectors. 

A task switch into a task described by a 386 TSS will 
have an additional check to determine if the incom­
ing task should be resumed in virtual 8086 mode. 
Tasks described by 286 format TSSs cannot be re­
sumed in virtual 8086 mode, so no check is required 
there (the FLAGS image in 286 format TSS has only 
the low order 16 FLAGS bits). Before loading the 
segment register images from a 386 TSS, the 
FLAGS image is loaded, so that the segment 
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registers are loaded from the TSS image as 8086 
segment base values. The task is now ready to re­
sume in virtual 8086 execution mode. 

4.6.6.2 TRANSITIONS THROUGH TRAP AND 
INTERRUPT GATES, AND IRET 

A task switch is one way to enter or exit virtual 8086 
mode. The other method is to exit through a Trap or 
Interrupt gate, as part of handling an interrupt, and 
to enter as part of executing an IRET instruction. 
The transition out must use a 386 Trap Gate (Type 
14), or 386 Interrupt Gate (Type 15), which must 
point to a non-conforming level 0 segment (OPL = 0) 
in order to permit the trap handler to IRET back to 
the Virtual 8086 program. The Gate must point to a 
non-conforming level 0 segment to perform a level 
switch to level 0 so that the matching IRET can 
change the VM bit. 386 gates must be used, since 
286 gates save only the low 16 bits of the FLAGS 
register, so that the VM bit will not be saved on tran­
sitions through the 286 gates. Also, the 16-bit IRET 
(presumably) used to terminate the 286 interrupt 
handler will pop only the lower 16 bits from FLAGS, 
and will not affect the VM bit. The action taken for a 
386 Trap or Interrupt gate if an interrupt occurs while 
the task is executing in virtual 8086 mode is given by 
the following sequence. 
(1) Save the FLAGS register in a temp to push later. 

Turn off the VM and TF bits, and if the interrupt is 
serviced by an Interrupt Gate, turn off IF also. 

(2) Interrupt and Trap gates must perform a level 
switch from 3 (where the VM86 program exe­
cutes) to level 0 (so IRET can return). This proc­
ess involves a stack switch to the stack given in 
the TSS for privilege level O. Save the Virtual 
8086 Mode SS and ESP registers to push in a 
later step. The segment register load of SS will 
be done as a Protected Mode segment load, 
since the VM bit was turned off above. 

(3) Push the 8086 segment register values onto the 
new stack, in the order: GS, FS, OS, ES. These 
are pushed as 32-bit quantities, with undefined 
values in the upper 16 bits. Then load these 4 
registers with null selectors (0). 

(4) Push the old 8086 stack pointer onto the new 
stack by pushing the SS register (as 32-bits, high 
bits undefined), then pushing the 32-bit ESP reg· 
ister saved above. 

(5) Push the 32-bit FLAGS register saved in step 1. 
(6) Push the old 8086 instruction pointer onto the 

new stack by pushing the CS register (as 32-bits, 
high bits undefined), then pushing the 32-bit EIP 
register. 

(7) Load up the new CS:EIP value from the interrupt 
gate, and begin execution of the interrupt routine 
in protected 386 mode. 

The transition out of virtual 8086 mode performs a 
level change and stack switch, in addition to chang-
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Figure 4·25. Virtual 8086 Environment Interrupt and Call Handling 

ing back to protected mode. In addition, all of the (2) Read the FLAGS image from SS:8[ESP] into the 
8086 segment register images are stored on the FLAGS register. This will set VM to the value ac-
stack (behind the SS:ESP image), and then loaded tive in the interrupted routine. 
with null (0) selectors before entering the interrupt (3) Pop off the instruction pointer CS:EIP. EIP is 
handler. This will permit the handler to safely save popped first, then a 32-bit word is popped which 
and restore the OS, ES, FS, and GS registers as 286 contains the CS value in the lower 16 bits. If 
selectors. This is needed so that interrupt handlers VM = 0, this CS load is done as a protected 
which don't care about the mode of the interrupted mode segment load. If VM = 1, this will be done 
program can use the same prolog and epilog code as an 8086 segment load. 
for state saving (i.e. push all registers in prolog, pop (4) Increment the ESP register by 4 to bypass the 
all in epilog) regardless of whether or not a "native" FLAGS image which was "popped" in step 1. 
mode or Virtual 8086 mode program was interrupt-
ed. Restoring null selectors to these registers before (5) If VM = 1, load segment registers ES, OS, FS, 
executing the IRET will not cause a trap in the inter- and GS from memory locations SS:[ESP+ 8], 
rupt handler. Interrupt routines which expect values SS: [ESP + 12], SS: [ESP + 16], and 
in the segment registers, or return values in segment SS: [ESP + 20], respectively, where the new val-
registers will have to obtain/return values from the ue of ESP stored in step 4 is used. Since VM = 1, 
8086 register images pushed onto the new stack. these are done as 8086 segment register loads. 
They will need to know the mode of the interrupted Else if VM = 0, check that the selectors in ES, 
program in order to know where to find/return seg- OS, FS, and GS are valid in the interrupted rou-
ment registers, and also to know how to interpret tine. Null out invalid selectors to trap if an at-
segment register values. tempt is made to access through them. 

The IRET instruction will perform the inverse of the 
above sequence. Only the extended 386 IRET in­
struction (operand size=32) can be used, and must 
be executed at level 0 to change the VM bit to 1. 

(1) If the NT bit in the FLAGs register is on, an inter­
task return is performed. The current state is 
stored in the current TSS, and the link field in the 
current TSS is used to locate the TSS for the 
interrupted task which is to be resumed. 

Otherwise, continue with the following sequence. 
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(6) If (RPL(CS) > CPL), pop the stack pointer 
SS:ESP from the stack. The ESP register is 
popped first, followed by 32-bits containing SS in 
the lower 16 bits. If VM = 0, SS is loaded as a 
protected mode segment register load. If VM = 1, 
an 8086 segment register load is used. 

(7) Resume execution of the interrupted routine. The 
VM bit in the FLAGS register (restored from the 
interrupt routine's stack image in step 1) deter­
mines whether the processor resumes the inter­
rupted routine in Protected mode of Virtual 8086 
mode. 
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5. FUNCTIONAL DATA 

5.1 INTRODUCTION 

The 80386 features a straightforward functional in­
terface to the external hardware. The 80386 has 
separate, parallel buses for data and address. The 
data bus is 32-bits in width, and bidirectional. The 
address bus outputs 32-bit address values in the 
most directly usable form for the high-speed local 
bus: 4 individual byte enable signals, and the 30 up­
per-order bits as a binary value. The data and ad­
dress buses are interpreted and controlled with their 
associated control signals. 

A dynamic data bus sizing feature allows the proc­
essor to handle a mix of 32- and 16-bit external bus­
es on a cycle-by-cycle basis (see 5.3.4 Data Bus 
Sizing). If 16-bit bus size is selected, the 80386 au­
tomatically makes any adjustment needed, even 
performing another 16-bit bus cycle to complete the 
transfer if that is necessary. 8-bit peripheral devices 
may be connected to 32-bit or 16-bit buses with no 
loss of performance. A new address pipelining op· 
tion is provided and applies to 32-bit and 16-bit bus­
es for substantially improved memory utilization, es­
pecially for the most heavily used memory resourc­
es. 

The address pipelining option, when selected, typ­
ically allows a given memory interface to operate 
with one less wait state than would otherwise be 
required (see 5.4.2 Address Pipelining). The pipe­
lined bus is also well suited to interleaved memory 
designs. For 16 MHz interleaved memory designs 
with 100 ns access time DRAMs, zero wait states 
can be achieved when pipe lined addressing is se­
lected. When address pipelining is requested by the 
external hardware, the 80386 will output the address 
and bus cycle definition of the next bus cycle (if it is 
internally available) even while waiting for the cur­
rent cycle to be acknowledged. 

Non-pipelined address timing, however, is ideal for 
external cache designs, since the cache memory will 
typically be fast enough to allow non-pipelined cy­
cles. For maximum design flexibility, the address 
pipelining option is selectable on a cycle-by-cycle 
basis. 

The processor's bus cycle is the basic mechanism 
for information transfer, either from system to proc­
essor, or from processor to system. 80386 bus cy­
cles perform data transfer in a minimum of only two 
clock periods. On a 32-bit data bus, the maximum 
80386 transfer bandwidth at 16 MHz is therefore 32 
Mbytes/sec. Any bus cycle will be extended for 
more than two clock periods, however, if external 
hardware withholds acknowledgement of the cycle. 
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At the appropriate time, acknowledgement is sig­
nalled by asserting the 80386 READY # input. 

The 80386 can relinquish control of its local buses 
to allow mastership by other devices, such as direct 
memory access channels. When relinquished, HLDA 
is the only output pin driven by the 80386, providing 
near-complete isolation of the processor from its 
system. The near-complete isolation characteristic is 
ideal when driving the system from test equipment, 
and in fault-tolerant applications. 

Functional data covered in this chapter describes 
the processor's hardware interface. First, the set of 
signals available at the processor pins is described 
(see 5.2 Signal Description). Following that are the 
signal waveforms occurring during bus cycles (see 
5.3 Bus Transfer Mechanism, 5.4 Bus Functional 
Description and 5.5 Other Functional Descrip­
tions). 

5.2 SIGNAL DESCRIPTION 

5.2.1 Introduction 

Ahead is a brief description of the 80386 input and 
output signals arranged by functional groups. Note 
the # symbol at the end of a signal name indicates 
the active, or asserted, state occurs when the signal 
is at a low Voltage. When no # is present after the 
signal name, the signal is asserted when at the high 
voltage level. 

Example signal: M/IO# - High voltage indicates 
Memory selected 

- Low voltage indicates 
1/0 selected 

The signal descriptions sometimes refer to AC tim­
ing parameters, such as "t25 Reset Setup Time" and 
"t26 Reset Hold Time." The values of these parame­
ters can be found in Tables 7-4 and 7-5. 

5.2.2 Clock (CLK2) 

CLK2 provides the fundamental timing for the 
80386. It is divided by two internally to generate the 
internal processor clock used for instruction execu­
tion. The internal clock is comprised of two phases, 
"phase one" and "phase two." Each CLK2 period is 
a phase of the internal clock. Figure 5-2 illustrates 
the relationship. If desired, the phase of the internal 
processor clock can be synchronized to a known 
phase by ensuring the RESET signal falling edge 
meets its applicable setup and hold times, t25 and 
t26· 
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Figure 5-1. Functional Signal Groups 
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Figure 5-2. CLK2 Signal and Internal Processor Clock 

5.2.3 Data Bus (DO through 031) 

These three-state bidirectional signals provide the 
general purpose data path between the 80386 and 
other devices. Data bus inputs and outputs indicate 
"1" when HIGH. The data bus can transfer data on 
32- and 16-bit buses using a data bus sizing feature 
controlled by the 8S16# input. See section 5.2.6 
Bus Conto!. Data bus reads require that read data 
setup and hold times t21 and t22 be met for correct 
operation. During any write operation (and during 
halt cycles and shutdown cycles), the 80386 always 
drives all 32 signals of the data bus even if the cur­
rent bus size is 16-bits. 
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5.2.4 Address Bus (BEO# through 
BE3#, A2 through A31) 

These three-state outputs provide physical memory 
addresses or I/O port addresses. The address bus 
is capable of addressing 4 gigabytes of physical 
memory space (OOOOOOOOH through FFFFFFFFH), 
and 64 kilobytes of I/O address space (OOOOOOOOH 
through OOOOFFFFH) for programmed I/O. I/O 
transfers automatically generated for 80386-to-co­
processor communication use I/O addresses 
800000F8H through 800000FFH, so A31 HIGH in 
conjunction with M/IO# LOW allows simple genera­
tion of the coprocessor select signal. 
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The Byte Enable outputs, BEO#-BE3#, directly in­
dicate which bytes of the 32-bit data bus are in­
volved with the current transfer. This is most conve­
nient for external hardware. 

BEO# applies to 00-07 
BEl # applies to 08-015 
BE2# applies to 016-023 
BE3# applies to 024-031 

The number of Byte Enables asserted indicates the 
physical size of the operand being transferred (1, 2, 
3, or 4 bytes). Refer to section 5.3.6 Operand Align­
ment. 

When a memory write cycle or 1/0 write cycle is in 
progress, and the operand being transferred occu­
pies only the upper 16 bits of the data bus (016-
031), duplicate data is simultaneously presented on 
the corresponding lower 16-bits of the data bus 
(00-D15). This duplication is performed for optimum 
write performance on 16-bit buses. The pattern of 
write data duplication is a function of the Byte En­
ables asserted during the write cycle. Table 5-1 lists 
the write data present on 00-031, as a function of 
the asserted Byte Enable outputs BEO#-BE3#. 

5.2.5 Bus Cycle Definition Signals 
(W/R#, D/C#, MIIO#, LOCK#) 

These three-state outputs define the type of bus cy­
cle being performed. W /R # distinguishes between 
write and read cycles. D/C# distinguishes between 
data and control cycles. M/IO# distinguishes be­
tween memory and 1/0 cycles. LOCK# distin­
guishes between locked and unlocked bus cycles. 

The primary bus cycle definition signals are W/R#, 
O/C# and M/IO#, since these are the signals driv­
en valid as the ADS # (Address Status output) is 
driven asserted. The LOCK # is driven valid at the 
same time as the first locked bus cycle begins, 
which due to address pipelining, could be later than 
AOS# is driven asserted. See 5.4.3.4 Pipelined Ad­
dress. The LOCK # is negated when the READY # 
input terminates the last bus cycle which was 
locked. . 

Exact bus cycle definitions, as a function of W/R#, 
D/C#, and MI/IO#, are given in Table 5-2. Note 
one combination of W/R#, D/C# and M/IO# is 
never given when ADS# is asserted (however, that 
combination, which is listed as "does not occur," will 
occur during idle bus states when ADS# is not as-
serted). If MIIO#, D/C#, and W/R# are qualified 
by ADS# asserted, then a decoding scheme may 
use the non-occurring combination to its best advan­
tage. 

Table 5-1 Write Oata Ouplication as a Function of BEO#-BE3# 

80386 Byte Enables 80386 Write Oata Automatic 

BE3# BE2# BE1# BEO# 024-031 016-023 08-015 00-07 Ouplication? 

High High High Low undef undef undef A No 
High High Low High undef undef B undef No 
High Low High High undef C undef C Yes 
Low High High High 0 undef 0 undef Yes 

High High Low Low undef undef B A No 
High Low Low High undef C B undef No 
Low Low High High D C D C Yes 

High Low Low Low undef C B A No 
Low Low Low High D C B undef No 

Low Low Low Low D C B A No 

Key: 
D = logical write data d24-d31 
C = logical write data d16-d23 
B = logical write data d8-d15 
A = logical write data dO-d7 
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Table 5-2 Bus Cycle Definition 

MIIO# D/C# W/R# Bus Cycle Type Locked? 

Low Low Low INTERRUPT ACKNOWLEDGE Yes 

Low Low High does not occur 

Low High Low 1/0 DATA READ No 

Low High High I/O DATA WRITE No 

High Low Low MEMORY CODE READ No 

High Low High HALT: SHUTDOWN: No 
Address = 2 Address = 0 

(BEO# High (BEO# Low 
BE1 # High BE1 # High 
BE2# Low BE2# High 
BE3# High BE3# High 
A2-A31 Low) A2-A31 Low) 

High High Low MEMORY DATA READ Some Cycles 

High High High MEMORY DATA WRITE Some Cycles 

5.2.6 Bus Control Signals 

5.2.6.1 INTRODUCTION 

The following signals allow the processor to indicate 
when a bus cycle has begun, and allow other system 
hardware to control address pipelining, data bus 
width and bus cycle termination. 

5.2.6.2 ADDRESS STATUS (ADS#) 

This three-state output indicates that a valid bus cy­
cle definition, and address (W/R#, D/C#, M/IO#, 
BEO#-BE3#, and A2-A31) is being driven at the 
80386 pins. It is asserted during T1 and T2P bus 
states (see 5.4.3.2 Non-pipelined Address and 
5.4.3.4 Pipelined Address for additional information 
on bus states). 

5.2.6.3 TRANSFER ACKNOWLEDGE (READY#) 

This input indicates the current bus cycle is com­
plete, and the active bytes indicated by BEO #­
BE3# and BS16# are accepted or provided. When 
READY # is sampled asserted during a read cycle or 
interrupt acknowledge cycle, the 80386 latches the 
input data and terminates the cycle. When READY # 
is sampled asserted during a write cycle, the proces­
sor terminates the bus cycle. 

READY # is ignored on the first bus state of all bus 
cycles, and sampled each bus state thereafter until 
asserted. READY # must eventually be asserted to 
acknowledge every bus cycle, including Halt Indica­
tion and Shutdown Indication bus cycles. When be-

63 

ing sampled, READY must always meet setup and 
hold times t19 and t20 for correct operation. See all 
sections of 5.4 Bus Functional Description. 

5.2.6.4 NEKT ADDRESS REQUEST (NA#) 

This is used to request address pipelining. This input 
indicates the system is prepared to accept new val­
ues of BEO#-BE3#, A2-A31, W/R#, D/C# and 
M/IO# from the 80386 even if the end of the current 
cycle is not being acknowledged on READY #. If th!s 
input is asserted when sampled, the next address IS 

driven onto the bus, provided the next bus request IS 

already pending internally. See 5.4.2 Address Pipe­
lining and 5.4.3 Read and Write Cycles. 

5.2.6.5 BUS SIZE 16 (BS16#) 

The BS16# feature allows the 80386 to directly con­
nect to 32-bit and 16-bit data buses. Asserting this 
input constrains the current bus cycle to use only the 
lower-order half (00-015) of the data bus, corre­
sponding to BEO# and BE1 #. Asserting BS16# has 
no additional effect if only BEO# and/or BE1 # are 
asserted in the current cycle. However, during bus 
cycles asserting BE2# or BE3#, asserting BS~6# 
will automatically cause the 80386. to make adJust­
ments for correct transfer of the upper bytes(s) using 
only physical data signals DO-D15. 

If the operand spans both halves of the data bus 
and BS 16 # is asserted, the 80386 will automatically 
perform another 16-bit bus cycle. BS 16 # must al­
ways meet setup and hold times t17 and t18 for cor­
rect operation. 
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80386 I/O cycles automatically generated for co­
processor communication do not require BS16# be 
asserted. The coprocessor type, 80287 or 80387, is 
sensed on the ERROR# input shortly after the faIl­
ing edge of RESET. The 80386 transfers only 16-bit 
quantities between itself and the 80287, but must 
transfer 32-bit quantities between itself and the 
80387. Therefore, BS16# is a don't care during 
80287 cycles and must not be asserted during 
80387 communication cycles. 

5.2.7 Bus Arbitration Signals 

5.2.7.1 INTRODUCTION 

This section describes the mechanism by which the 
processor relinquishes control of its local buses 
when requested by another bus master device. See 
5.5.1 Entering and Exiting Hold Acknowledge for 
additional information. 

5.2.7.2 BUS HOLD REQUEST (HOLD) 

This input indicates some device other than the 
80386 requires bus mastership. 

HOLD must remain asserted as long as any other 
device is a local bus master. HOLD is not recognized 
while RESET is asserted. If RESET is asserted while 
HOLD is asserted, RESET has priority and places 
the bus into an idle state, rather than the hold ac­
knowledge (high impedance) state. 

HOLD is level-sensitive and is a synchronous input. 
HOLD signals must always meet setup and hold 
times t23 and t24 for correct operation. 

5.2.7.3 BUS HOLD ACKNOWLEDGE (HLDA) 

Assertion of this output indicates the 80386 has re­
linquished control of its local bus in response to 
HOLD asserted, and is in the bus Hold Acknowledge 
state. 

The Hold Acknowledge state offers near-complete 
signal isolation. In the Hold Acknowledge state, 
HLDA is the only signal being driven by the 80386. 
The other output signals or bidirectional signals 
(00-031, BEO#-BE3#, A2-A31, W/R#, D/C#, 
M/IO#, LOCK# and ADS#) are in a high-imped­
ance state so the requesting bus master may control 
them. Pull up resistors may be desired on several sig­
nals to avoid spurious activity when no bus master is 
driving them. See 7.2.3 Resistor Recommenda­
tions. Also, one rising edge occuring on the NMI 
input during Hold Ac!mowledge is remembered, for 
processing after the HOLD input is negated. 
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In addition to the normal usage of Hold Acknowl­
edge with DMA controllers or master peripherals, 
the near-complete isolation has particular attractive­
ness during system test when test equipment drives 
the system, and in hardware-fault-tolerant applica­
tions. 

5.2.8 Coprocessor Interface Signals 

5.2.8.1 INTRODUCTION 

In the following sections are descriptions of signals 
dedicated to the numeric coprocessor interface. In 
addition to the data bus, address bus, and bus cycle 
definition signals, these following signals control 
communication between the 80386 and its 80287 or 
80387 processor extension. 

5.2.8.2 COPROCESSOR REQUEST (PEREQ) 

When asserted, this input signal indicates a coproc­
essor request for a data operand to be transferred 
to/from memory by the 80386. In response, the 
80386 transfers information between the coproces­
sor and memory. Because the 80386 has internally 
stored the coprocessor opcode being executed, it 
performs the requested data transfer with the cor­
rect direction and memory address. 

PEREQ is level-sensitive and is allowed to be asyn­
chronous to the CLK2 signal. 

5.2.8.3 COPROCESSOR BUSY (BUSY#) 

When asserted, this input indicates the coprocessor 
is still executing an instruction, and is not yet able to 
accept another. When the 80386 encounters any 
coprocessor instruction which operates on the nu­
meric stack (e.g. load, pop, or arithmetic operation), 
or the WAIT instruction, this input is first automatical­
ly sampled until it is seen to be negated. This sam­
pling of the BUSY# input prevents overrunning the 
execution of a previous coprocessor instruction. 

The FNINIT and FNCLEX coprocessor instructions 
are allowed to execute even if BUSY # is asserted; 
since these instructions are used for coprocessor 
initialization and exception-clearing. 

BUSY # is level-sensitive and is allowed to be asyn­
chronous to the CLK2 signal. 

BUSY # serves an additional function. If BUSY # is 
sampled LOW at the falling edge of RESET, the 
80386 performs an internal self-test (see 5.5.3 Bus 
Activity During and Following Reset). If BUSY # is 
sampled HIGH, no self-test is performed. 
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5.2.8.4 COPROCESSOR ERROR (ERROR#) 

This input signal indicates that the previous coproc­
essor instruction generated a coprocessor error of a 
type not masked by the coprocessor's control regis­
ter. This input is automatically sampled by the 80386 
when a coprocessor instruction is encountered, and 
if asserted, the 80386 generates exception 16 to ac­
cess the error-handling software. 

Several coprocessor instructions, generally those 
which clear the numeric error flags in the coproces­
sor or save coprocessor state, do execute without 
the 80386 generating exception 16 even if ER­
ROR # is asserted. These instructions are FNINIT, 
FNCLEX, FSTSW, FSTSWAX, FSTCW, FSTENV, 
FSAVE, FESTENV and FESAVE. 

ERROR # is level-sensitive and is allowed to be 
asynchronous to the CLK2 signal. 

ERROR# serves an additional function. If ERROR# 
is LOW no later than 20 CLK2 periods after the fail­
ing edge of RESET and remains LOW at least until 
the 80386 begins its first bus cycle, an 80387 is as­
sumed to be present (ET bit in CRO automatically 
gets set to 1). Otherwise, an 80287 (or no coproces­
sor) is assumed to be present (ET bit in CRO auto­
matically is reset to 0). See 5.5.3 Bus Activity Dur­
ing and After Reset. Only the ET bit is set by this 
ERROR# pin test. Software must set the EM and 
MP bits in CRO as needed. Therefore, distinguishing 
80287 presence from no coprocessor requires a 
software test and appropriately resetting or setting 
the EM bit of CRO (set EM = 1 when no coproces­
sor is present). If ERROR# is sampled LOW after 
reset (indicating 80387) but software later sets 
EM = 1, the 80386 will behave as if no coprocessor 
is present. 

5.2.9 Interrupt Signals 

5.2.9.1 INTRODUCTION 

The following descriptions cover inputs that can in­
terrupt or suspend execution of the processor's cur­
rent instruction stream. 

5.2.9.2 MASKABLE INTERRUPT REQUEST (INTR) 

When asserted, this input indicates a request for in­
terrupt service, which can be masked by the 80386 
Flag Register IF bit. When the 80386 responds to 
the INTR input, it performs two interrupt acknowl­
edge bus cycles, and at the end of the second, 
latches an 8-bit interrupt vector on 00-07 to identify 
the source of the interrupt. 

INTR is level-sensitive and is allowed to be asyn­
chronous to the CLK2 signal. To assure recognition 
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of an INTR request, INTR should remain asserted 
until the first interrupt acknowledge bus cycle be­
gins. 

5.2.9.3 NON-MASKABLE INTERRUPT REQUEST 
(NMI) 

This input indicates a request for interrupt service, 
which cannot be masked by software. The non­
maskable interrupt request is always processed ac­
cording to the pointer or gate in slot 2 of the interrupt 
table. Because of the fixed NMI slot assignment, no 
interrupt acknowledge cycles are perfomed when 
processing NMI. 

NMI is rising edge-sensitive and is allowed to be 
asynchronous to the CLK2 signal. To assure recog­
nition of NMI, it must be negated for at least eight 
CLK2 periods, and then be asserted for at least 
eight CLK2 periods. 

Once NMI processing has begun, no additional 
NMI's are processed until after the next IRET in­
struction, which is typically the end of the NMI serv­
ice routine. If NMI is re-asserted prior to that time, 
however, one rising edge on NMI will be remem­
bered for processing after executing the next. IRET 
instruction. 

5.2.9.4 RESET (RESET) 

This input signal suspends any operation in progress 
and places the 80386 in a known reset state. The 
80386 is reset by asserting RESET for 15 or more 
CLK2 periods (80 or more CLK2 periods before re­
questing self test). When RESET is asserted, all oth­
er input pins are ignored, and all other bus pins are 
driven to an idle bus state as shown in Table 5-3. If 
RESET and HOLD are both asserted at a point in 
time, RESET takes priority even if the 80386 was in 
a Hold Acknowledge state prior to RESET asserted. 

RESET is level-sensitive and must be synchronous 
to the CLK2 signal. If desired, the phase of the inter­
nal processor clock, and the entire 80386 state can 
be completely synchronized to external circuitry by 
ensuring the RESET signal falling edge meets its ap­
plicable setup and hold times, t25 and t26' 

Table 5-3. Pin State (Bus Idle) During Reset 

Pin Name Signal Level During Reset 

AOS# High 
00-031 High Impedance 
BEO#-BE3# Low 
A2-A31 High 
W/R# Low 
O/C# High 
M/IO# Low 
LOCK# High 
HLOA Low 
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5.2.10 Signal Summary 

Table 5-4 summarizes the characteristics of all 80386 signals. 

Table 5-4_ 80386 Signal Summary 

Signal Name Signal Function 

CLK2 Clock 

00-031 Data Bus 

BEO#-BE3# Byte Enables 

A2-A31 Address Bus 

W/R# Write-Read Indication 

OfC# Data-Control Indication 

M/IO# Memory-I/O Indication 

LOCK# Bus Lock Indication 

ADS# Address Status 

NA# Next Address Request 

BS16# Bus Size 16 

REAOY# Transfer Acknowledge 

HOLD Bus Hold Request 

HLOA Bus Hold Acknowledge 

PEREO Coprocessor Request 

BUSY# Coprocessor Busy 

ERROR# Coprocessor Error 

INTR Maskable Interrupt Request 

NMI Non-Maskable Intrpt Request 

RESET Reset 

5.3 BUS TRANSFER MECHANISM 

5.3.1 Introduction 

All data transfers occur as a result of one or more 
bus cycles. Logical data operands of byte, word and 
double-word lengths may be transferred without re­
strictions on physical address alignment. Any byte 
boundary may be used, although two or even three 
physical bus cycles are performed as required for 
unaligned operand transfers. See 5_3.4 Dynamic 
Data Bus Sizing and 5,3.6 Operand Alignment. 

Input 
Output 

Active Input! Synch or 
High Impedance 

State Output Asynch 
During HLDA? 

toCLK2 

- I - -
High 1/0 S Yes 

Low 0 - Yes 

High 0 - Yes 

High 0 - Yes 

High 0 - Yes 

High 0 - Yes 

Low 0 - Yes 

Low a - Yes 

Low I S -

Low I S -
Low I S -
High I S -

High a - No 

High I A -
Low I A -

Low I A -
High I A -
High I A -
High I S -

The 80386 address signals are designed to simplify 
external system hardware. Higher-order address bits 
are provided by A2-A31. Lower-order address in the 
form of BEO# -BE3# directly provides linear selects 
for the four bytes of the 32-bit data bus. Physical 
operand size information is thereby implicitly provid­
ed each bus cycle in the most usable form. 
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Byte Enable outputs BEO#-BE3# are asserted 
when their associated data bus bytes are involved 
with the present bus cycle, as listed in Table 5-5. 
During a bus cycle, any possible pattern of contigu­
ous, asserted Byte Enable outputs can occur, but 
never patterns having a negated Byte Enable sepa­
rating two or three asserted Enables. 
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Address bits AO and A1 of the physical operand's 
base address can be created when necessary (for 
instance, for Multibus I or Multibus II interface), as a 
function of the lowest-order asserted Byte Enable. 
This is shown by Table 5-6. Logic to generate AO 
and A 1 is given by Figure 5-3. 

Table 5-5. Byte Enables and Associated 
Data and Operand Bytes 

Byte Enable Signal Associated Data Bus Signals 

BEO# 00-07 (byte O-Ieast significant) 

BE1# 08-015 (byte 1) 

BE2# 016-023 (byte 2) 

BE3# 024-031 (byte 3-most significant) 

BEO# 
L H 

L x (HI L L 
L 

A31 

A31 

A31 

A31 

A31 

A31 

Table 5-6. Generating AO-A31 from 
BEO#-BE3# and A2-A31 

80386 Address Signals 

......... A2 BE3# BE2# BE1# 

Physical Base 

Address 

" ....... A2 A1 AO 

......... A2 0 0 X X X 

....... ,' A2 0 1 X X Low 

......... A2 1 0 X Low High 

......... A2 1 1 Low High High 

L x 
BE2# 

L L 
H 

H L 

x L 
H 

BEO# 
~~ BE3#~ 

x x H) x L 

L H L 

BE1# 
231630-3 

K - Map for A 1 Signal 

BEO# 
L H 

L x L H L 
L 

L x L H 
H 

L L x H 
BE2# BE3# 

H 
x x H x L 

L H L 

BE1# 
231630-4 

K - Map for AO Signal 

BEO# 

Low 

High 

High 

High 

Figure 5-3. Logic to Generate AO, A1 from BEO#-BE3# 

Each bus cycle is composed of at least two bus 
states. Each bus state requires one processor clock 
period. Additional bus states added to a single bus 
cycle are called wait states. See 5.4 Bus Functional 
Description. 

Since a bus cycle requires a minimum of two bus 
states (equal to two processor clock periods), data 
can be transferred between external devices and 
the 80386 at a maximum rate of one 4-byte Dword 
every two processor clock periods, for a maximum 
bus bandwidth of 32 megabytes/second (80386-16 
operating at 16 MHz processor clock rate). 
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5.3.2 Memory and 1/0 Spaces 

Bus cycles may access physical memory space or 
I/O space. Peripheral devices in the system may ei­
ther be memory-mapped, or I/O-mapped, or both. 
As shown in Figure 5-4, physical memory addresses 
range from OOOOOOOOH to FFFFFFFFH (4 gigabytes) 
and I/O addresses from OOOOOOOOH to OOOOFFFFH 
(64 kilobytes) for programmed I/O. Note the I/O ad­
dresses used by the automatic I/O cycles for co­
processor communication are 800000F8H to 
800000FFH, beyond the address range of pro­
grammed I/O, to allow easy generation of a coproc­
essor chip select signal using the A31 and M/IO# 
Signals. 
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rrrrrrrrH ...---.., 

~1%. ~~ 
W/ ~ PHYSICAL 

MEMORY ~ggggg~~~ I ------:+- COPROCESSOR 
(NOTE 1) W : (80387 OR 80287) 4GBYTE 

V@ 
/NOT / ), 

I ACCESSIBLE. 

~ 
OOOOrrrrH EJ } ACCESSIBLE 

64 kBYTE PROGRAMMED 
OOOOOOOOH I/O SPACE OOOOOOOOH 1..-__ ...1 

231630-5 
Physical Memory Space 1/0 Space 

NOTE: 
Since A31 is HIGH during automatic communication with coprocessor, A31 HIGH and M/IO# LOW can be used to 
easily generate a coprocessor select signal. 

Figure 5-4. Physical Memory and I/O Spaces 

5.3.3 Memory and 110 Organization 

The 80386 datapath to memory and I/O spaces can 
be 32 bits wide or 16 bits wide. When 32-bits wide, 
memory and I/O spaces are organized naturally as 
arrays of physical 32-bit Owords. Each memory or 
I/O Oword has four individually addressable bytes at 
consecutive byte addresses. The lowest-addressed 
byte is associated with data signals 00-07; the 
highest-addressed byte with 024-031. 

The 80386 includes a bus control input, B816#, that 
also allows direct connection to 16-bit memory or 
110 spaces organized as a sequence of 16-bit 
words. Cycles to 32-bit and 16-bit memory or I/O 
devices may occur in any sequence, since the 
B816# control is sampled during each bus cycle. 
8ee 5.3.4 DynamiC Data Bus Sizing. The Byte En­
able signals, BEO # - BE3 #, allow byte granularity 
when addressing any memory or I/O structure, 
whether 32 or 16 bits wide. 

5.3.4 Dynamic Data Bus Sizing 

Dynamic data bus sizing is a feature allowing direct 
processor connection to 32-bit or 16-bit data buses 
for memory or I/O. A single processor may connect 
to both size buses. Transfers to or from 32- or 16-bit 
ports are supported by dynamically determining the 
bus width during each bus cycle. During each bus 
cycle an address decoding circuit or the slave de-
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vice itself may assert B816 # for 16-bit ports, or ne­
gate B816 # for 32-bit ports. 

With B816 # asserted, the processor automatically 
converts operand transfers larger than 16 bits, or 
misaligned 16-bit transfers, into two or three trans­
fers as required. All operand transfers physically oc­
cur on 00-015 when B816# is asserted. There­
fore, 16-bit memories or I/O devices only connect 
on data signals 00-015. No extra transceivers are 
required. 

Asserting B816# only affects the processor when 
BE2# and/or BE3# are asserted during the current 
cycle. If only 00-015 are involved with the transfer, 
asserting B8 16 # has no affect since the transfer 
can proceed normally over a 16-bit bus whether 
B816# is asserted or not. In other words, asserting 
B816# has no effect when only the lower half of the 
bus is involved with the current cycle. 

There are two types of situations where the proces­
sor is affected by asserting B816#, depending on 
which Byte Enables are asserted during the current 
bus cycle: 

Upper Half Only: 
Only BE2# and/or BE3# asserted. 

Upper and Lower Half: 
At least BE1 #, BE2# asserted (and perhaps 
also BEO# and/or BE3#). 
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Effect of asserting B516# during "upper half only" 
read cycles: 

Asserting B516# during "upper half only" reads 
causes the 80386 to read data on the lower 16 
bits of the data bus and ignore data on the upper 
16 bits of the data bus. Oata that would have been 
read from 016-031 (as indicated by BE2# and 
BE3 #) will instead be read from 00-015 respec­
tively. 

Effect of asserting B516# during "upper half only" 
write cycles: 

Asserting B516# during "upper half only" writes 
does not affect the 80386. When only BE2 # 
and/or BE3# are asserted during a write cycle 
the 80386 always duplicates data signals 
016-031 onto 00-015 (see Table 5-1). There­
fore, no further 80386 action is required to per­
form these writes on 32-bit or 16-bit buses. 

Effect of asserting B516# during "upper and lower 
half" read cycles: 

Asserting B516# during "upper and lower half" 
reads causes the processor to perform two 16-bit 
read cycles for complete physical operand trans­
fer. Bytes 0 and 1 (as indicated by BEO# and 
BE1 #) are read on the first cycle using 00-015. 
Bytes 2 and 3 (as indicated by BE2# and BE3#) 
are read during the second cycle, again using 
00-015. 016-031 are ignored during both 16-bit 
cycles. BEO# and BE1 # are always negated dur­
ing the second 16-bit cycle (5ee Figure 5-14, cy­
cles 2 and 2a). 

Effect of asserting B516# during "upper and lower 
half" write cycles: 

Asserting B516# during "upper and lower half" 
writes causes the 80386 to perform two 16-bit 
write cycles for complete physical operand trans­
fer. All bytes are available the first write cycle al­
lowing external hardware to receive Bytes 0 and 1 
(as indicated by BEO# and BE1 #) using 00-015. 
On the second cycle the 80386 duplicates Bytes 2 
and 3 on 00-015 and Bytes 2 and 3 (as indicated 
by BE2# and BE3#) are written using 00-015. 
BEO# and BE1 # are always negated during the 
second 16-bit cycle. B516# must be asserted 
during the second 16-bit cycle. See Figure 5-14, 
cycles 1 and 1a. 

5.3.5 Interfacing with 32- and 16-Bit 
Memories 

In 32-bit-wide physical memories such as Figure 5-5, 
each physical Oword begins at a byte address that is 
a multiple of 4. A2-A31 are directly used as a Oword 
select and BEO#-BE3# as byte selects. B516# is 
negated for all bus cycles involving the 32-bit array. 

When 16-bit-wide physical arrays are included in the 
system, as in Figure 5-6, each 16-bit physical word 
begins at a address that is a multiple of 2. Note the 
address is decoded, to assert B516# only during 
bus cycles involving the 16-bit array. (If desiring to use 

32 DATA BUS (00-031) 

80386 ADDRESS BUS (BEO#-BE3#,A2-A31) 

iBS16 # 

"HIGH" 

32-BIT 
MEMORY 

Figure 5-5. 80386 with 32-Bit Memory 

DATA BUS (00-031) 

ADDRESS BUS 

(BEO#-BE3#, A2-A31) 

16 DATA BUS (00-015) 

Figure 5-6. 80386 with 32-Bit and 16-Bit Memory 
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231630-6 

231630-7 
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pipelined address with 16-bit memories then BEO # -
BE3 # and W IR # are also decoded to determine 
when BS16# should be asserted. See 5.4.3.7 Maxi­
mum Pipelined Address Usage with 16-Bit Bus 
Size.) 

A2-A31 are directly usable for addressing 32-bit 
and 16-bit devices. To address 16-bit devices, A1 
and two byte enable signals are also needed. 

To generate an A1 signal and two Byte Enable sig­
nals for 16-bit access, BEO#-BE3# should be de­
coded as in Table 5-7. Note certain combinations of 
BEO#-BE3# are never generated by the 80386, 
leading to "don't care" conditions in the decoder. 
Any BEO#-BE3# decoder, such as Figure 5-7, may 
use the non-occurring BEO#-BE3# combinations 
to its best advantage. 

5.3.6 Operand Alignment 

With the flexibility of memory addressing on the 
80386, it is possible to transfer a logical operand 
that spans more than one physical Oword or word of 
memory or 110. Examples are 32-bit Oword oper­
ands beginning at addresses not evenly divisible by 

4, or a 16-bit word operand split between two physi­
cal Owords of the memory array. 

Operand alignment and data bus size dictate when 
multiple bus cycles are required. Table 5-8 describes 
the transfer cycles generated for all combinations of 
logical operand lengths, alignment, and data bus siz­
ing. When multiple bus cycles are required to trans­
fer a multi-byte logical operand, the highest-order 
bytes are transferred first (but if BS16 # asserted 
requires two 16-bit cycles be performed, that part of 
the transfer is low-order first). 

5.4 BUS FUNCTIONAL DESCRIPTION 

5.4.1 Introduction 

The 80386 has separate, parallel buses for data and 
address. The data bus is 32-bits in width, and bidi­
rectional. The address bus provides a 32-bit value 
using 30 signals for the 30 upper-order address bits 
and 4 Byte Enable signals to directly indicate the 
active bytes. These buses are interpreted and con­
trolled via several associated definition or control 
signals. 

Table 5-7. Generating A1, BHE# and BLE# for Addressing 16-Bit Devices 

80386 Signals 16-Bit Bus Signals 
Comments 

BE3# BE2# BE1# BEO# A1 BHE# BLE# (AD) 

H* H* H* H* x x x x-no active bytes 
H H H L L H L 
H H L H L L H 
H H L L L L L 
H L H H H H L 
H* L* H* L* x x x x-not contiguous bytes 
H L L H L L H 
H L L L L L L 
L H H H H L H 
L* H* H* L* x x x x-not contiguous bytes 
L* H* L* H* x x x x-not contiguous bytes 
L* H* L* L* x x x x-not contiguous bytes 
L L H H H L L 
L* L* H* L* x x x x-not continguous bytes 
L L L H L L H 
L L L L L L L 

BLE # asserted when 00-07 of 16-bit bus is active. 
BHE# asserted when 08-015 of 16-bit bus is active. 
A 1 low for all even words; A 1 high for all odd words. 

Key: 
x = don't care 
H = high voltage level 
L = low voltage level 
* = a non-occurring pattern of Byte Enables; either none are asserted, 

or the pattern has Byte Enables asserted for non-contiguous bytes 
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8EO# 
L H 

L x Ii L L 

8E2# 
L 

L x H L 
H 

L L ;( L 
H 

H x x x L 

[~A1 
8E3# 8E1# ----

8EO# 

L H L 
8E1# 

231630-8 
K-map for A 1 signal (same as Figure 5-3) 

8EO# 
L H 

L x L L L 

8E2# 
L 

L x H L 

H 
H 

L ·x L 
H 

[~8HE 
8[3# 8E3# 

--,,--~ 

8E1# 

x x L x L 

L H L 
8E1# 

231630-9 
K-map for 16-bit SHE # signal 

8EO# 
L H 

L x L H L 
L 

H L x L 
8LE# (OR AO) 

8E2# H 
L L X· H 

8E3# 
H 

x x H .x L 

L H L 

8E1# 
231630-10 

K-map for 16-bit SLE # signal (same as AO signal in Figure 5-3) 

Figure 5-7. Logic to Generate A1, BHE# and BLE# for 16-Bit Buses 

Table 5-8. Transfer Bus Cycles for Bytes, Words and Dwords 

Byte-Length of Logical Operand 

1 2 4 

Physical Byte Address xx 00 01 10 11 00 01 10 11 
-in Memory (low-order bits) 

Transfer Cycles over b w w w hb,* d hb hw, h3, 
32-Bit Data Bus Ib 13 Iw Ib 

Transfer Cycles over b w Ib, w li,'\~~; .. ' Ivv, hb, hw, my", 
16-Bit Data Bus hb· •. ... hw Ib, Iw hb; 

. JllVi Ib 

Key: b = byte transfer 3 = 3-byte transfer 
w = word transfer d = Dword transfer 
I = low-order portion h = high-order portion 
m = mid-order portion 
x = don't care 

= B516# asserted causes second bus cycle 
'For this case, 8086, 88, 186, 188, 286 transfer Ib first, then hb. 
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The definition of each bus cycle is given by three 
definition signals: M/IO#, W/R# and D/C#. At the 
same time, a valid address is present on the byte 
enable signals BEO # -BE3 # and other address sig­
nals A2-A31. A status signal, ADS#, indicates 
when the 80386 issues a new bus cycle definition 
and address. 

Collectively, the address bus, data bus and all asso­
ciated control signals are referred to simply as "the 
bus". 

When active, the bus performs one of the bus cycles 
below: 

1) read from memory space 

2) locked read from memory space 

3) write to memory space 

4) locked write to memory space 

5) read from 1/0 space (or coprocessor) 

6) write to 1/0 space (or coprocessor) 

7) interrupt acknowledge 

8) indicate halt, or indicate shutdown 

CYCLE 1 
NON-PIPELINED 

(READ) 

Table 5-2 shows the encoding of the bus cycle defi­
nition signals for each bus cycle. See section 5.2.5 
Bus Cycle Definition. 

The data bus has a dynamic sizing feature support­
ing 32- and 16-bit bus size. Data bus size is indicated 
to the 80386 using its Bus Size 16 (BS16#) input. All 
bus functions can be performed with either data bus 
size. 

When the 80386 bus is not performing one of the 
activities listed above, it is either Idle or in the Hold 
Acknowledge state, which may be detected by ex­
ternal circuitry. The idle state can be identified by the 
80386 giving no further assertions on its address 
strobe output (ADS#) since the beginning of its 
most recent bus cycle, and the most recent bus cy­
cle has been terminated. The hold acknowledge 
state is identified by the 80386 asserting its hold ac­
knowledge (HLDA) output. 

The shortest time unit of bus activity is a bus state. A 
bus state is one processor clock period (two CLK2 
periods) in duration. A complete data transfer occurs 
during a bus cycle, composed of two or more bus 
states. 

CYCLE 2 
NON-PIPELINED 

(READ) 

CYCLE 3 
NON-PIPELINED 

(READ) 

T1 T2 T1 T2 T1 T2 

CLK2 [ 
(INPUT) 

8EO#-8E3#, A2-A31, [ 
M/IO#, D/C#, WjR# 

(OUTPUTS) 

ADS# [ 
(OUTPUT) 

NA# [ 
(INPUT) 

READY# [ 
(INPUT) 

LOCK# [ 
(OUTPUT) 

00-031 [ 
(INPUT DURING READ) 

.p1 1.p2 .p1 1.p2 .p1 1.p2 .p1 1.p2 .p1 1.p2 .p1 1.p2 .p1 

Fastest non·pipelined bus cycles consist of T1 and T2 

Figure 5·8. Fastest Read Cycles with Non·Pipelined Address Timing 
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The fastest 80386 bus cycle requires only two bus 
states. For example, three consecutive bus read cy­
cles, each consisting of two bus states, are shown 
by Figure 5-8. The bus states in each cycle are 
named T1 and T2. Any memory or 1/0 address may 
be accessed by such a two-state bus cycle, if the 
external hardware is fast enough. The high-band­
width, two-clock bus cycle realizes the full potential 
of fast main memory, or cache memory. 

Every bus cycle continues until it is acknowledged 
by the external system hardware, using the 80386 
READY # input. Acknowledging the bus cycle at the 
end of the first T2 results in the shortest bus cycle, 
requiring only T1 and T2. If READY # is not immedi­
ately asserted, however, T2 states are repeated in­
definitely until the READY # input is sampled assert­
ed. 

5.4.2 Address Pipelining 

The address pipelining option provides a choice of 
bus cycle timings. Pipelined or non-pipelined ad­
dress timing is selectable on a cycle-by-cycle basis 
with the Next Address (NA#) input. 

CLK2[ 
(INPUT) 

BED#-BE3#.A2-A31. [ 
M/IO#. D/C#. W/R# 

(OUTPUTS) 

ADS#[ 
(OUTPUT) 

NA# [ 
(INPUT) 

READY# [ 
(INPUT) 

LOCK# [ 
(OUTPUT) 

00-031 [ 
(INPUT DURING READ) 

CYCLE 1 
PIPELINED 

(READ) 

T1P T2P 

When address pipelining is not selected, the current 
address and bus cycle definition remain stable 
throughout the bus cycle. 

When address pipelining is selected, the address 
(BEO#-BE3#, A2-A31) and definition (W/R#, 
D/C# and M/IO#) of the next cycle are available 
before the end of the current cycle. To signal their 
availability, the 80386 address status output (ADS#) 
is also asserted. Figure 5-9 illustrates the fastest 
read cycles with pipe lined address timing. 

Note from Figure 5-9 the fastest bus cycles using 
pipelined address require only two bus states, 
named T1P and T2P. Therefore cycles with pipe­
lined address timing allow the same data bandwidth 
as non-pipelined cycles, but address-to-data access 
time is increased compared to that of a non-pipe­
lined cycle. 

By increasing the address-to-data access time, pipe­
lined address timing reduces wait state require­
ments. For example, if one wait state is required with 
non-pipelined address timing, no wait states would 
be required with pipelined address. 

CYCLE 2 
PIPELINED 

(READ) 

T1P T2P 

CYCLE 3 
PIPELINED 

(READ) 

T1P T2P 

Fastest pipelined bus cycles consist of T1 P and T2P 
231630-12 

Figure 5·9. Fastest Read Cycles with Pipelined Address Timing 
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Pipelined address timing is useful in typical systems 
having address latches. In those systems, once an 
address has been latched, pipelined availability of 
the next address allows decoding circuitry to gener­
ate chip selects (and other necessary select signals) 
in advance, so selected devices are accessed im­
mediately when the next cycle begins. In other 
words, the decode time for the next cycle can be 
overlapped with the end of the current cycle. 

If a system contains a memory structure of two or 
more interleaved memory banks, pipelined address 
timing potentially allows even more overlap of activi­
ty. This is true when the interleaved memory control­
ler is designed to allow the next memory operation 

TWO-BANK INTERLEAVED MEMORY 
a) Address signal A2 selects bank 

b) 32-bit datapath to each bank 

FOUR-BANK INTERLEAVED MEMORY 

a) Address signals A3 and A2 select bank 

b) 32-bit datapath to each bank 

to begin in one memory bank while the current bus 
cycle is still activating another memory bank. Figure 
5-10 shows the general structure of the 80386 with 
2-bank and 4-bank interleaved memory. Note each 
memory bank of the interleaved memory has full 
data bus width (32-bit data width typically, unless 16-
bit bus size is selected). 

Further details of pipelined address timing are given 
in 5.4.3.4 Pipelined Address, 5.4.3.5 Initiating and 
Maintaining Pipelined Address, 5.4.3.6 Pipelined 
Address with Dynamic Bus Sizing, and 5.4.3.7 
Maximum Pipelined Address Usage with 16-Bit 
Bus Size. 

231630-13 

231630-14 

Figure 5-10. 2-Bank and 4-Bank Interleaved Memory Structure 
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5.4.3 Read and Write Cycles 

5.4.3.1 INTRODUCTION 

Data transfers occur as a result of bus cycles, classi­
fied as read or write cycles. During read cycles, data 
is transferred from an external device to the proces­
sor. During write cycles data is transferred in the oth­
er direction, from the processor to an external de­
vice. 

Two choices of address timing are dynamically se­
lectable: non-pipe lined, or pipe lined. After a bus idle 
state, the processor always uses non-pipelined ~d­
dress timing. However, the NA# (Next Address) in­
put may be asserted to select pipelined address tim­
ing for the next bus cycle. When pipelining is select­
ed and the 80386 has a bus request pending inter­
nally, the address and definition of the next cycle !s 
made available even before the current bus cycle IS 

acknowledged by READY#. Generally, the NA# in­
put is sampled each bus cycle to select the desired 
address timing for the next bus cycle. 

Two choices of physical data bus width are dynami­
cally selectable: 32 bits, or 16 bits. Generally, the 
B816# (Bus 8ize 16) input is sampled near the end 
of the bus cycle to confirm the physical data bus size 
applicable to the current cycle. Negation of B816# 
indicates a 32-bit size, and assertion indicates a 16-
bit bus size. 

If 16-bit bus size is indicated, the 80386 automatical­
ly responds as required to complete the transfer on 
a 16-bit data bus. Depending on the size and align­
ment of the operand, another 16-bit bus cycle may 
be required. Table 5-7 provides all details. When 
necessary, the 80386 performs an additional 16-bit 
bus cycle, using 00-015 in place of 016-031. 

Terminating a read cycle or write cycle, like any bus 
cycle, requires acknowledging the cycle by asserting 
the READY # input. Until acknowledged, the proces­
sor inserts wait states into the bus cycle, to allow 
adjustment for the speed of any external device. Ex­
ternal hardware, which has decoded the address 
and bus cycle type asserts the READY # input at the 
appropriate time. 

IDLE 
[

CYCLE 1 
NON-PIPELINED 

(WRITE) 

CYCLE 2 [ 
NON-PIPELINED 

(READ) 

CYCLE 3 [IDLE [ CYCLE 4 [IDLE [ 
NON-PIPELINED NON-PIPELINED 

(WRITE) (READ) 

ClK2 [ 

(82384 ClK) [ 

BED #-BE3 # [ 
A2- A31, 

M/IO#,O/C# 

Ti 

W/R# [ ~~9' 

ADS# [ 

READY # [ 

00- 031 [ 

T1 T2 T1 T2 T1 T2 Ti T1 T2 Ti 

231630-15 
Idle states are shown here for diagram variety only. Write cycles are not always fallowed by an idle state. An active bus cycle can immediately 
follow the write cycle. 

Figure 5-11. Various Bus Cycles and Idle States with Non-Pipelined Address (zero wait states) 
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At the end of the second bus state within the bus 
cycle, READY # is sampled. At that time, if external 
hardware acknowledges the bus cycle by asserting 
READY #, the bus cycle terminates as shown in Fig­
ure 5-11. If READY # is negated as in Figure 5-12, 
the cycle continues another bus state (a wait state) 
and READY # is sampled again at the end of that 
state. This continues indefinitely until the cycle is ac­
knowledged by READY # asserted. 

When the current cycle is acknowledged, the 80386 
terminates it. When a read cycle is acknowledged, 
the 80386 latches the information present at its data 
pins. When a write cycle is acknowledged, the 
80386 write data remains valid throughout phase 
one of the next bus state, to provide write data hold 
time. 

5.4.3.2 NON-PIPELINED ADDRESS 

Any bus cycle may be performed with non-pipelined 
address timing. For example, Figure 5-11 shows a 
mixture of read and write cycles with non-pipe lined 

address timing. Figure 5-11 shows the fastest possi­
ble cycles with non-pipelined address have two bus 
states per bus cycle. The states are named T1 and 
T2. In phase one of the T1, the address signals and 
bus cycle definition signals are driven valid, and to 
signal their availability, address status (ADS#) is 
simultaneously asserted. 

During read or write cycles, the data bus behaves as 
follows. If the cycle is a read, the 80386 floats its 
data signals to allow driving by the external device 
being addressed. If the cycle is a write, data signals 
are driven by the 80386 beginning in phase two of 
T1 until phase one of the bus state following cycle 
acknowledgment. 

Figure 5-12 illustrates non-pipelined bus cycles with 
one wait added to cycles 2 and 3. READY# is sam­
pled negated at the end of the first T2 in cycles 2 
and 3. Therefore cycles 2 and 3 have T2 repeated. 
At the end of the second T2, READY # is sampled 
asserted. 

IDLE I CYCLE 1 I 
NON-PIPElINED 

(READ) 

CYCLE 2 
NON-PIPELINED 

(WRITE) 

CYCLE 3 
NON-PIPELINED 

(READ) 

n Tl T2 T1 T2 T2 n T1 T2 T2 Ti 

ClK2 [ -rut rut rut rut il..fl ilJl.. nn. nn rut 1.fl rut 
(82384 elK) [ 

8EO#-8El # [ 
A2-A31. 

M/IO N,D/CN 

W/R# [ 

ADSN [ 

NA# [ 

8516 # [ 

READYN [ 

lOCK # [ 

00- 031 [ 

-V V V V \J \J \f V \J \J V 
X XX IX VALID 1 IX VALID 2 XXXXX VALID 3 IXXXX 

XXXI), / ,,(XXXIX. ~ 

i'-r-"-.-1 ~/ 

IXXX IX XXX XXXX XXXXy "( XXX XX IXXX ~XXXX IXXXX 
52-BIT 52-BIT 52-BIT 

BuStZE BUStZE BUStZE 

XIXXXX IXXXXY ~XXXX xXXX rY "(IXXXX IXXX)( XXXXrY '<~ 

XXXXX IXXXX XXA .(XX IXXY ~ .(XX IXXXX XXrY ~ n:x 
END CYCLE 1 END CYCLE 2 END CYCLE 3 

XX VALID 1 IX VALID 2 IXXX VALID 3 IXXXX 

. ----------~--¢< OUT }--------- ---- --¢---
231630-16 

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can immediately 
follow the write cycle. 

Figure 5·12. Various Bus Cycles and Idle States with Non-Pipelined Address 
(various number of wait states) 
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HOLD ASSERTED 

REQUEST PENDING. 
HOLD NEGATED 

Bus States: 

ALWAYS 

READY# ASSERTED' 
HOLD NEGATED' 

REQUEST PENDING 

READY# NEGATED' 
NA# NEGATED 

Tl-first clock of a non-pipelined bus cycle (80386 drives new address and asserts ADS#) 
T2-subsequent clocks of a bus cycle when NA # has not been sampled asserted in the current bus cycle 

231630-17 

Ti- idle state 
Th-hold acknowledge state (80386 asserts HLDA) 
The fastest bus cycle consists of two states: Tl and T2. 
Four basic bus states describe bus operation when not using pipelined address. These states do include 8S16 # usage for 32-bit and 16-bit 
bus size. If asserting 8S16# requires a second 16-bit bus cycle to be performed, it is performed before HOLD asserted is acknowledged. 

Figure 5-13_ 80386 Bus States (not usIng pipelined address) 

When address pipelining is not used, the address 
and bus cycle definition remain valid during all wait 
states. When wait states are added and you desire 
to maintain non-pipelined address timing, it is neces­
sary to negate NA# during each T2 state except the 
last one, as shown in Figure 5-12 cycles 2 and 3. If 
NA# is sampled asserted during a T2 other than the 
last one, the next state would be T21 (for pipe lined 
address) or T2P (for pipelined address) instead of 
another T2 (for non-pipelined address). 

When address pipelining is not used, the bus states 
and transitions are completely illustrated by Figure 
5-13. The bus transitions between four possible 
states: T1, T2, Ti, and Th. Bus cycles consist of T1 
and T2, with T2 being repeated for wait states. Oth­
erwise, the bus may be idle, in the Ti state, or in hold 
acknowledge, the Th state. 

When address pipelining is not used, the bus state 
diagram is as shown in Figure 5-13. When the bus is 
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idle it is in state Ti. Bus cycles always begin with T1. 
T1 always leads to T2. If a bus cycle is not acknowl­
edged during T2 and NA# is negated, T2 is repeat­
ed. When a cycle is acknowledged during T2, the 
following state will be T1 of the next bus cycle if a 
bus request is pending internally, or Ti if there is no 
bus request pending, or Th if the HOLD input is be­
ing asserted. 

The bus state diagram in Figure 5-13 also applies to 
the use of B516#. If the B03B6 makes internal ad­
justments for 16-bit bus size, the adjustments do not 
affect the external bus states. If an additional 16-bit 
bus cycle is required to complete a transfer on a 16-
bit bus, it also follows the state transitions shown in 
Figure 5-13. 

Use of pipe lined address allows the 803B6 to enter 
three additional bus states not shown in Figure 5-13. 
Figure 5-20 in 5.4.3.4 Pipelined Address is the 
complete bus state diagram, including pipelined ad­
dress cycles. 
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5.4.3.3 NON·PIPELINED ADDRESS WITH 
DYNAMIC DATA BUS SIZING 

The physical data bus width for any non-pipelined 
bus cycle can be either 32-bits or 16-bits. At the 
beginning of the bus cycle, the processor behaves 
as if the data bus is 32-bits wide. When the bus cy­
cle is acknowledged, by asserting READY # at the 
end of a T2 state, the most recent sampling of 
8S16# determines the data bus size for the cycle 
being acknowledged. If 8S16# was most recently 
negated, the physical data bus size is defined as 

32 bits. If 8S16# was most recently asserted, the 
size is defined as 16 bits. 

When 8S 16 # is asserted and two 16-bit bus cycles 
are required to complete the transfer, 8S16# must 
be asserted during the second cycle; 16-bit bus size 
is not assumed. Like any bus cycle, the second 16-
bit cycle must be acknowledged by asserting 
READY#. 

When a second 16-bit bus cycle is required to com­
plete the transfer over a 16-bit bus, the addresses 

A TRANSFER REQUIRING TWO 
CYCLES ON 16-BIT DATA BUS 

A TRANSFER REQUIRING TWO 
CYCLES ON 16-BIT DATA BUS 

CLK2 [ 

(82384 CLK) [ 
BEO#,BEl # [ 
BE2 # ,BE3 # [ A2- A31. 

M/IO#.D/C# 

W/R# [ 

ADS # [ 

NA# [ 

BS16 # [ 

READY # [ 
LOCK# [ 

00- 015 [ 

IDLE 

Ti 

CYCLE 1 tCYCLE 1 A 
NON-PIPELINED NON-PIPELINED 

(WRITE WRITE) 
PART ONE PART TWO 

T1 T2 T1 T2 

CYCLE 2 TCYCLE 2A 
NON-PIPELINED NON-PIPELINED 

(READ READ) 
PART ONE PART TWO 

T1 T2 T1 T2 

IDLE 

Ti 

016-031 [ • -------<:t==~O~U~T~==t=) 
IGNORED IGNORED 

--0-- ---0---
Key: Dn ~ physical data pin n 

dn ~ logical data bit n 

I I 

Figure 5·14; Asserting BS16# (zero wait states, non·pipelined address) 
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IDLE 

Ti 

CLK2 [ -M 
(82384 CLK) [ 

-V 

80386 

A TRANSFER REQUIRING TWO 
CYCLES ON 16-81T DATA BUS 

CYCLE 1 CYCLE 1 A 
NON-PIPELINED NON-PIPELINED 

(READ ----!---READ) 
PART ONE PART TWO 

T1 T2 T 2 T I T2 T2 

nIL M rm rtJl nIL nIL 
V V V V V V 

CYCLE 2 
NON-PIPELINED 

(WRITE) 

T1 T2 T2 

nIL rtJl nIL 
V V V 

8EO #. 8El # [ 

[ 

XIXXXXX VALID I I NEGATED DURING i\ VALID 2 
PART TWO 

8E2 #. 8E3 # 
A2- A31. 

M/IO#. D/C# 

W/R# [ 

ADS# [ 

J.lXX.X) X 

~ ~ 

LV 

I 

VALID I VALID 2 

/ 

"---I "---V 
N TE: NA# MUST BE NEGATED 

HERE TO ALLOW RECOGNITION 
OF ASSERTED BSI6# IN FINAL T2 

NA# [ XIXXXX ,XXXXY '< X~~~~ DOO()(¥ 'X ~~~~~{ XXXX rY '( XXX 
~ 

BUS ~ZE 

BSI6# [ )[XXX :XX'x XXX X ).. " IXXXX wOO< ~ J, XXX XXX '1/ '\ 
16-BIT 16-81T 

BUS SIZE BUS SIZE 

READY # [ ) XXX) DOOC <XI ~ I IX) 'XY ~I IX 'XI ~ 
LOCK# [ )( Y.'J.'X'J. ~ VALID I VALID 2 

dO-dl5 d16-d31 dO-dl5 

DO- D15 [ - ---- ---- --- --0-- --- --0< OUT 

IGNORED IGNORED d16-d31 

D16- D31 [ - ---- ---- --_. --0-- --- --0 OUT 

Key: On = physical data pin n 
dn = logical data bit n 

I I I 
231630-19 

Figure 5-15. Asserting 8S16# (one wait state, non-pipelined address) 

generated for the two 16-bit bus cycles are closely 
related to each other. The addresses are the same 
except 8EO# and 8E1 # are always negated for the 
second cycle. This is because data on DO-D15 was 
already transferred during the first 16-bit cycle. 

Figures 5-14 and 5-15 show cases where assertion 
of 8816# requires a second 16-bit cycle for com­
plete operand transfer. Figure 5-14 illustrates cycles 
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without wait states. Figure 5-15 illustrates cycles 
with one wait state. In Figure 5-15 cycle 1, the bus 
cycle during which 8816# is asserted, note that 
NA# must be negated in the T2 state(s) prior to the 
last T2 state. This is to allow the recognition of 
8816# asserted in the final T2 state. The relation of 
NA# and 8816# is given fully in 5.4.3.4 Pipelined 
Address, but Figure 5-15 illustrates this only pre­
caution you need to know when using 8816# with 
non-pipelined address. 
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5.4.3.4 PIPELINED ADDRESS 

Address pipelining is the option of requesting the 
address and the bus cycle definition of the next, in­
ternally pending bus cycle before the current bus 
cycle is acknowledged with READY # asserted. 
AD5# is asserted by the 80386 when the next ad­
dress is issued. The address pipelining option is con­
trolled on a cycle-by-cycle basis with the NA # input 
signal. 

Once a bus cycle is in progress and the current ad­
dress has been valid for at least one entire bus 
state, the NA# input is sampled at the end of every 
phase one until the bus cycle is acknowledged. Dur­
ing non-pipelined bus cycles, therefore, NA# is 
sampled at the end of phase one in every T2. An 
example is Cycle 2 in Figure 5-16, during which NA # 
is sampled at the end of phase one of every T2 (it 
was asserted once during the first T2 and has no 
further effect during that bus cycle). 

If NA # is sampled asserted, the 80386 is free to 
drive the address and bus cycle definition of the next 
bus cycle, and assert ADS #, as soon as it has a bus 
request internally pending. It may drive the next ad­
dress as early as the next bus state, whether the 
current bus cycle is acknowledged at that time or 
not. 

Regarding the details of address pipelining, the 
80386 has the following characteristics: 

1) For NA# to be sampled asserted, 8516# must 
be negated at that sampling window (see Figure 
5-16 Cycles 3 and 4, and Figure 5-17 Cycles 2 
through 4). If NA# and 8516# are both sampled 
asserted during the last T2 period of a bus cycle, 
8516# asserted has priority. Therefore, if both 
are asserted, the current bus size is taken to be 
16 bits and the next address is not pipelined. Con­
ceptually, Figure 5-18 shows the internal 80386 
logic providing these characteristics. 

IDLE CYCLE 1 
NON-PIPELINED 

CYCLE 2 
NON-PIPELINED 

CYCLE 3 
PIPELINED 
(WRITE) 

CYCLE 4 
PIPELINED 

IDLE 

CLK2 [ 

(82384 CLK) [ 

n 

(WRITE) 

TI T2 TI 

(READ) (READ) 

T2 T2P TIP T2P TI P T21 n 

BEO # - BE3 # [ ~""""V'-::-::7.:"'7'""--1\ 
A2-A31, 

MilO #. DIC # '------f )---:---f' >-...,;;,,;::.:....~r)'~~~ 

W/R# [ 

AD5# [ 

B516# [ ~~..t::J.~~~~~~~ 

READY # [ ~UI..~"!I'-~UI!oLlil~""'~,+;s.,,)I 

00- 031 [ 

231630-20 
Following any idle bus state (Ti). addresses are non·pipelined. Within non·pipelined bus cycles. NA" is only sampled during wait states. 
Therefore. to begin address pipelining during a group of non·pipelined bus cycles requires a non'pipelined cycle with at least one wait state 
(Cycle 2 above). 

Figure 5-16. Transitioning to Pipelined Address During Burst of Bus Cycles 
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IDLE CYCLE 1 
NON-PIPELINED 

(WRITE) 

CYCLE 2 
PIPELINED 

(READ) 

CYCLE 3 
PIPELINED 
(WRITE) 

CYCLE 4 
PIPELINED 

(READ) 

IDLE 

Ti n T2 T2P np T2P n P T2P T1P T21 T21 Ti 

ClK2 [ 

(82384 ClK) [ 

BEO #- BD #' [ 
A2-A31, 

M/IO#, D/C# 

W /R # [ 44'..¥-l~.J( 

ADS# [ 

BS16 # [ 44~~~...l'-.lI...l>( 

READY # [ 44~~""''"''".lI...l/l-''''' 

DO- D31 [ 

231630-21 
Following any idle bus state (Ti) the address is always non-pipelined and NA# is only sampled during wait states. To start address pipelining 
after an idle state requires a non-pipelined cycle with at least one wait state (cycle 1 above). 
The pipelined cycles (2, 3, 4 above) are shown with various numbers of wait states. 

Figure 5-17. Fastest Transition to Pipelined Address Following Idle Bus State 

2) The next address may appear as early as the bus 
state after NA# was sampled asserted (see Fig­
ures 5-16 or 5-17). In that case, state T2P is en­
tered immediately_ However, when there is not an 
internal bus request already pending, the next ad­
dress will not be available immediately after NA# 
is asserted and T21 is entered instead of T2P (see 
Figure 5-19 Cycle 3)_ Provided the current bus cy­
cle isn't yet acknowledged by READY # asserted, 
T2P will be entered as soon as the 80386 does 
drive the next address. External hardware should 
therefore observe the AD8# output as confirma­
tion the next address is actually being driven on 
the bus. 

3) Once NA# is sampled asserted, the 80386 com­
mits itself to the highest priority bus request that 
is pending internally_ It can no longer perform an­
other 16-bit transfer to the same address should 
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8816# be asserted externally, so thereafter must 
assume the current bus size is 32 bits. Therefore 
if NA# is sampled asserted within a bus cycle, 
8816# is ignored thereafter in that bus cycle (see 
Figures 5-16, 5-17, 5-19)_ Consequently, do not 
assert NA# during bus cycles which must have 
8816# driven asserted. 8ee 5.4.3.6 Dynamic 
Bus Sizing with Pipelined Address. 

4) Any address which is validated by a pulse on the 
80386 AD8# output will remain stable on the ad­
dress pins for at least two processor clock peri­
ods. The 80386 cannot produce a new address 
more frequently than every two processor clock 
periods (see Figures 5-16, 5-17, 5-19). 

5) Only the address and bus cycle definition of the 
very next bus cycle is available. The pipelining ca­
pability cannot look further than one bus cycle 
ahead (see Figure 5-19 Cycle 1). 
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NA#' 
(PIN 013) D--4 NA# 

(INTERNAL) 

9S16# c:_ ..... ---- 9S16 # 
(PIN C14) (INTERNAL) 

231630-22 

Figure 5-18. 80386 Internal 
Logic on NA# and 8516# 

The complete bus state transition diagram, including 
operation with pipelined address is given by 5-20. 
Note it is a superset of the diagram for non-pipelined 
address only, and the three additional bus states for 
pipelined address are drawn in bold. 

The fastest bus cycle with pipelined address con­
sists of just two bus states, T1 P and T2P (recall for 
non-pipelined address it is T1 and T2). T1 P is the 
first bus state of a pipelined cycle. 

5.4.3.5 INITIATING AND MAINTAINING 
PIPELINED ADDRESS 

Using the state diagram Figure 5-20, observe the 
transitions from an idle state, Ti, to the beginning of 
a pipelined bus cycle, T1 P. From an idle state Ti, the 
first bus cycle must begin with T1, and is therefore a 
non-pipelined bus cycle. The next bus cycle Will be 
pipelined, however, provided NA# is asserted and 
the first bus cycle ends in a T2P state (the address 
for the next bus cycle is driven during T2P). The fast­
est path from an idle state to a bus cycle with pipe­
lined address is shown in bold below: 

~ ,T1-T~-T2P'J ,T1P:T2P'J 

idle non-pipelined pipelined 
states cycle cycle 

T1-T2-T2P are the states of the bus cycle that es­
tablishes address pipelining for the next bus cycle, 
which begins with T1 P. The same is true after a bus 
hold state, shown below: 

,Th, Th, Th')l..T1 - T2 - T2P'J ,T1 P - T2P'J 
T 'f' T 

hold non-pipelined 
acknowledge cycle 

states 

pipelined 
cycle 
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The transition to pipelined address is shown func­
tionally by Figure 5-17 Cycle 1. Note that Cycle 1 is 
used to transition into pipelined address timing for 
the subsequent Cycles 2, 3 and 4, which are pipe­
lined. The NA# input is asserted at the appropriate 
time to select address pipelining for Cycles 2, 3 and 
4. 

Once a bus cycle is in progress and the current ad­
dress has been valid for one entire bus state, the 
NA# input is sampled at the end of every phase one 
until the bus cycle is acknowledged. During Figure 5-
17 Cycle 1 therefore, sampling begins in T2. Once 
NA# is sampled asserted during the current cycle, 
the 80386 is free to drive a new address and bus 
cycle definition on the bus as early as the next bus 
state. In Figure 5-16 Cycle 1 for example, the next 
address is driven during state T2P. Thus Cycle 1 
makes the transition to pipelined address timing, 
since it begins with T1 but ends with T2P. Because 
the address for Cycle 2 is available before Cycle 2 
begins, Cycle 2 is called a pipelined bus cycle, and it 
begins with T1 P. Cycle 2 begins as soon as 
READY # asserted terminates Cycle 1. 

Example transition bus cycles are Figure 5-17 Cycle 
1 and Figure 5-16 Cycle 2. Figure 5-17 shows tran­
sition during the very first cycle after an idle bus 
state, which is the fastest possible transition into ad­
dress pipelining. Figure 5-16 Cycle 2 shows a tran­
sition cycle occurring during a burst of bus cycles. In 
any case, a transition cycle is the same whenever it 
occurs: it consists at least of T1, T2 (you assert 
NA# at that time), and T2P (provided the 80386 has 
an internal bus request already pending, which it al­
most always has). T2P states are repeated if wait 
states are added to the cycle. 

Note three states (T1, T2 and T2P) are only required 
in a bus cycle performing a transition from non­
pipelined address into pipelined address timing, for 
example Figure 5-17 Cycle 1. Figure 5-17 Cycles 2, 
3 and 4 show that address pipelining can be main­
tained with two-state bus cycles consisting only of 
T1P and T2P. 

Once a pipelined bus cycle is in progress, pipelined 
timing is maintained for the next cycle by asserting 
NA# and detecting that the 80386 enters T2P dur­
ing the current bus cycle. The current bus cycle must 
end in state T2P for pipelining to be maintained in 
the next cycle. T2P is identified by the assertion of 
ADS#. Figures 5-16 and 5-17 however, each show 
pipelining ending after Cycle 4 because Cycle 4 
ends in T21. This indicates the 80386 didn't have an 
internal bus request prior to the acknowledgement 
of Cycle 4. If a cycle ends with a T2 or T21, the next 
cycle will not be pipelined. 
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CLK2 [ 

(82384 ClK) [ 

BED # - BE 1 #, [ 
A2- A31, 

M/IO#, D/c# 

W/R# [ 
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Figure 5-19. Details of Address Pipelining During Cycles with Wait States 
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CYCLE 4 
PIPELINED 

(READ) 

231630-23 



Bus States: 

RESET 
ASSERTED 

80386 

HOLD ASSERTED 

READY# ASSERTED­
HOLD NEGATED­

NO REQUEST 

T1-first clock of a non·pipelined bus cycle (80386 drives new address and 
asserts ADS #). 
T2-subsequent clocks of a bus cycle when NA # has not been sampled 
asserted in the current bus cycle. 
T21-subsequent clocks of a bus cycle when NA # has been sampled as· 
serted in the current bus cycle but there is not yet an internal bus request 
pending (80386 will not drive new address or assert ADS#). 
T2P-subsequent clocks of a bus cycle when NA # has been sampled 
asserted in the current bus cycle and there is an internal bus request pend· 
ing (80386 drives new address and asserts ADS#). 
T1 P-first clock of a pipelined bus cycle. 
Ti-idle state. 
Th-hold acknowledge state (80386 asserts HLDA). 
Asserting NA # for pipelined address gives access to three more bus 
states: T21, T2P and T1 P. 
Using pipe lined address, the fastest bus cycle consists of T1 P and T2P. 

READY# NEGATED 

Figure 5-20. 80386 Complete Bus States (including pipelined address) 
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Realistically, address pipelining is almost always 
maintained as long as NA# is sampled asserted. 
This is so because in the absence of any other re­
quest, a code prefetch request is always internally 
pending until the instruction decoder and code pre­
fetch queue are completely full. Therefore address 
pipelining is maintained for long bursts of bus cycles, 
if the bus is available (i.e., HOLD negated) and NA# 
is sampled asserted in each of the bus cycles. 

hardware performs appropriate action to make the 
transfer using a 16-bit data bus connected on 
00-015. 

5.4.3.6 PIPElINED ADDRESS WITH DYNAMIC 
DATA BUS SIZING 

The BS 16 # feature allows easy interface to 16-bit 
data buses. When asserted, the 80386 bus interface 
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There is a degree of interaction, however, between 
the use of Address Pipelining and the use of Bus 
Size 16. The interaction results from the multiple bus 
cycles required when transferring 32-bit operands 
over a 16-bit bus. If the operand requires both 16-bit 
halves of the 32-bit bus, the appropriate 80386 ac­
tion is a second bus cycle to complete the operand's 
transfer. It is this necessity that conflicts with NA# 
usage. 

When NA# is sampled asserted, the 80386 commits 
itself to perform the next internally pending bus re-
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quest, and is allowed to drive the next internally 
pending address onto the bus. Asserting NA # there­
fore makes it impossible for the next bus cycle to 
again access the current address on A2-A31, such 
as may be required when B8 16 # is asserted by the 
external hardware. 

been sampled asserted in the current cycle. If 
NA# is sampled asserted, the current data bus 
size is assumed to be 32 bits. 

2) To also avoid conflict, if NA# and B816# are 
both asserted during the same sampling window, 
B816# asserted has priority and the 80386 acts 
as if NA# was negated at that time. Internal 
80386 circuitry, shown conceptually in Figure 5-
18, assures that B816# is sampled asserted and 
NA# is sampled negated if both inputs are exter­
nally asserted at the same sampling window. 

To avoid conflict, the 80386 is designed with follow­
ing two provisions: 

1) To avoid conflict, the 80386 is deSigned to ignore 
B816# in the current bus cycle if NA# has already 
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(82384 CLK) [ 
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Jl.Jl 
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V 
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(WRITE WRITE) 
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T2 T2 T1 T2 T2 

ilJl rtIl rtIl rtIl rm 
V \f \f V V 

ALWAYS 

CYCLE 2 
NON-PIPELINED 
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Tl T2 T2P 

rm ilJl rtIl 
V V \f 
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I -X VALID 1 X VALID 2 X VALID 3 -

_/ \ 

-'--- -/ '---V \......../ '---{C NOTE: NA# MUST BE NEGATED IN THESE T'S TO ALLOW 
RECOGNITION OF ASSERTED BSI6# IN FINAL T2'5. 

/XXXX'Y ~ (j '< X DON'T CAR~<X ~ '<x:~ ~X ~~)lK<X~ /.. 'X'X"X"X 
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5 
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Cycles 1 and 2 are pipelined. Cycle 1 a cannot be pipe lined, but its address can be inferred from that of Cycle 1, to externally sirnulate address 
pipelining during Cycle 1 a. 

Figure 5·21. Using NA# and 8516# 
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Certain types of 16-bit or 8-bit operands require no 
adjustment for correct transfer on a 16-bit bus. 
Those are read or write operands using only the low­
er half of the data bus, and write operands using 
only the upper half of the bus since the 80386 simul­
taneously duplicates the write data on the lower half 
of the data bus. For these patterns of Byte Enables 
and the R/W# signals, B816# need not be assert­
ed at the 80386, allowing NA# to be asserted during 
the bus cycle if desired. 

5.4.4 Interrupt Acknowledge (INTA) 
Cycles 

In response to an interrupt request on the INTR in­
put when interrupts are enabled, the 80386 performs 

PREVIOUS I 
CYCLE 

T2 TI 

INTERRUPT 
ACKNOWLEDGE 

CYCLE 1 

T2 T2 T1 

two interrupt acknowledge cycles. These bus cycles 
are similar to read cycles in that bus definition sig­
nals define the type of bus activity taking place, and 
each cycle continues until acknowledged by 
READY # sampled asserted. 

The state of A2 distinguishes the first and second 
interrupt acknowledge cycles. The byte address 
driven during the first interrupt acknowledge cycle is 
4 (A31-A3 low, A2 high, BE3 # -BE1 # high, and 
BEO# low). The address driven during the second 
interrupt acknowledge cycle is 0 (A31-A2 low, 
BE3#-BE1 # high, BEO# low). 
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Because each Interrupt Acknowledge bus cycle is followed by idle bus states. asserting NA # has no practical effect. Choose the approach 
which is simplest for your system hardware design. 

Figure 5-22. Interrupt Acknowledge Cycles 
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CYCLE 1 I 
NON-PIPELINED 

(WRITE) 

T1 T2 

CYCLE 2 I 
NON-PIPELINED 

(HALT) 

T1 T2 

IDLE 

Ti Ti Ti Ti 

CLK2 [ 

(82384 CLK) [ 

BEO~ BEl" BE3"[ 
MilO" W/R# 

'rr-:":,~:-:--+:,-+---bV'\.ml::7o;",,od- 80386 REMAINS HAL TED 
UNTIL INTR, NMI OR 

~"-lo"-..lj'-l"-lo"-~t- RESET IS ASSERTED. 

I I BE2#, A2-A31, [ 
O/C# """,",,~-""'i"'--+a;..;..;....;,,;+...;.;..;;,.;,;;f->'~~f->"~"-t- 80386 RESPONDS TO 

ADS#[ 

NA#[ 

READY# [ 

LOCK#[ 

00-031 [ 

, ---i---t---t- HOLD INPUT WHILE IN 
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- (FLOATING) - - --

I I 
231630-27 

Figure 5-23. Halt Indication Cycle 

The LOCK # output is asserted from the beginning 
of the first interrupt acknowledge cycle until the end 
of the second interrupt acknowledge cycle. Four idle 
bus states, Ti, are inserted by the 80386 between 
the two interrupt acknowledge cycles, allowing at 
least 160 ns of locked idle time for future 80386 
speed selections up to 24 MHz (CLK2 up to 48 
MHz), for compatibility with spec TRHRL of the 
8259A Interrupt Controller. 

During both interrupt acknowledge cycles, 00-031 
float. No data is read at the end of the first interrupt 
acknowledge cycle. At the end of the second inter­
rupt acknowledge cycle, the 80386 will read an ex­
ternal interrupt vector from 00-07 of the data bus. 
The vector indicates the specific interrupt number 
(from 0-255) requiring service. 
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5.4.5 Halt Indication Cycle 

The 80386 halts as a result of executing a HALT 
instruction. Signaling its entrance into the halt state, 
a halt indication cycle is performed. The halt indica­
tion cycle is identified by the state of the bus defini­
tion signals shown in 5.2.5 Bus Cycle Definition 
and a byte address of 2. BEO# and BE2# are the 
only signals distinguishing halt indication from shut­
down indication, which drives an address of O. Dur­
ing the halt cycle undefined data is driven on 
00-031. The halt indication cycle must be acknowl­
edged by READY # asserted. 

A halted 80386 resumes execution when INTR (if 
interrupts are enabled) or NMI or RESET is assert­
ed. 
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5.4.6 Shutdown Indication Cycle the only signals distinguishing shutdown indication 
from halt indication. which drives an address of 2. 
During the shutdown cycle undefined data is driven 
on 00-031. The shutdown indication cycle must be 
acknowledged by READY # asserted. 

The 80386 shuts down as a result of a protection 
fault while attempting to process a double fault. Sig­
naling its entrance into the shutdown state. a shut­
down indication cycle is performed. The shutdown 
indication cycle is identified by the state of the bus 
definition signals shown in 5.2.5 Bus Cycle Defini­
tion and a byte address of O. BEO# and BE2# are 

A shutdown 80386 resumes execution when NMI or 
RESET is asserted. 

ClK2[ 

(82384 ClK) [ 

BEl #. BE2#. BE3#. [ 
M/IO#. W/R# 

BEO#. A2-A31. [ 
O/C# 
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I IDLE 
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Figure 5-24. Shutdown Indication Cycle 
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5.5 OTHER FUNCTIONAL 
DESCRIPTIONS 

5.5.1 Entering and Exiting Hold 
Acknowledge 

The bus hold acknowledge state, Th, is entered in 
response to the HOLD input being asserted. In the 
bus hold acknowledge state, the 80386 floats all 
output or bidirectional signals, except for HLDA. 
HLDA is asserted as long as the 80386 remains in 
the bus hold acknowledge state. In the bus hold ac­
knowledge state, all inputs except HOLD and RE­
SET are ignored (also up to one rising edge on NMI 
is remembered for processing when HOLD is no 
longer asserted). 

r ACK~g~~EDGE~ 10LE 

n Th Th Th n 

10LE 

(82384 CLK>[ 

8EO#-8E3# [ 
A2-A31. M/IO# L~~~ 

o/c#. w/R# -

AOS#[ 

LOCK#[ ~~:.cJ( ---- (FLOATING)·---

I 
(FLOATING) 

---------------~----
00-031[. 

231630-29 
NOTE: 
For maximum design flexibility the 80386 has no inter­
nal pullup resistors on its outputs. Your design may re­
quire an external PUIIUP on ADS # and other 80386 out­
puts to keep them negated during float periods. 

Figure 5-25. Requesting Hold from Idle Bus 

Th may be entered from a bus idle state as in Figure 
5-25 or after the acknowledgement of the current 
physical bus cycle if the LOCK# signal is not assert­
ed, as in Figures 5-26 and 5-27. If asserting BS16# 
requires a second 16-bit bus cycle to complete a 
physical operand transfer, it is performed before 
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HOLD is acknowledged, although the bus state dia­
grams in Figures 5-13 and 5-20 do not indicate that 
detail. 

Th is exited in response to the HOLD input being 
negated. The following state will be Ti as in Figure 
5-25 if no bus request is pending. The following bus 
state will be T1 if a bus request is internally pending, 
as in Figures 5-26 and 5-27. 

Th is also exited in response to RESET being assert­
ed. 

If a rising edge occurs on the edge-triggered NMI 
input while in Th, the event is remembered as a non­
maskable interrupt 2 and is serviced when Th is exit­
ed, unless of course, the 80386 is reset before Th is 
exited. 

5.5.2 Reset During Hold Acknowledge 

RESET being asserted takes priority over HOLD be­
ing asserted. Therefore, Th is exited in reponse to 
the RESET input being asserted. If RESET is assert­
ed while HOLD remains asserted, the 80386 drives 
its pins to defined states during reset, as in Table 
5-3 Pin State During Reset, and performs internal 
reset activity as usual. 

If HOLD remains asserted when RESET is negated, 
the 80386 enters the hold acknowledge state before 
performing its first bus cycle, provided HOLD is still 
asserted when the 80386 would otherwise perform 
its first bus cycle. If HOLD remains asserted when 
RESET is negated, the BUSY # input is still sampled 
as usual to determine whether a self test is being 
requested, and ERROR# is still sampled as usual to 
determine whether an 80387 vs. an 80287 (or none) 
is present. 

5.5.3 Bus Activity During and 
Following Reset 

RESET is the highest priority input signal, capable of 
interrupting any processor activity when it is assert­
ed. A bus cycle in progress can be aborted at any 
stage, or idle states or bus hold acknowledge states 
discontinued so that the reset state is established. 

RESET should remain asserted for at least 15 CLK2 
periods to ensure it is recognized throughout the 
80386, and at least 78 CLK2 periods if 80386 self­
test is going to be requested at the falling edge. RE­
SET asserted pulses less than 15 CLK2 periods may 
not be recognized. RESET pulses less than 78 CLK2 
periods followed by a self-test may cause the self­
test to report a failure when no true failure exists. 
The additional RESET pulse width is required to 
clear additional state prior to a valid self-test. 
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NOTE: 
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HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Figure 5-26. Requesting Hold from Active Bus (NA # negated) 

Provided the RESET falling edge meets setup and 
hold times t25 and t26, the internal processor clock 
phase is defined at that time, as illustrated by Figure 
5-28 and Figure 7-7. 

An 80386 self-test may be requested at the time RE­
SET is negated by having the BUSY # input at a 
LOW level, as shown in Figure 5-28. The self-test 
requires (220) + approximately 60 CLK2 periods to 
complete. The self-test duration is not affected by 
the test results. Even if the self-test indicates a prob­
lem, the 80386 attempts to proceed with the reset 
sequence afterwards. 
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After the RESET falling edge (and after the self-test 
if it was requested) the 80386 performs an internal 
initialization sequence for approximately 350 to 450 
CLK2 periods. Also during the initialization, between 
the 20th CLK2 period and the first bus cycle, the 
ERROR # input is sampled to determine the pres­
ence of an 80387 coprocessor versus the presence 
of an 80287 (or no coprocessor). To distinguish be­
tween an 80287 being present and no coprocessor 
being present requires a software test. 
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CLK2[ 

(82384 CLK) [ 
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M/IO#, D/c#, W/R# 
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TIP 
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NOTE: 
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Figure 5-27. Requesting Hold from Active Bus (NA # asserted) 

5.6 SELF-TEST SIGNATURE 

Upon completion of self-test, (if self-test was re­
quested by holding BUSY # LOW at least eight 
CLK2 periods before and after the falling edge of 
RESET), the EAX register will contain a signature of 
OOOOOOOOh indicating the 80386 passed its self-test 
of microcode and major PLA contents with no prob­
lems detected. The passing signature in EAX, 
OOOOOOOOh, applies to all 80386 revision levels. Any 
non-zero signature indicates the 80386 unit is faulty. 

5.7 COMPONENT AND REVISION 
IDENTIFIERS 

To assist 80386 users, the 80386 after reset holds a 
component identifier and a revision identifier in its OX 
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register. The upper 8 bits of OX hold 03h as identifi­
cation of the 80386 component. The lower 8 bits of 
OX hold an 8-bit unsigned binary number related to 
the component revision level. The revision identifier 
begins chronologically with a value zero and is sub­
ject to change (typically it will be incremented) with 
component steppings intended to have certain im­
provements or distinctions from previous step pings. 

These features are intended to assist 80386 users 
to a practical extent. However, the revision identifier 
value is not guaranteed to change with every step­
ping revision, or to follow a completely uniform nu­
merical sequence, depending on the type or inten­
tion of revision, or manufacturing materials required 
to be changed. Intel has sole discretion over these 
characteristics of the component. 
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INTERNAL 
I----RESET----I---INITIALIZATION-----+l 
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NOTE 1: 
BUSY # should be held stable for B CLK2 periods before and after the CLK2 period in which RESET falling edge occurs. 

Figure 5-28. Bus Activity from Reset Until First Code Fetch 

Table 5-10. Component and Revision Identifier History 

80386 
Component Revision 

80386 
Component Revision 

Stepping Stepping 
Name 

Identifier Identifier 
Name 

Identifier Identifier 
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5.8 COPROCESSOR INTERFACING 

The 80386 provides an automatic interface for the 
Intel 80287 or 80387 numeric floating-point coproc­
essors. The 80287 and 80387 coprocessors use an 
I/O-mapped interface driven automatically by the 
80386 and assisted by three dedicated signals: 
BUSY #, ERROR #, and PEREa. 

As the 80386 begins supporting a coprocessor in­
struction, it tests the BUSY # and ERROR # signals 
to determine if the coprocessor can accept its next 
instruction. Thus, the BUSY # and ERROR # inputs 
eliminate the need for any "preamble" bus cycles 
for communication between processor and coproc­
essor. The 80287 and 80387 can be given its com­
mand opcode immediately. The dedicated signals 
provide instruction synchronization, and eliminate 
the need of using the 80386 WAIT opcode (9Bh) for 
80287/80387 instruction synchronization (the WAIT 
opcode was required when 8086 or 8088 was used 
with the 8087 coprocessor). 

Custom coprocessors can be included in 80386-
based systems, via memory-mapped or I/O-mapped 
interfaces. Such coprocessor interfaces allow a 
completely custom protocol, and are not limited to a 
set of coprocessor protocol "primitives". Instead, 
memory-mapped or I/O-mapped interfaces may use 
all applicable 80386 instructions for high-speed co­
processor communication. The BUSY # and 
ERROR # inputs of the 80386 may also be used for 
the custom coprocessor interface, if such hardware 
assist is desired. These signals can be tested by the 
80386 WAIT opcode (9Bh). The WAIT instruction 
will wait until the BUSY # input is negated (interrupt­
able by an NMI or enabled INTR input), but gener­
ates an exception 16 fault if the ERROR # pin is in 
the asserted state when the BUSY # goes (or is) 
negated. If the custom coprocessor interface is 
memory-mapped, protection of the addresses used 
for the interface can be provided with the 80386 on­
chip paging or segmentation mechanisms. If the 
custom interface is I/O-mapped, protection of the 
interface can be provided with the 80386 10PL (I/O 
Privilege Level) mechanism. 

The 80287 and 80387 numeric coprocessor interfac­
es are I/O mapped as shown in Table 5-11. Note 
that the 80287/80387 coprocessor interface ad­
dresses are beyond the Oh-FFFFh range for pro­
grammed I/O. When the 80386 supports the 80287 
or 80387 coprocessors, the 80386 automatically 
generates bus cycles to the coprocessor interface 
addresses. 
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Table 5·11. Numeric Coprocessor 
Port Addresses 

Address in 80287 80387 
80386 Coprocessor Coprocessor 

I/O Space Register Register 

800000F8h Opcode Register Opcode Register 
(16-bit port) (32-bit port) 

800000FCh Operand Register Operand Register 
(16-bit port) (32-bit port) 

The 80287 coprocessor (16-bit) functions with either 
80286 or 80386 processor. The 80387 coprocessor 
(32-bit) functions with the 80386 processor. To cor­
rectly map the 80287 and 80387 registers to the ap­
propriate I/O addresses, connect the CMDO and 
CMD1 lines of the 80287/80387 as listed in Table 
5-12. 

Table 5·12. Connections for CMDO and CMD1 
Inputs of 80287180387 

Coprocessor Coprocessor Coprocessor 
and Processor CMDO CMD1 
Configuration Connection Connection 

80387 connected connect to None-80387 
to 80386 latched version has no CMD1 

of '386 A2 signal pin 

80287 connected connect to connect to 
to 80386 latched version ground 

of '386 A2 signal 

80287 connected connect to connect to 
to 80286 latched version latched version 

of '286 A 1 signal of '286 A2 signal 

5.8.1 Software Testing for 
Coprocessor Presence 

When software is used to test for coprocessor 
(80387 or 80287) presence, it should use only the 
following coprocessor opcodes: FIN IT, FNINIT, 
FSTCW mem, FSTSW mem, FSTSW AX. To use 
other coprocessor opcodes when a coprocessor is 
known to be not present, first set EM = 1 in 80386 
CRO. 
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6. MECHANICAL DATA vee and GND connections must be made to multi-
ple Vee and Vss (GND) pins. Each Vee and Vss 
must be connected to the appropriate voltage level. 

6.1 INTRODUCTION The circuit board should include Vee and GND 
planes for power distribution and all Vee and Vss 

In this section, the physical packaging and its con- pins must be connected to the appropriate plane. 
nections are described in detail. 

NOTE: 
Pins identified as "N.C." should remain completely 

6.2 PIN ASSIGNMENT unconnected. 

The 80386 pinout as viewed from the top side of the 
component is shown by Figure 6-1. Its pinout as 
viewed from the Pin side of the component is Figure 
6-2. 

p N M L K H G D C B A 

A30 A27 A26 A23 A21 A20 A17 A16 A15 A14 All A8 VSS vee 
2 .... .... 2 

vec A31 A29 A24 A22 VSS AlB vee VSS A13 Al0 A7 A5 VSS 

3 3 
030 VSS vec A28 A25 VSS A19 vee VSS A12 A9 A6 A4 A3 

4 4 
029 vee VSS A2 NC Ne 

5 5 
026 027 031 vee VSS vce 

6 6 
VSS 025 028 NC Ne VSS 

7 7 
024 VCC vec NC INTR vce 

8 8 
vcc 023 VSS PEREQ NMI ERROR# 

9 
~ ~ 

9 .... .... 
022 021 020 RESET 8USY# VSS 

10 10 
019 017 VSS LOCK# W/R# VCC 

11 11 
018 016 015 VSS VSS o/c# 

12 ~ ~ ~ ~ ~ ~ ~ 12 .... .... .... .... .... .... .... 
014 012 010 vec 07 VSS 00 vec CLK2 8EO# vcc vce NC M/IO# 

13 13 
013 011 VCC 08 05 VSS 01 REAOY# Ne NC NA# 8El# 8E2# 8E3# 

14 14 
VSS 09 HLOA 06 04 03 02 VCC VSS AOS# HOLO 8S16# VSS vcc 

P N M L K H G E D C B A 

231630-33 

Figure 6-1. 80386 PGA Pinout-View from Top Side 

94 



inter 80386 

A B c D E F G H K L N p 

o 0 000 0 0 0 000 0 0 0 
vee vss A8 All A14 A15 A16 A17 A20 A21 A23 A26 A27 A30 

2 o 0 000 0 0 0 0 000 0 0 2 
VSS A5 A7 Al0 A13 VSS vee A18 VSS A22 A24 A29 A31 vee 

3 o 0 0 0 0 0 0 0 0 0 0 000 3 
A3 A4 A6 A9 A12 VSS vee A19 VSS A25 A28 vee VSS D30 

4 000 000 4 
Ne Ne A2 vss vee D29 

5 000 000 5 
vee vss vee 

METAL LID 
D31 D27 D26 

6 000 000 6 
vss Ne Ne D28 D25 VSS 

7 000 000 7 
vee INTR Ne vee vee D24 

8 000 000 8 
ERROR# NMI PEREQ VSS D23 vee 

9 000 000 9 
vss BUSY# RESET D20 D21 D22 

10 000 000 10 
vee W/R# LoeK# vss D17 019 

11 00000 0 11 
D/e# vss vss D15 D16 D18 

12 o 000 0 0 0 0 0 0 0 0 0 0 12 
M/IO# Ne vee vee BEO# eLK2 vee DO VSS D7 vee Dl0 D12 D14 

13 o 0 0 0 0 0 0 0 0 0 0 0 0 0 13 
BE3# BE2# BEl # NA# Ne Ne READY# Dl VSS D5 D8 vee Dll D13 

14 o 0 0 0 0 0 0 000 000 0 14 
vee vss BS16# HOLD ADS# vss vee D2 D3 D4 D6 HLDA D9 VSS 

A B c D E F G H K L N p 
231630-34 

Figure 6·2. 80386 PGA Pinout-View from Pin Side 
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Table 6-1. 80386 PGA Pinout-Functional Grouping 

Pin /Signal Pin/ Signal Pin/Signal Pin/Signal 

N2 A31 M5 031 A1 Vee A2 Vss 
P1 A30 P3 030 A5 Vee A6 Vss 
M2 A29 P4 029 A7 Vee A9 Vss 
L3 A28 M6 028 A10 Vee 81 Vss 
N1 A27 N5 027 A14 Vee 85 Vss 
M1 A26 P5 026 C5 Vee 811 Vss 
K3 A25 N6 025 C12 Vee 814 Vss 
L2 A24 P7 024 012 Vee C11 Vss 
L1 A23 N8 023 G2 Vee F2 Vss 
K2 A22 P9 022 G3 Vee F3 Vss 
K1 A21 N9 021 G12 Vee F14 Vss 
J1 A20 M9 020 G14 Vee J2 Vss 
H3 A19 P10 019 L12 Vee J3 Vss 
H2 A18 P11 018 M3 Vee J12 Vss 
H1 A17 N10 017 M7 Vee J13 Vss 
G1 A16 N11 016 M13 Vee M4 Vss 
F1 A15 M11 015 N4 Vee M8 Vss 
E1 A14 P12 014 N7 Vee M10 Vss 
E2 A13 P13 013 P2 Vee N3 Vss 
E3 A12 N12 012 P8 Vee P6 Vss 
01 A11 N13 011 P14 Vss 
02 A10 M12 010 
03 A9 N14 09 F12 CLK2 A4 N.C. 
C1 A8 L13 08 84 N.C. 
C2 A7 K12 07 E14 AOS# 86 N.C. 
C3 A6 L14 06 812 N.C. 
B2 A5 K13 05 B10 W/R# C6 N.C. 
B3 A4 K14 04 A11 O/C# C7 N.C. 
A3 A3 J14 03 A12 MIIO# E13 N.C. 
C4 A2 H14 02 C10 LOCK# F13 N.C. 
A13 BE3# H13 01 
B13 BE2# H12 DO 013 NA# C8 PEREQ 
C13 8E1# C14 BS16# B9 BUSY# 
E12 BEO# G13 REAOY# A8 ERROR# 

014 HOLD 
C9 RESET M14 HLOA B7 INTR B8 NMI 
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231630-35 

Figure 6-3. 132-Pin Ceramic PGA Package Dimensions 

6.3 Package Dimensions and 
Mounting 

The initial 80386 package is a 132-pin ceramic pin 
grid array (PGA). Pins of this package are arranged 
0.100 inch (2.54mm) center·to·center, in a 14 x 14 
matrix, three rows around. 
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A wide variety of available sockets allow low inser­
tion force or zero insertion force mountings, and a 
choice of terminals such as soldertail, surface 
mount, or wire wrap. Several applicable sockets are 
listed in Table 6·2. 
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6.4 PACKAGE THERMAL 

SPECIFICATION 

80386 

to determine whether the 80386 is within specified 
operating range. 

The 80386 is specified for operation when case tem­
perature is within the range of 0°C-85°C. The case 
temperature may be measured in any environment, 

The PGA case temperature should be measured at 
the center of the top surface opposite the pins, as in 
Figure 6-4. 

MEASURE PGA CASE TEMPERATURE 
AT CENTER Of TOP SURfACE 

231630-36 

Figure 6·4. Measuring 80386 PGA Case Temperature 

Table 6-2. Several Socket Options for 132-Pin PGA 

• Low insertion force (LlF) soldertail 
55274·1 

• Amp tests indicate 50% reduction in insertion 
force compared to machined sockets 

Other socket options 
• Zero insertion force (ZIF) soldertail 

55583·1 
• Zero insertion force (ZIF) Burn·in version 

55573-2 

Amp Incorporated 
(Harrisburg, PA 17105 U.S.A. 
Phone 717·564-0100) 

231630-45 
Cam handle locks in low profile position when substrate is installed (handle UP for 
open and DOWN for closed positions) 

courtesy Amp Incorporated 
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Table 6-2. Several Socket Options for 132-Pin PGA (Continued) 

Peel-A-WayTM Mylar and Kapton 
Socket Terminal Carriers 

• Low insertion force surface mount 
CSI32-37TG 

Low insertion force soldertail 
CS132-0tTG 

Low insertion force wire-wrap 
CS132-02TG (two level) 
CS132-03TG (three-level) 

• Low insertion force press-fit 
CS132-05TG 

Advanced Interconnections 
(5 Division Street 
Warwick, RI 02818 U.S.A. 
Phone 401-885·0485) 

.. Low insertion force socket soldertail 
(for production use) 
2XX-6576-00-3308 (new style) 
2XX-6003-00-3302 (older style) 

Zero insertion force soldertail 
(for test and burn-in use) 
2XX-6568-00-3302 

Textool Products 

Peel-A-Way Carrier No. 132: 
Kapton Carrier is KS132 
Mylar Carrier is MS132 

Molded Plastic Body KS132 
is shown below: 

fOOT PRINT NO. 132 

~1ii ~Ui~ 
-i 1-- .100TYP 

1411413ROWS 

231630-46 

SOLDER T~L-01 LOW PROFILE -04 PRESS FIT·05 

WIRE WRAP ..02/-03 SOLDER TAll.33 SURFACE MOUNTING -31 

PEEL·A·WAY 1-r 
-:Hi 

Y 
1.14 -02 
:iii 2LEYEL 

~-03 
.100 3 LEVEL 

~= .•... " 
., .. 
'" I -:iii 

---.l. 
~-I\--~ D'" 

courtesy Advanced Interconnections 
(Peel-A-Way Terminal Carriers 

U.S. Patent No. 4442938) 

•• - -- -- •• 0 

·r-~--~ -~~ (\j 

I: ,I ~ 
il'l: '& 
" I ~ i i ::U 0 
• ~-------l ~ 
ij------~- •• 

I 

231630-47 

Electronic Products Division/3M 
(1410 West Pioneer Drive 
Irving, Texas 75601 U.S.A. 
Phone 214-259-2676) 

I i II wi 
WI L~ __ ~ __ ~I I ~ 

Ii. 
I 

courtesy Textool Products/3M 231630-48 

Table 6-3. 80386 PGA Package Thermal Characteristics 

Thermal Resistance - °C/Watl 

Airflow - ft.!min (m/sec) 

Parameter 0 50 100 200 400 600 800 °Ja 
(0) (0.25) (0.50) (1.01) (2.03) (3.04) (4.06) 

o Junction-to-Case 2 2 2 2 2 2 2 
OJ pin (\ °Jc (case measured 

as Fig. 6-4) 

I OJ cap 1 o Case-te-Ambient 19 18 17 15 12 10 9 
(no heatsink) 

UUl UUU 
o Case-to-Ambient 16 15 14 12 9 7 6 
(with omnidirectional 
heatsink) 

o Case-to-Ambient 
231630-72 

15 14 13 11 8 6 5 
(with unidirectional 
heatsink) 

NOTES: 
1. Table 6-3 applies to 80386 PGA plugged 3. OJ-CAP ~ 4'C/w (approx.) 
into socket or soldered directly into board. o J-PIN ~ 4°C/w (inner pins) (approx.) 
2. 0JA ~ 0JC + 0CA· OJ.PIN ~ 8°C/w (outer pins) (approx.) 
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7. ELECTRICAL DATA 

7.1 INTRODUCTION 

The following sections describe recommended elec­
trical connections for the 80386, and its electrical 
specifications. 

7.2 POWER AND GROUNDING 

7.2.1 Power Connections 

The 80386 is implemented in CHMOS III technology 
and has modest power requirements. However, its 
high clock frequency and 72 output buffers (address, 
data, control, and HLDA) can cause power surges 
as multiple output buffers drive new signal levels 
simultaneously. For clean on-chip power distribution 
at high frequency, 20 Vee and 21 Vss pins separate­
ly feed functional units of the 80386. 

Power and ground connections must be made to all 
external Vee and GND pins of the 80386. On the 
circuit board, all Vee pins must be connected on a 
Vee plane. All VSS pins must be likewise connected 
on a GND plane. 

7.2.2 Power Decoupling 
Recommendations 

Liberal decoupling capacitance should be placed 
near the 80386. The 80386 driving its 32-bit parallel 
address and data buses at high frequencies can 
cause transient power surges, particularly when driv­
ing large capacitive loads. 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening 
circuit board traces between the 80386 and decou-

piing capacitors as much as possible. Capacitors 
specifically for PGA packages are also commercially 
available, for the lowest possible inductance. 

7.2.3 Resistor Recommendations 

The ERROR # and BUSY # inputs have resistor pull­
ups of approximately 20 K!l built-in to the 80386 to 
keep these signals negated when neither 80287 or 
80387 are present in the system (or temporarily re­
moved from its socket). The BS16# input also has 
an internal pullup resistor of approximately 20 K!l, 
and the PEREa input has an internal pulldown resis­
tor of approximately 20 K!l. 

In typical designs, the external pullup resistors 
shown in Table 7-1 are recommended. However, a 
particular design may have reason to adjust the re­
sistor values recommended here, or alter the use of 
pullup resistors in other ways. 

7.2.4 Other Connection 
Recommendations 

For reliable operation, always connect unused in­
puts to an appropriate signal level. N.C. pins should 
always remain unconnected. 

Particularly when not using interrupts or bus hold, 
(as when first prototyping, perhaps) prevent any 
chance of spurious activity by connecting these as­
sociated inputs to GND: 

Pin Signal 

B7 INTR 
B8 NMI 
014 HOLD 

If not using address pipelining, pullup 013 NA # to 
Vee· 

If not using 16-bit bus size, pullup C14 BS16# to 
Vee· 

Pullups in the range of 20 K!l are recommended. 

Table 7·1. Recommended Resistor Pullups to Vee 

Pin and Signal Pullup Value Purpose 

E14 ADS# 20 K!l ±10% Lightly Pull ADS# Negated 
During 80386 Hold Acknowledge 
States 

C10 LOCK # 20 K!l ±10% Lightly Pull LOCK # Negated 
During 80386 Hold Acknowledge 
States 
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7.3 MAXIMUM RATINGS 

Table 7-2. Maximum Ratings 

80386·12 
Parameter 80386·16 

Maximum Rating 

Storage Temperature - 65'C to + 150'C 

Case Temperature Under Bias -65'Cto +110'C 

Supply Voltage with Respect to Vss - 0.5V to + 6.5V 

Voltage on Other Pins -0.5VtoVcc + 0.5V 

7.4 D.C. SPECIFICATIONS 

Table 7-2 is a stress rating only, and functional oper­
ation at the maximums is not guaranteed. Functional 
operating conditions are given in 7.4 D.C. Specifica­
tions and 7.5 A.C. Specifications. 

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the 
B03B6 contains protective circuitry to resist damage 
from static electric discharge, always take precau­
tions to avoid high static voltages or electric fields. 

Functional Operating Range: VCC = 5V ± 5%; TCASE = O°C to 85°C 

Table 7-3. 80386-16 and 80386-12 D.C. Characteristics 

Symbol Parameter 

Input Low Voltage 

Input High Voltage 

CLK2 Input Low Voltage 

CLK2 Input High Voltage 

VOL Output Low Voltage 
IOL = 4 mA: A2-A31,00-031 
IOL = 5 mA: BEO#-BE3#, W/R#, 

O/C#, MIIO#, LOCK#, 
AOS#, HLDA 

VOH Output High Voltage 
IOH = -1 mA: A2-A31, 00 
IOH = -0.9 mA: BEO#-BE3#, 

O/C#, MilO OC 

r-____ ~--------------~A HLO 
III Input Leakage Current (f r 

BS16#, PER EO, BUS 
ERROR#) 

ICC 

COUT Output or 1/0 Capacitance 

CCLK CLK2 Capacitance 

NOTES: 
1. The min value, -0.3, is not 100% tested. 
2. PEREQ input has an internal pulldown resistor. 

80386-12 80386-12 
80386-16 80386-16 Unl~ 

Min Max 

-0.3 0.8 

2.0 

-0.3 

±15 /LA 

200 ).LA 

-400 /LA 

±15 /LA 

400 mA 
460 mA 

10 pF 

12 pF 

20 pF 

3. BS16#, BUSY# and ERROR# inputs each have an internal pull up resistor. 
4. Not 100% tested. 
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Notes 

Note 1 

Note 1 

OV :0: VIN :0: Vcc 

VIH = 2.4V (Note 2) 

VIL = 0.45V (Note 3) 

0.45V :0: VOUT :0: VCC 

Icc typo = 300 mA 
ICC typo = 370 mA 

Fc = 1 MHz (Note 4) 

Fc = 1 MHz (Note 4) 

Fc = 1 MHz (Note 4) 
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7.5 A.C. SPECIFICATIONS 

7.5.1 A.C. Spec Definitions 

The A.C. specifications, given in Tables 7-4 and 7-5, 
consist of output delays, input setup requirements 
and input hold requirements. All A.C. specifications 
are relative to the CLK2 rising edge crossing the 
2.0V level. 

A.C. spec measurement is defined by Figure 7-1. In­
puts must be driven to the voltage levels indicated 
by Figure 7-1 when A.C. specifications are mea­
sured. 80386 output delays are specified with mini­
mum and maximum limits, measured as shown. The 

CLK2 

minimum 80386 delay times are hold times provided 
to external circuitry. 80386 input setup and hold 
times are specified as minimums, defining the small­
est acceptable sampling window. Within the sam­
pling window, a synchronous input signal must be 
stable for correct 80386 operation. 

Outputs NA#, W/R#, O/C#, M/IO#, LOCK#, 
BEO#-BE3#, A2-A31 and HLDA only change at 
the beginning of phase one. 00-031 (write cycles) 
only change at the beginning of phase two. The 
REAOY#, HOLO, BU8Y#, ERROR#, PEREQ and 
00-031 (read cycles) inputs are sampled at the be­
ginning of phase one. The NA#, B816#, INTR and 
NMI inputs are sampled at the beginning of phase 
two. 

Tx 

(AO-A31, BEO#-BE3#, VALID 
OUTPUTS [ 

ADSt:M/IO#. D/C#. J:\',\\,\\\~ O.BV OUTPUT n+1 
W/R#. LOCK#. HLDA) ___ -+;,,;,;,.~ .... ~~to.,;,,;,~_..,.. __ 

LEGEND: 

OUTPUTS [ 
(DO-D31 ) 

INPUTS [ 
(NA#.BS16# 

INTR. NMI) 

INPUTS 
(READY#. HOLD. [ 
ERROR#. BUSY#. 
PEREa. DO-D31) 

; 
- maximum output delay spec 

B _ minimum output delay spec 
c - minimum input setup spec 
D _ minimum input hold spec 

DRIVE _ ~~---+---m,"" 
TO 2.4V 

DRIVE 
TO .45V 

DRIVE 
TO 2.4V 

DRIVE 
TO 0.45V 

MAX 

2V VALID 
O.BV OUTPUT n+1 

Figure 7-1. Drive Levels and Measurement Points for A.C. Specifications 
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7.5.2 A.C. Specification Tables 

Functional Operating Range: Vee = 5V ±5%; TeASE = O°C to 85°C 

Table 7·4. 80386-16 A.C. Characteristics 

Symbol Parameter 
80386-16 80386-16 

Unit 
Ref. 

Notes 
Min Max Figure 

Operating Frequency 4 16 MHz Half of CLK2 
Frequency 

t1 CLK2 Period 31 125 ns 7-3 

t2a CLK2 High Time 9 ns 7-3 at2V 

t2b CLK2 High Time 5 ns 7-3 at (Vee - 0.8V) 

t3a CLK2 Low Time 9 ns 7-3 at2V 

t3b CLK2 Low Time 7 ns 

t4 CLK2 Fall Time 8 ns 

t5 CLK2 Rise Time 8 (Vee - 0.8V) 

t6 A2-A31 Valid Delay 40 120 pF 

t7 A2-A31 Float Delay 

t8 BEO#-BE3#, LOCK# 
Valid Delay 

t9 BEO#-BE3#, LOCK# (Note 1) 
Float Delay 

t10 W/R#, M/IO#, O/C#, 4 CL = 75 pF 
AOS# Valid Delay 

t11 W/R#, M/IO#, O/C#, (Note 1) 
ADS # Float Delay 

t12 00-031 Write Data 7-5 CL = 120 pF 
Valid Delay 

t13 ns 7-6 (Note 1) 

t14 ns 7-6 CL = 75 pF 

t15 NA# ns 7-4 

t16 NA# ns 7-4 

t17 BSf6# ns 7-4 

t18 20 ns 7-4 

t19 upTime 20 ns 7-4 

t20 READY # Hold Time 3 ns 7-4 

t21 00-031 Read 10 ns 7-4 
Setup Time 

t22 00-031 Read 5 ns 7-4 
Hold Time 

t23 HOLD Setup Time 25 ns 7-4 

t24 HOLD Hold Time 4 ns 7-4 

t25 RESET Setup Time 12 ns 7-7 
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Table 7-4. 80386-16 A.C. Characteristics (Continued) 

Symbol 

NOTES: 

Parameter 

RESET Hold Time 

NMI, INTR Setup Time 

NMI, INTR Hold Time 

PEREQ,ERROR#,BUSY# 
Setup Time 

PEREQ,ERROR#,BUSY# 
Hold Time 

80386-16 80386-16 
Min Max 

3 

15 

15 

15 

9 

1. Float condition occurs when maximum output current becomes less than IL 
tested. 
2. These inputs are aI/owed to be asynchronous to CLK2. The setup and hoi 
to assure recognition within a specific CLK2 period. 

Symbol Parameter 
Min 

Operating Frequency 

t1 CLK2 Period 

t2a CLK2 High Time 

t2b CLK2 High Time 

t3a ns 

t3b ns 

t4 ns 

ts 8 ns 

t6 45 ns 

t7 45 ns 

ta 45 ns 
Valid Delay 

tg BEO#-BE3#, LOCK# 45 ns 
Float Delay 

tlO W/R#, M/IO#, D/C#, 4 40 ns 
ADS# Valid Delay 

t11 W/R#, M/IO#, D/C#, 4 40 ns 
ADS # Float Delay 

t12 DO-D31 Write Data 55 ns 
Valid Delay 

t13 DO-D31 Write Data 44 ns 
Float Delay 

t14 HLDA Valid Delay 2 40 ns 
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Unit 

ns 

ns 

ns 

ns 

7-3 

7-3 

7-3 

7-3 

7-3 

7-3 

7-5 

7-6 

7-5 

7-6 

7-5 

7-6 

7-5 

7-6 

7-6 

Ref. 
Notes 

Figure 

7-7 

7-4 (Note 2) 

7-4 (Note 2) 

7-4 (Note 2) 

(Note 2) 

elay is not 100% 

Notes 

Frequency 

at2V 

at (VCC - 0.8V) 

at2V 

at 0.8V 

(Vee - 0.8V) to 0.8V 

0.8V to (Vce - 0.8V) 

CL=120pF 

(Note 1) 

CL = 75 pF 

(Note 1) 

CL = 75 pF 

(Note 1) 

CL = 120 pF 

(Note 1) 

CL = 75 pF 



intJ 80386 ~[Q)W~OO©[g OOOIP@OOIMl~'iiO@OO 

Table 7-5. 80386-12 A.C. Characteristics (Continued) 

Symbol Parameter 
80386-12 80386-12 

Notes 
Min Max 

t15 NA# Setup Time 12 

t16 NA# Hold Time 22 

t17 8S16# Setup Time 14 

t1B 8S16# Hold Time 22 

t19 REAOY# Setup Time 22 7-4 

t20 REAOY# Hold Time 7-4 

t21 00-031 Read 7-4 
Setup Time 

t22 00-031 Read 7-4 
Hold Time 

t23 HOLO Setup Time ns 7-4 

t24 HOLO Hold Time ns 7-4 

t25 RESET Setup ns 7-7 

t26 ns 7-7 

t27 ns 7-4 (Note 2) 

t28 ns 7-4 (Note 2) 

t29 18 ns 7-4 (Note 2) 

t30 9 ns 7-4 (Note 2) 

NOTES: 
1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100% 
tested. 
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, 
to assure recognition within a specific CLK2 period. 

7.5.3 A.C. Test Loads 

80386 
OUTPUT~ 

~CL 

CL = 120 pF on A2-A31. 00-031 

231630-38 

CL = 75 pF on BEO#-8E3#, W/R#, MIIO#, D/C#, ADS#, 
LOCK#, HLDA 
CL includes all parasitic capacitances. 

Figure 7-2. A.C. Test Load 

7.5.4 A.C. Timing Waveforms 

Figure 7-3. CLK2 Timing 
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CLK2 [ 

READY# [ 

HOLD [ 

DO-D31 [ (INPUT) 

BU5Y#. 
[ ERROR# 

PEREQ 

NA# [ 

B516# [ 

INTR. [ NMI 

CLK2 [ 

8EO#-8E3#. [ LOCK# 

W!R#.M!IO#. [ O!C#.AOS# 

A2-A31 [ 

00-031 [ (OUTPUT) 

HLOA [ 

80386 

Tx Tx 
~2 

Figure 7·4. Input Setup and Hold Timing 

Tx 

Figure 7·5. Output Valid Delay Timing 
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CLK2 [ 

BEO#-BE3#. [ LOCK# 

W/R#.M/IO#. [ D/C#.ADS# 

A2-A31 [ 

DO-D31 [ 

HLDA [ 

80386 

Th Ti OR T1 

@ ALSO APPLIES TO DATA FLOAT WHEN WRITE 
CYCLE IS FOLLOWED BY READ OR IDLE 

MAX 

Figure 7·6. Output Float Delay and HLDA Valid Delay Timing 

-RESET--I~'----INITIALIZATION SEQUENCE ----

CLK2 [ 

RESET [ 

The second internal processor phase following RESET high-Io-Iow transilion (provided t25 and t26 are met) is 4>2. 

Figure 7·7. RESET Setup and Hold Timing, and Internal Phase 
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7.6 DESIGNING FOR ICE-386 USE 

The 80386 in-circuit emulator product is ICE-386. 
Because of the high operating frequency of 80386 
systems and ICE-386, there is no cable separating 
the ICE-386 probe module from the target system. 
The ICE-386 probe module has several electrical 
and mechanical characteristics that should be taken 
into consideration when designing the hardware. 

Capacitive loading: ICE-386 adds up to 25 pF to 
each line. 

Drive requirement: ICE-386 adds one standard 
TTL load on the CLK2 line, up to one advanced low­
power Schottky TTL load per control signal line, and 
one advanced low-power Schottky TTL load per ad­
dress, byte enable, and data line. These loads are 
within the probe module and are driven by the 
probe's 80386, which has standard drive and load­
ing capability listed in Tables 7-3 and 7-4. 

Power requirement: For noise immunity the ICE-
386 probe is powered by the user system. The high­
speed probe circuitry draws up to 0.7A plus the max­
imum 80386 Icc from the user 80386 socket. 

80386 location and orientation: The ICE-386 Proc­
essor Module (PM), and the Optional Isolation Board 
(alB) used for extra electrical buffering of the 

ICE initially, require clearance as illustrated in Fig­
ures 7-8 and 7-9, respectively. Figures 7-8 and 7-9 
also illustrate the via holes in these modules for rec­
ommended orientation of a screw-actuated ZIF 
socket. Figure 7-10 illustrates the recommended ori­
entation for a lever-actuated ZIF socket. 

READY # drive: The ICE-386 system may be able 
to clear a user system READY# hang if the user's 
READY # driver is implemented with an open-collec­
tor or tri-state device. 

Optional Interface Board (OIB) and CLK2 speed 
reduction: When the ICE-386 processor probe is 
first attached to an unverified user system, the alB 
helps ICE-386 function in user systems with bus 
faults (shorted signals, etc.). After electrical verifica­
tion it may be removed. Only when the alB is in­
stalled, the user system must have a reduced CLK2 
frequency of 16 MHz maximum. 

Cache coherence: ICE-386 loads user memory by 
performing 80386 write cycles. Note that if the user 
system is not designed to update or invalidate its 
cache (if it has a cache) upon processor writes to 
memory, the cache could contain stale instruction 
code and/or data. For best use of ICE-386, the user 
should consider designing the cache (if any) to up­
date itself automatically when processor writes oc­
cur, or find another method of maintaining cache 
data coherence with main user memory. 

1 .... ------ 5.100 ------+1'1 
.80 W/O COVER 
1.00 W/COVER 

t 

.13J 

I 
3.80 

L 

Itm d t 
.98 WID COVER 
1.18 W/COVER 

t 

0 0 T ---

D TO ['2 00 

t 

~.L PIN 1 

~ 
/ 0 

-L:.187 ~ -::::; j::..: 15 
.80 

2 PL 

Figure 7-8. ICE-386 Processor Module Clearance Requirements (inches) 
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o o o 

.800 
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I 
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• 

PIN 1 

.150-. 
- .80 

+ 
.68 REF 
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•. 200 

! 
0.188 
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231630-76 

Figure 7-9. ICE-3S6 Optional Interface Module Clearance Requirements (inches) 

COMPONENT SIDE 
PROCESSOR MODULE 

PI~ 

~, 

rDl 
1: ___ _ 

o 

LEVER OF ZIF SOCKET 

231630-74 

Figure 7-10. Recommended Orientation of Lever-Actuated ZIF Socket for ICE-3S6 Use 
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8. INSTRUCTION SET 

This section describes the 80386 instruction set. A 
table lists all instructions along with instruction en­
coding diagrams and clock counts. Further details of 
the instruction encoding are then provided in the fol­
lowing sections, which completely describe the en­
coding structure and the definition of all fields occur­
ring within 80386 instructions. 

8.1 80386 INSTRUCTION ENCODING 
AND CLOCK COUNT SUMMARY 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Table 8-1 
below, by the processor clock period (e.g. 62.5 ns 
for an 80386-16 operating at 16 MHz (32 MHz CLK2 
signal)). The actual clock count of an 80386 pro­
gram will average 5% more than the calculated 
clock count due to instruction sequences which exe­
cute faster than they can be fetched from memory. 

For more detailed information on the encodings of 
instructions refer to section 8.2 Instruction Encod­
ings. Section 8.2 explains the general structure of 
instruction encodings, and defines exactly the en­
codings of all fields contained within the instruction. 

110 

Instruction Clock Count Assumptions 

1. The instruction has been prefetched, decoded, 
and is ready for execution. 

2. Bus cycles do not require wait states. 

3. There are no local bus HOLD requests delaying 
processor access to the bus. 

4. No exceptions are detected during instruction ex­
ecution. 

5. If an effective address is calculated, it does not 
use two general register components. One regis­
ter, scaling and displacement can be used within 
the clock counts shown. However, if the effective 
address calculation uses two general register 
components, add 1 clock to the clock count 
shown. 

Instruction Clock Count Notation 

1. If two clock counts are given, the smaller refers to 
a register operand and the larger refers to a mem­
ory operand. 

2. n = number of times repeated. 

3. m = number of components in the next instruc­
tion executed, where the entire displacement (if 
any) counts as one component, the entire imme­
diate data (if any) counts as one component, and 
all other bytes of the instruction and prefix(es) 
each count as one component. 



80386 

a e T bl 8 -1.8 3 6 o 8 I nstructlon S CI et ock C ount S ummary 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

GENERAL DATA TRANSFER 
MOV ~ Move: 

Register to Register/Memory I 1000100w I mod reg rim 1 2/2 2/2 b h 

Register/Memory to Register I 1000101w I mod reg rim 1 2/4 2/4 b h 

Immediate to Register/Memory I 1100011 w 1 modOOO rim 1 immediate data 2/2 2/2 b h 

Immediate to Register (short form) 11011 w reg 1 immediate data 2 2 

Memory to Accumulator (short form) 1 1010000w 1 full displacement 4 4 b h 

Accumulator to Memory (short form) I 1010001w 1 full displacement 2 2 b h 

Register Memory to Segment Register I 10001110 I mod sreg3 rIm 1 2/5 18/19 b h, i, j 

Segment Register to Register/Memory I 10001100 I mod sreg3 rIm I 2/2 2/2 b h 

MOVSX ~ Move With Sign Extension 

Register From Register/Memory 1 00001111 1 1011111 w I mod reg rim I 3/6 3/6 b h 

MOVZX = Move With Zero Extension 

Register From Register/Memory 1 00001111 1 1011011 w I mad reg r/ml 3/6 3/6 b h 

PUSH ~ Push: 

Register/Memory 11111111 1 mod 110 rim 1 5 5 b h 

Register (short form) 01010 reg 1 2 2 b h 

Segment Register (ES, es, SS or OS) 
000Sreg21101 2 2 b h (short form) 

Segment Register (ES, es, SS, OS, 00001 111 1 1 Osreg3000 1 2 2 b h FSorGS) 

Immediate 01101050 1 immediate data 2 2 b h 

PUSHA ~ Push All 01100000 1 18 18 b h 

POP ~ Pop 

Register/Memory 1 10001111 1 modOOO rim 1 5 5 b h 

Register (short form) 101011 reg I 4 4 b h 

Segment Register (ES, es, 55 or OS) 
1000Sreg21111 7 21 b h, i,i (shortlorm) 

Segment Register (ES, es, 55 or OS I 00001111 1 10sreg3001 1 7 21 b h, i,j FSorGS) 

POPA ~ Pop All 1 01100001 1 24 24 b h 

XCHG ~ Exchange 

Register/Memory With Register 1 1000011w I mod reg rim 1 3/5 3/5 b, f f, h 

Register With Accumulator (short form) 110010 reg 1 ClkCount 3 3 

IN = Input from: 
Virtual 

8086 Mode 

Fixed Port I 1110010w I port number, t26 12 6'/26" m 

Variable Port 1 1110110w 1 t27 13 7'/27" m 

OUT ~ Output to: 

Fixed Port I 1110011 w I port number t24 10 4'/24·· m 

Variable Port 1 1110111 w 1 t25 11 5'/25" m 

LEA ~ Load EA to Register I 10001101 I mod reg rim 1 2 2 

* If CPL <;; IOPL ** If CPL > IOPL 
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Table 8·1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected - Mode or Virtual Mode or Virtual 

Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

SEGMENT CONTROL 

LOS ~ Load Pointer to OS 11000101 mod reg rim! 7 22 b h.i.j 

LES ~ Load Pointer to ES 11000100 mod reg rim! 7 22 b h.i.j 

LFS ~ Load Pointer to FS 00001111 10110100 I mod reg rim! 7 25 b h.i.j 

LGS ~ Load Pointer to GS 00001111 10110101 I mod reg rim! 7 25 b h.i.j 

LSS ~ Load Pointer to SS 00001111 10110010 I mod reg rim! 7 22 b h. i.j 

FLAG CONTROL 

CLC ~ Clear Carry Flag I 11111000 2 2 

CLD ~ Clear Direction Flag I 11111100 2 2 

CLI ~ Clear Interrupt Enable Flag I 11111010 3 3 m 

CL TS ~ Clear Task Switched Flag I 00001111 00000110 ! 5 5 c I 

CMC ~ Complement Carry Flag I 11110101 2 2 

LAHF ~ Load AH Into Flag 10011111 2 2 

POPF ~ Pop Flags 10011101 5 5 b h. n 

PUSHF ~ Push Flags 10011100 4 4 b h 

SAHF ~ Store AH Into Flags 10011110 3 3 

STC ~ Set Carry Flag 11111001 2 2 

STD ~ Set Direction Flag 11111001 2 2 

STI ~ Set Interrupt Enable Flag 11111011 3 3 m 

ARITHMETIC 
ADD ~ Add 

Regisler to Register I OOOOOOdw mod reg rim! 2 2 

Regisler to Memory I OOOOOOOw mod reg rim! 7 7 b h 

Memory to Register I 0000001w mod reg rim! 6 6 b h 

Immediale to Register IMemory I 100000sw modOOO rim! immediate data 217 2/7 b h 

Immediate to Accumulator (short lorm) I 0000010w immediate data 2 2 

ADC ~ Add With Carry 

Register to Register I 000100dw mod reg rim! 2 2 

Register to Memory I 0001000w mod reg rim! 7 7 b h 

Memory to Register I 0001001w mod reg rim! 6 6 b h 

Immediate to Register/Memory I 100000sw mod 0 10 rim! immediate data 2/7 217 b h 

Immediate to Accumulator (short form) I 0001010w immediate data 2 2 

INC ~ Increment 

RegisterlMemory I lllllllw ! modOOO rim! 2/6 2/6 b h 

Register (short form) 101000 reg ! 2 2 

SUB ~ Subtract 

Register from Register I OOtOtOdw I mod reg rim! 2 2 
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a e -T bl 8 1 80386 I nstructlon et oc S CI kC ount S ummary (C ontlnue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

ARITHMETIC (Continued) 

Register from Memory I 00101 DOw ImOdreg r/ml 7 7 b h 

Memory from Register I 0010101w ImOdreg rIm] 6 6 b h 

Immediate from Register/Memory I 100000sw ImOdl01 rim] immediate data 217 217 b h 

Immediate from Accumulator (short form) I 0010t10wl immediate data 2 2 

SSS = Subtract with Borrow 

Register from Register I 00011 Odw ImOdreg r/ml 2 2 

Register from Memory I 0001 1 00 w I mod reg rIm] 7 7 b h 

Memory from Register I 0001 1 01 w I mod feg rIm] 6 6 b h 

Immediate from Register/Memory I 1 000 a 0 5 W I mod a 1 1 rIm] immediate data 217 217 b h 

Immediate from Accumulator (short form) 10001110wl immediate data 2 2 

DEC = Decrement 

Register/Memory I 1111111Wlreg001 r/ml 2/6 2/6 b h 

Register (short form) 101001 regl 2 2 

CMP ~ Compare 

Register with Register o 0 1 1 1 0 d w I mod reg r/ml 2 2 

Memory with Register 00111 OOw ImOdreg r/ml 5 5 b h 

Register with Memory 0011101w ImOdreg r/ml 6 6 b h 

Immediate with RegisterlMemory 1 00000 s w I mod 1 1 1 r/ml immediate data 2/5 2/5 b h 

Immediate with Accumulator (short form) 001111 Ow I immediate data 2 2 

NEG ~ Change Sign I 1 1 1 1 01 1 w I mod 0 1 1 r/ml 2/6 2/6 b h 

AAA ~ ASCII Adjust for Add I 00110111 I 4 4 

AAS ~ ASCII Adjust for Subtract L 00 111111J 4 4 

DAA ~ Decimal Adjust for Add I 00100111 I 4 4 

DAS = DeCimal Adjust for Subtract I 00101111 I 4 4 

MUL ~ Multiply (unsigned) 

Accumulator with RegisterlMemory I 1111011 w ImOd 100 r/ml 

Multiplier-Byte 9-14/12-17 9-14/12-17 b, d d, h 

-Word 9-22/12-25 9-22/12-25 b, d d, h 
-Doubleword 9-38/12-41 9-38/12-4f b, d d, h 

IMUL = Integer Multiply (signed) 

Accumulator with RegisterlMemory I 1111011 w ImOd 1 00 r/ml 
Multiplier-Byte I 9-14/12-17 9-14/12-17 b,d d, h 

-Word 

I 

9-22/12-25 9-22/12-25 b,d d, h 

-Doubleword 9-38/12-41 9-38/12-41 b,d d, h 

Register with Register IMemory I 00001111 I 10101111 Imod reg r/ml 
-Word 9-22/12-25 9-22/12-25 b, d d, h 

-Ooubleword 9-38/12-41 9-38/12-41 b,d d, h 

RegisterlMemory with Immediate to Register I 01 1010 s 1 Imod reg r/ml immediate data 

-Word 9-22/12-25 9-22/12-25 b, d d, h 

-Doubleword 9-38/12-41 9-38/12-41 b, d d, h 
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Table 8·1 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

ARITHMETIC (Continued) 

DIV ~ Divide (Unsigned) 

Accumulator by Register/Memory I 11 11011 w Imod 11 0 r/ml 
Divisor-Byte 14/17 14/17 b,o e,h 

-Word 22/25 22/25 b,e e,h 
-Doubleword 38/41 38/41 b,e e,h 

IDIV ~ Integer Divide (Signed) 

Accumulator By Register/Memory I 1111011 w Imod 111 r/ml 
Divisor-Byte 19/22 19/22 b,e e,h 

-Word 27/30 27/30 b,e e,h 
-Doubleword 43/46 43/46 b,e e,h 

AAD ~ ASCII Adjust for Divide I 11010101 I 00001010 I 19 19 

AAM ~ ASCII Adjust for Multiply I 11010100 I 00001010 I 17 17 

CBW = Convert Byte to Word I 100110001 3 3 

CWO ~ Convert Word to Double Word I 10011001 I 2 2 

LOGIC 

Shift Rotate Instructions 

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) 

Register/Memory by 1 11101 OOOw ImOdTTT r/ml 317 317 b h 

RegisterlMemory by CL 11101001 w I mod TIT r/ml 3/7 3/7 b h 

Register/Memory by Immediate Count I 11 OOOOOw I mod TIT r/mlimmed 8·bit data 3/7 317 b h 

Through Carry (RCL and RCR) 

Register/Memory by 1 I 1101 OOOw ImOdTIT r/ml 9/10 9/10 b h 

RegisterlMemory by CL I 1101001 w I mod TIT r/ml 9/10 9/10 b h 

RegisterlMemory by Immediate Count 11 1 00000 w I mod TIT r/ml immed B·bit data 9/10 9/10 b h 

TTT Instruction 

000 ROL 

001 ROR 
010 RCL 

011 RCR 

100 SHL/SAL 

101 SHR 

111 SAR 
SHLD ~ Shift Left Double 

Register/Memory by Immediate I 00001111 I 1 01 001 00 Imod reg r/mlimmed S-bit data 3/7 3/7 

RegisterlMemory by CL I 00001111 I 10100101 ImOdreg r/ml 317 3/7 

SHRD ~ Shift Right Double 

Register/Memory by Immediate I 00001111 I 10101100 ImOd reg r/ml immed B·bit data 3/7 317 

RegisterlMemory by CL I 0000111 1 I 10101101 ImOd reg r/ml 3/7 317 

AND ~ And 

Register to Register I 001000 d w Imod reg r/ml 2 2 
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Table 8-1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mcdeor Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

LOGIC (Continued) 

Register to Memory I OOtOOOOw I mod reg r/ml 7 7 b h 

Memory to Register I 0010001w I mod reg r/ml 6 6 b h 

Immediate to Register/Memory I 1 OOOOOOw Imodl 00 r/ml immediate data 217 217 b h 

Immediate to Accumulator (Short Form) I a 0 1 00 1 Ow I immediate data 2 2 

TEST ~ And Function to Flags, No Result 

Register/Memory and Register I 1000010w I mod reg r/ml 2/5 2/5 b h 

Immediate Data and Register/Memory I tlltOllw ImodOOO r/ml immediate data 2/5 2/5 b h 

Immediate Data and Accumulator 
(Short Form) I 10 1 0 1 DOw I immediate data 2 2 

OR ~ Or 

Register to Register I 00001 Odw I mod reg r/ml 2 2 

Register to Memory I 0000100w I mod reg r/ml 7 7 b h 

Memory to Register I 0000 101 w ImOdreg r/ml 6 6 b h 

Immediate to Register/Memory I 1 OOOOOOw ImodOOI r/ml immediate data 2/7 217 b h 

Immediate to Accumulator (Short Form) I 00 0 0110 w I immediate data 2 2 

XOR = Exclusive Or 

Register to Register o 0 1 1 0 a d w I mod reg r/ml 2 2 

Register to Memory 0011 OOOw ImOdreg r/ml 7 7 b h 

Memory to Register 0011001w ImOdreg r/ml 6 6 b h 

Immediate to Register/Memory 1 OOOOOOw Imodll 0 r / m I immediate data 2/7 217 b h 

Immediate to Accumulator (Short Form) 001101 Ow I immediate data 2 2 

NOT ~ Invert Reglster/Memory 1111011 w ImodO 1 0 rim/ 
Clk 

2/6 2/6 b h 

STRING MANIPULATION Count 
Virtual 

CMPS ~ Compare Byte Word I 1010011 wi 
8086 

10 10 b h Mode 

INS ~ Input Byte/Word from OX Port I a 11 a 11 Ow I I t29 15 9','29" b h,m 

LODS ~ Load Byte/Word to ALI AX/EAX I 10 1 a 11 Ow I 5 5 b h 

MOVS ~ Move Byte Word I 1010010wl 7 7 b h 

OUTS ~ Output Byte/Word to OX Port I a 11 a 111 wi I t28 14 8'/28" b h,m 

SCAS ~ Scan Byte Word I 1010111 wi 7 7 b h 

STOS ~ Store Byte/Word from 

AL/AX/EX I 1010101 wi 4 4 b h 

XLAT ~ Translate String I 11010111 I 5 5 h 

REPEATED STRING MANIPULATION 

Repeated by Count in ex or ECX 

REPE CMPS ~ Compare String 

(Find Non-Match) I 11110011 I 1010011 wi 5+9n 5+9n b h 

* If CPL ,;; IOPL .* If CPL > IOPL 
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Table 8-1. 80386 Instruction Set Cloc k Count S ummary( c ontlnued) 

CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Modear Virtual Modear Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

REPEATED STRING MANIPULATION (Continued) 

REPNE CMPS ~ Compare String ClkCount 

(Find Match) I till 00 1 0 1010011 w 
Virtual 

5+9n 5+9n b h 8086 Mode 

REP INS ~ Input String I 11110010 0110110w I t27+6n 13+6n 7 + 6n·'27 + 6n-· b h,m 

REP LODS ~ Load String I 11110010 1010110w 5+6n 5+6n b h 

REP MOVS ~ Move String I 11110010 1010010w 7+4n 7+4n b h 

REP OUTS ~ Output String 111110010 0110111 w I t26+5n 12+5n 6 + 5n-/26 + 5n·· b h,m 

REPE SCAS ~ Scan String 

(Find Non-ALI AX/EAX) I 1111001111010111Wl 5+8n 5+8n b h 

REPNE SCAS ~ Scan String 

(Find ALI AX/EAX) I 1111001011010111Wl 5+8n 5+8n b h 

REP STOS ~ Store String 11111001011010101Wl 5+5n 5+5n b h 

BIT MANIPULATION 

BSF ~ Scan Bit Forward I 00001111 I 1 0 1 1 1 1 00 ImOd reg r/ml 10+3n 10+3n b h 

BSR ~ Scan Bit Reverse I 00001111 I 1 0 1 1 1 1 00 ImOd reg r/ml 10+3n 10+3n b h 

BT ~ Test Bit 

Register/Memory. Immediate I 0000 1 1 1 1 I 1 0 1 1 1 0 1 0 Imod 1 00 r/mlirnmed 8-bit data 3/6 3/6 .b h 

RegisterlMemory, Register I 00001 111 11 01 0001 1 ImOd reg r/ml 3/12 3/12 b h 

BTC ~ Test Bit and Complement 

RegisterlMemory, Immediate I 00001111 110111010 Imod 111 r/mj;mmed 8-bit datal 6/8 6/8 b h 

RegisterlMemory, Register I 00001111 110111011 ImOd reg r/ml 6/13 6/13 b h 

BTR ~ Test Bit and Reset 

RegisterlMemory, Immediate I 0000 1 1 1 1 I 1 0 1 1 1 0 1 0 Imod 1 1 0 r/mlimmed a-bit datal 6/8 6/8 b h 

Register/Memory, Register I 00001111 11 011 001 1 Imod reg r/ml 6/13 6/13 b h 

BTS ~ Test Bit and Set 

RegisterlMemory, Immediate I 0000111 1 I 1 01 1 1 01 0 Imod 1 01 r/mlirnmed a-bit datal 6/8 6/8 b h 

Register/Memory, Register I 00001111 I 10101011 ImOdreg r/ml 6/13 6/13 b h 

BIT STRING MANIPULATION 

IBTS ~ Insert Bit String I 00001111 I 10100111 ImOdreg r/ml 12/19 12/19 b h 

XBTS ~ Extract Bit String I 00001111 I 1 0 1 00 1 1 0 ImOd reg r/ml 6/13 6/13 b h 

CONTROL TRANSFER 

CALL ~ Can 

Direct Within Segment I 1 1 1 0 1 0 0 0 I full displacement 7+m 7+m b r 

Register IMemory 

Indirect Within Segment I 11111111 Imodolo r/ml 
7+ml 7+ml b h, r 
10+m 10+m 

Direct Intersegment I 1 00 1 1 0 1 0 lunSigned full offset, selector 17+m 34+m b j,k,r 

Notes: 
t Clock count shown applies if I/O permission allows I/O to the port in virtual 6066 mode_ If I/O bit map denies permission 
exception 13 fault occurs; refer to clock counts for INT 3 instruction_ 
• If CPL s; 10PL •• If CPL > 10PL 

116 



inter 80386 

Table 8-1. 80386 Instruction Set Clock Count Summar (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONTROL TRANSFER (Continued) 

Protected Mode Only (Direct Intersegment) 

Via Call Gate to Same Privilege Level 52+m h,j,k,r 

Via Call Gate to Different Privilege Level, 

(No Parameters) 86+m h,j,k,r 

Via Call Gate to Different Privilege Level, 
(x Parameters) 94+4x+m h,j,k,r 

From 286 Task to 286 TSS 235 h,j,k,r 

From 286 Task to 386 TSS 265 h,j,k,r 

From 286 Task to Virtual 8086 Task (386 TSS) 214 h,j,k,r 

From 386 Task to 286 TSS 245 h,j,k,r 
From 386 Task to 386 TSS 275 h,j,k,r 

From 386 Task to Virtual 8086 Task (386 TSS) 224 h,j,k,r 

Indirect Intersegment I 11111111 ImodO 11 r/ml 22+m 38+m b h,j,k,r 

Protected Mode Only (Indirect Intersegment) 

Via Call Gate to Same Privilege Level 56+m h,j,k,r 

Via Call Gate to Different Privilege Level, 
(No Parameters) 90+m h,j,k,r 

Via Call Gate to Different Privilege Level. 
(x Parameters) 98+4x+m h,j,k,r 

From 286 Task to 286 TSS 240 h,j,k,r 

From 286 Task to 386 TSS 270 h,j,k,r 

From 286 Task to Virtual 8086 Task (386 TSS) 218 h,j,k,r 

From 386 Task to 286 TSS 250 h,j,k,r 

From 386 Task to 386 TSS 280 h,j,k,r 
From 386 Task to Virtual 8086 Task (386 TSS) 228 h,j,k,r 

JMP ~ Uncondillonal Jump 

Short I 11101001 la.bit displacement I 7+m 7+m r 

Direct within Segment I 11101001 I full displacement 7+m 7+m r 

Register/Memory Indirect within Segment I 11111111 I mod 100 r/ml 7+ml 7+ml 
b h,r 10+m 10+m 

Direct Intersegment I 11101010 I unsigned full offset, selector 12+m 27+m j,k,r 

Protected Mode Only (Direct Intersegment) 

Via Call Gate to Same Privilege Level 45+m h,j,k,r 

From 286 Task to 286 TSS 223 h,j,k,r 

From 286 Task to 386 TSS 253 h,j,k,r 
From 286 Task to Virtual 8086 Task (386 TSS) 212 h,j,k,r 

From 386 Task to 286 TSS 233 h,j,k,r 

From 386 Task to 386 TSS 263 h,j,k,r 

From 386 Task to Virtual 8086 Task (386 TSS) 222 h,j,k,r 

Indirect Intersegment 111111111 Imod 1 0 1 r/ml 17+m 31+m b h,j,k,r 

Protected Mode Only (Indirect Intersegment) 

Via Call Gate to Same Privilege Level 49+m h,j,k,r 

From 286 Task to 286 TSS 228 h,j,k,r 

From 286 Task to 386 TSS 258 h,j,k,r 

From 286 Task to Virtual 8086 Task (386 TSS) 216 h,j,k,r 

From 386 Task to 286 TSS 238 h,j,k,r 

From 386 Task to 386 TSS 268 h,j,k,r 

From 386 Task to Virtual 8086 Task (386 TSS) 226 h,j,k,r 
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a e -T bl 8 1 80386 I f ns rue Ion e oe S tCI k C oun tS ummary (C r on Inue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Modecr Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONTROL TRANSFER (Continued) 

RET ~ Return from CALL: 

Within Segment I 11000011 I 10 + m 10 + m b g, h" 

Within Segment Adding Immediate to SP I 11000010 I 16·bit displ I 10 + m 10 + m b g, h" 

Intersegment I 11001011 I 18 + m 32+m b g, h,i, k" 

Intersegment Adding Immediate to SP I 11001010 I 16·bit displ I 18 + m 32+m b g, h, i, k" 

Protected Mode Only (RET): 

to Different Privilege Level 
Intersegment 68 h, i, k" 
Intersegment Adding Immediate to SP 68 h, i, k" 

CONDITIONAL JUMPS 

NOTE: Times Are Jump "Taken or Not Taken" 
JO = Jump on Overflow 

a-Bit Displacement I 01110000 I 8·bit displ I 7 + m or3 7 + mor3 , 
Full Displacement I 00001111 I 10000000 I full displacement 7 + m or 3 7 + mor3 , 

JNO ~ Jump on Not Overflow 

8-Bit Displacement I 01110001 I 8·bitdispl I 7 + morS 7 + m or3 , 
Full Displacement I 00001111 I 10000001 I full displacement 7 + mor3 7 + m or3 , 

JB/JNAE ~ Jump on BelowlNot Above 0' Equal 

a-Bit Displacement lO11100101 8·bit displ j 7 + morS 7 + mor3 , 
Full Displacement l 00001111j 1 00000 1 0 j full displacement 7 + mor3 7 + m or3 , 

JNB/JAE ~ Jumpon Nol Below/Above or Equal 

8-Bit Displacement I 01110011 I 8·bit displ I 7 + mor3 7 + mor3 , 
Full Displacement I 00001111 I 10000011 I full displacement 7 + mor3 7+mor3 , 

JE/JZ ~ Jump on Equal/Zero 

8-Bit Displacement I 01110100 I 8·bit displ I 7 + mor3 7 + m or3 , 
Full Displacement I 00001111 I 10000100 I full displacement 7 + m or3 7 + mor3 , 

JNE/JNZ ~ Jump on Not Equal/Not Zero 

8-Bit Displacement I 01110101 I 8·bit displ I 7 + m or3 7+mor3 , 
Full Displacement I 00001111 I 10000101 I full displacement 7 + mor3 7+mor3 , 

JBE/JNA = Jump on Below or Equal/Not Above 

8-Bit Displacement I 01110110 I 8·bitdispl I 7 + mor3 7 + mor3 , 
Full Displacement I 00001111 I 10000110 I full displacement 7 + mor3 7 + mor3 , 

JNBE/JA ~ Jump on Not Below or Equal/Above 

8-Bit Displacement I 01110111 I 8·bit displ I 7 + mor3 7 + m or3 , 
Full Displacement I 00001111 I 10000111 I full displacement 7 + mor3 7+mor3 , 

JS ~ Jump on Sign 

8-Bit Displacement I 01111000 I 8·bitdispl I 7 + mor3 7 + mor3 , 
Full Displacement I 00001111 I 10001000 I full displacement 7 + mor3 7 + mor3 , 
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Table 8-1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONDITIONAL JUMPS (Continued) 

JNS ~ Jump on Not Sign 

8~Bit Displacement I 01111001 I 8-bil displ I 7+mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001001 I full displacement 7 + mor3 7 + mor3 r 

JP/JPE ~ Jump on Parity/Parity Even 

8·Bit Displacement I 01111010 I 8-bit displ I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001010 I full displacement 7 + mor3 7 + mor3 r 

JNP/JPO ~ Jump on Not Parity/Parity Odd 

8-Bit Displacement I 01111011 I 8-bit displ I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001011 I full displacement 7+mor3 7 + mor3 r 

JL/JNGE ~ Jump on LesslNot Greater or Equal 

8-Bit Displacement I 01111100 I 8-bit displ I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001100 I full displacement 7 + mor3 7 + mor3 r 

JNLlJGE ~ Jump on Not Less/Greater or Equal 

8-Bit Displacement I 01111101 I 8-bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001101 I full displacement 7 + mor3 7 + mor3 r 

JLE/JNG ~ Jump on Less or Equal/Not Greater 

a-Bit Displacement I 01111110 I 8-bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001110 I full displacement 7+mor3 7 + mor3 r 

JNLE/JG ~ Jump on Not Less or Equal/Greater 

a-Bit Displacement I 01111111 I 8-bitdispl I 7 + morS 7 + morS r 

Full Displacement I 00001111 I 10001111 I full displacement 7 + m or3 7 + mor3 r 

JCXZ ~ Jump on CX Zero I 11100011 I 8-bitdispl I 9 + marS 9 + morS r 

JECXZ ~ Jump on ECX Zero I 11100011 I 8-bitdispl I 9 + morS 9 + mor5 r 

(Operand Size Prefix Differentiates JCXZ from JECXZ) 

LOOP ~ Loop CX Times I 11100010 I 8-bitdispl I 11 + m 11 + m r 

LOOPZ/LOOPE ~ Loop with 
Zero/Equal I 11100001 I 8-bitdispl I 11 + m 11 + m r 

LOOPNZ/LOOPNE ~ Loop While 
Not Zero I 11100000 I 8-bitdispl I 11 +m 11 + m r 

CONDITIONAL BYTE SET 
NOTE: Times Are Register/Memory 

SETO ~ Set Byte on Overflow 

To Register/Memory I 00001111 I 10010000 I modOOO r/ml 4/5 4/5 h 

SETNO ~ Set Byte on Not Overflow 

To Register/Memory I 00001111 I 10010001 I modOOO rim I 4/5 4/5 h 

SETBISETNAE ~ Set Byte on Below/Not Above or Equal 

To Register/Memory I 00001111 I 10010010 I modOOO r/mi 4/5 4/5 h 
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Table 8-1. 80386 Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONDITIONAL BYTE SET (Continued) 

SETNB ~ Set Byte on Not Below/Above or Equal 

To Register/Memory I 00001111 I 10010011 I modOOO rIm I 4/5 4/5 h 

SETE/SETZ ~ Set Byte on EquallZero 

To Register/Memory I 00001111 I 10010100 I modOOO rim I 4/5 4/5 h 

SETNE/SETNZ ~ Set Byte on Not EquallNot Zero 

To Register/Memory I 00001111 I 10010101 I modOOO r/m' 4/5 4/5 h 

SETBE/SETNA ~ Set Byte on Below or EquallNot Above 

To Register/Memory I 0000 1 1 1 1 I 10010110 I modOOO r/m' 4/5 4/5 h 

SETNBE/SETA ~ Set Byte on Not Below or Equall Above 

To Register/Memory I 00001111 I 10010111 I modOOO r/m' 4/5 4/5 h 

SETS ~ Set Byte on Sign 

To Register/Memory I 00001111 I 10011000 I modOOO r/m' 4/5 4/5 h 

SETNS ~ Set Byte on Not Sign 

To Register/Memory I 00001111 I 10011001 I modOOO r/m' 4/5 4/5 h 

SETP/SETPE ~ Set Byte on Parlty/Parlty Even 

To Register/Memory I 00001111 I 10011010 , modOOO r/m' 4/5 4/5 h 

SETNP/SETPO ~ Set Byte on Not Parlty/Parlty Odd 

To Register/Memory I 000011 11 I 10011011 I modOOO rIm' 4/5 4/5 h 

SETUSETNGE ~ Set Byte on LesslNot Greater or Equal 

To Register/Memory I 0000 1 1 1 1 I 10011100 I modOOO rIm' 4/5 4/5 h 

SETNL/SETGE ~ Set Byte on Not Less/Greater or Equal 

To Register/Memory I 0000 1 1 1 1 
, 

01111101 I modOOO rIm' 4/5 4/5 h 

SETLE/SETNG ~ Set Byte on Less or EquallNot Greater 

To Register/Memory I 00001111 I 10011110 I modOOO rim' 4/5 4/5 h 

SETNLE/SETG ~ Set Byte on Not Less or EquallGreater 

To Register/Memory I 0000 1 1 1 1 I 10011111 I modOOO rim I 4/5 4/5 h 

ENTER ~ Enter Procedure I 1 1 0 0 1 0 0 0 liS-bit displacement, S-bit level I 
L~O 10 10 b h 
L~ 1 12 12 b h 
L> 1 15 + 15 + b h 

4(n - 1) 4(n - 1) 

LEAVE ~ Leave Procedure I 11001001 
, 

4 4 b h 
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a e -T bl 8 1 80386 I nstructlon et oc S CI kC oun tS ummaay (C ontmue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

INTERRUPT INSTRUCTIONS 

INT ~ Interrupt: 

Type Specified I 11001101 I type I 37 b 

Type 3 I 11001100 I 33 b 

INTO ~ Interrupt 4 II Overflow Flag Set I 11001110 I 
If OF ~ 1 35 b,e 
If OF ~ 0 3 3 b, e 

Bound = Interrupt Sit Oetect Value I 01100010 I mod reg r/ml 
Outot Range 

If Out of Range 44 b, e e, g, h,j, k, r 
If In Range 10 10 b, e e, g, h,j, k, r 

Protected Mode Only (lNT) 

INT: Type Specilled 

Via Interrupt or Trap Gate 

to Same Privilege Level 59 g,j, k, r 
Via Interrupt or Trap Gate 

to Different Privilege Level 99 g, j, k, r 
From 286 Task to 286 TSS via Task Gate 247 g, j, k, r 
From 286 Task to 386 TSS via Task Gate 277 g, j, k, r 
From 268 Task to virt 8086 md via Task Gate 224 g, j, k, r 
From 386 Task to 286 TSS via Task Gate 257 g, j, k, r 
From 386 Task to 386 TSS via Task Gate 287 g, j, k, r 
From 368 Task to virt B086 md via Task Gate 238 g, j, k, r 
From virt 8086 md to 286 TSS via Task Gate 257 g, j, k, r 
From virt 8086 md to 386 TSS via Task Gate 287 g, j, k, r 
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119 

INT:TVPE 3 

Via Interrupt or Trap Gate 

to Same Privilege Level 59 g, j, k, r 
Via Interrupt or Trap Gate 

to Different Privilege Level 99 g,j, k, r 
From 286 Task to 286 TSS via Task Gate 243 g, j, k, r 
From 286 Task to 386 TSS via Task Gate 273 g, j, k, r 
From 268 Task to Virt 8086 md via Task Gate 220 g, j, k, r 
From 386 Task to 286 TSS via Task Gate 253 g, j, k, r 
From 386 Task to 386 TSS via Task Gate 283 g, j, k, r 
From 368 Task to Virt 8086 md via Task Gate 232 g, j, k, r 
From virt 8086 md to 286 TSS via Task Gate 253 g, j, k, r 
From virt 8086 md to 386 TSS via Task Gate 283 g, j, k, r 
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119 

INTO: 

Via Interrupt or Trap Grate 

to Same Privilege Level 59 g, j, k, r 
Via Interrupt or Trap Gate 

to Different Privilege Level 99 g, j, k, r 
From 286 Task to 286 TSS via Task Gate 245 g, j, k, r 
From 286 Task to 386 TSS via Task Gate 275 g,j, k, r 
From 268 Task to virt 8086 md via Task Gate 222 g,j, k, r 
From 386 Task to 286 TSS via Task Gate 255 g,j, k, r 
From 386 Task to 386 TSS via Task Gate 285 g,j, k, r 
From 368 Task to virt 8086 md via Task Gate 234 g,j, k, r 
From virt 8086 md to 286 TSS via Task Gate 255 g, j, k, r 
From virt 8086 md to 386 TSS via Task Gate 285 g, j, k, r 
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119 
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T bl a e 8-1. 8 o 61 38 nstructlon et oc S CI kC ount S ummary (C ontlnue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Addresa 
8086 Mode 8086 Mode 
Mode Mode 

INTERRUPT INSTRUCTIONS (Continued) 

BOUND: 

Via Interrupt or Trap Gate 
to Same Privilege Level 59 g,i, k, r 

Via Interrupt or Trap Gate 

to Different Privilege Level 99 g,i, k, r 

From 286 Task to 286 TSS via Task Gate 254 g,i,k,r 

From 286 Task to 386 TSS via Task Gate 284 g,i,k,r 

From 268 Task to virt 8086 Mode via Task Gate 231 g,i,k,r 

From 386 Task to 286 TSS via Task Gate 264 g,i, k, r 

From 386 Task to 386 TSS via Task Gate 294 g,i, k, r 

From 368 Task to virt 8086 Mode via Task Gate 243 g,i, k, r, 

From virt 8086 Mode to 286 TSS via Task Gate 264 g,i, k, r 

From virt 8086 Mode to 386 TSS via Task Gate 294 g,i, k, r 

From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119 

INTERRUPT RETURN 

IRET = Interrupt Return I 11001111 I 22 g, h,i,k,r 

Protected Mode Only (IRET) 

To the Same Privilege Level (within task) 38 g, h,i,k,r 

To DiHerent Privilege Level (within task) 82 g, h,i,k,r 

From 286 Task to 286 TSS 232 h,i, k, r 

From 286 Task to 386 TSS 265 h,i, k, r 

From 286 Task to Virtual 8086 Task 214 h,i, k, r 

From 286 Task to Virtual 8086 Mode (within task) 60 

From 386 Task to 286 TSS 271 h,i, k, r 

From 386 Task to 386 TSS 275 h,i, k, r 

From 386 Task to Virtual 8086 Task 224 h,i, k, r 

From 386 Task to Virtual 8086 Mode (within task) 60 

PROCESSOR CONTROL 

HLT = HALT I 11110100 I 5 5 I 

MOV = Move to and From Control/DebuglTest Registers 

CRO/CR2/CR3 from register I 00001111 00100010 11 eee reg 10/4/5 10/4/5 I 

Register From CRO-3 I 00001111 00100000 11 eee reg 6 6 I 

DRO-3 From Register I 00001111 00100011 11 eee reg 22 22 I 

DR6-7 From Register I 00001111 00100011 11 eee reg 16 16 I 

Register from DR6-7 I 00001111 00100001 11 eeereg 14 14 I 

Register from DRO-3 I 00001111 00100001 11 eeereg 22 22 I 

TR6-7 from Register I 00001111 00100110 11 eeereg 12 12 I 

Register from TR6-7 I 00001111 00100100 11 eee reg 12 12 I 

NOP = No Operation I 10010000 3 3 

WAIT = Wail until BUSY# pin Is negated I 10011011 6 6 
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a e T bl 8 -1. 803 86 nstructlon et oc S CI kC ount S ummary (C ontlnue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

PROCESSOR EXTENSION INSTRUCTIONS 

Processor Extension Escape 111011 TTT I modLLL rim I See h 

Tn and LLL bits are opcode 80287/80387 

information for coprocessor. data sheets for 
clock counts 

PREFIX BYTES 

Address Size Prellx I 01100111 I 0 0 

LOCK ~ Bus Lock Prellx I 11110000 I 0 0 m 

Operand Size Prellx I 01100110 I 0 0 

Segment Override Prellx 

CS: 00101110 0 0 

DS: 00111110 0 0 

ES: 00100110 0 0 

FS: 01100100 0 0 

GS: 01100101 0 0 

ss: 00110110 0 0 

PROTECTION CONTROL 

ARPL ~ Adjust Requested Privilege Level 

From Register/Memory I 01100011 I mod reg rim I N/A 20/21 a h 

LAR ~ Load Access Rights 

From RegislerlMemory I 00001111 I 00000010 I mod reg rim I N/A 15/16 a g, h,j,p 

LGDT ~ Load Global Descriptor 

Table Register I 00001111 I 00000001 ImodOl0 rim I 11 11 b,c h, I 

LIDT ~ Load Interrupt Descriptor 

Table Register I 00001111 I 00000001 I modOll rim I 11 11 b, c h, I 

LLDT ~ Load Local Descriptor 

Table Register 10 
RegisterlMemory I 00001111 I 00000000 I modOl0 rim I N/A 20/24 a g, h,j,1 

LMSW ~ Load Machine Status Word 

From RegisterlMemory I 00001111 I 00000001 I modll 0 rim I 10/13 10/13 b,c h, I 

LSL ~ Load Segment Limit 

From RegisterlMemory I 00001111 I 00000011 I mod reg rim I 

Byte-Granular Limit N/A 20/21 a g, h,j, P 
Page-Granular Limit N/A 25/26 a g,h,j,p 

LTR ~ Load Task Register 

From RegislerlMemory I 00001111 I 00000000 I modOOl r/ml N/A 23/27 a g, h,j,1 

SGDT ~ Store Global Descriptor 

Table Register I 00001111 I 00000001 I modOOO rim I 9 9 b, c h 
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a e -1. T bl 8 803861 ns rue Ion e oe t" StCI kC ount 5 ummary (C ontlnue d) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Madear Virtual Modear Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

SlOT ~ Store Interrupt Descriptor 

Table Register I 00001111 I 00000001 ImodOOl rIm I 9 9 b,c h 

SLOT ~ Store Local Descriptor Table Register 

To Register/Memory I 00001111 I 00000000 I modOOO rIm! N/A 2/2 a h 

SMSW ~ Store Machine 
Status Word I 00001111 I 00000001 Imodl00 rIm! 10/13 10/13 b,c h, I 

STR ~ Store Task Register 

To RegisterlMemory I 00001111 I 00000000 ! modOO 1 rIm! N/A 2/2 a h 

VERR ~ Verify Read Accesss 

Register/Memory I 00001111 I 00000000 I modI 00 r/ml N/A 10/11 a g, h,j, P 

VERW ~ Verify Write Accesss I 00001111 I 00000000 I modI 01 r/ml N/A 15/16 a g, h,j, P 

INSTRUCTION NOTES FOR TABLE 8-1 

Notes a through c apply to 80386 Real Address Mode only: 
a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully 
extends beyond the maximum CS, OS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not 
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit. 
c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected 
Mode. 

Notes d throughg apply to 80386 Real Address Mode and 80386 Protected Virtual Address Mode: 
d. The iAPX 386 uses an early-out multiply algorithm. The actual number of clocks depends on the pOSition of the most 
significant bit in the operand (multiplier). 

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula: 
Actual Clock = if m < > 0 then max ([IOg2 Imll. 3) + 6 clocks: 

if m = 0 then 9 clocks (where m is the multiplier) 
e. An exception may occur, depending on the value of the operand. 
f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK# prefix. 
g. LOCK # is asserted during descriptor table accesses. 

Notes h through r apply to 80386 Protected Virtual Address Mode only: 
h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, OS, ES, FS or GS cannot be used 
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment 
limit violation or not present) occurs. 
i. For segment load operations, the CPL, RPL, and OPL must agree with the privilege rules to avoid an exception 13 fault 
(general protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, OS, ES, FS, GS not 
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit 
violation or not present) occurs. 
j. All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK# to maintain 
descriptor integrity in multiprocessor systems. 
k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general 
protection violation) if an applicable privilege rule is violated. 
I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
m. An exception 13 fault occurs if CPL is greater than IOPL. 
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are 
updated only if CPL = O. 
o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit. 
p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero 
flag is cleared. 
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general 
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation 
or not present) will occur if the stack limit is violated by the operand's starting address. 
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault 
(general protection violation) will occur. 
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8.2 INSTRUCTION ENCODING 

8.2.1 Overview 

All instruction encodings are subsets of the general 
instruction format shown in Figure 8-1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rim" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rim 
byte, specifies the address mode to be used. Certain 

encodings of the mod rim byte indicate a second 
addressing byte, the scale-index-base byte, follows 
the mod rim byte to fully specify the addressing 
mode. 

Addressing modes can include a displacement im­
mediately following the mod rim byte, or scaled in­
dex byte. If a displacement is present, the possible 
sizes are 8, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure 8-1 illustrates several of the fields that can 
appear in an instruction, such as the mod field and 
the rim field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 8-2 is a complete list of all fields ap­
pearing in the 80386 instruction set. Further ahead, 
following Table 8-2, are detailed tables for each 
field. 

ITTTTTTT T I TTT TTTTT I mod TTT rim I ss index base Id32i16i8i none data32i16i8i none 

:z 07 o)~~~\ ) 

opcode 
(one or two bytes) 
(T represents an 

opcode bit.) 

"mod rim" "s-i-b" 
byte byte 

\~--------~--------~) 

register and address 
mode specifier 

address 
displacement 
(4, 2, 1 bytes 

or none) 

Figure 8-1. General Instruction Format 

Table 8-2. Fields within 80386 Instructions 

Field Name Description 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 
d Specifies Direction of Data Operation 
s Specifies if an Immediate Data Field Must be Sign-Extended 
reg General Register Specifier 
mod rim Address Mode Specifier (Effective Address can be a General Register) 

ss Scale Factor for Scaled Index Address Mode 
index General Register to be used as Index Register 
base General Register to be used as Base Register 
sreg2 Segment Register Specifier for CS, SS, OS, ES 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 
tttn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 

Note: Table 8-1 shows encoding of individual instructions. 
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immediate 
data 

(4, 2, 1 bytes 
or none) 

Number of Bits 

1 
1 
1 
3 

2 for mod; 
3 for rim 

2 
3 
3 
2 
3 
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8.2.2 32-Bit Extensions of the 
Instruction Set 

With the 80386, the 86/186/286 instruction set is 
extended in two orthogonal directions: 32-bit forms 
of all 16-bit instructions are added to support the 32-
bit data types, and 32-bit addressing modes are 
made available for all instructions referencing mem­
ory. This orthogonal instruction set extension is ac­
complished having a Default (D) bit in the code seg­
ment descriptor, and by having 2 prefixes to the in­
struction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the 0 bit in 
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that 
code segment. In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a 0 value of 0 is assumed internally by the 80386 
when operating in those modes (for 16-bit default 
sizes compatible with the 8086/80186/80286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32-bit effective address computa­
tions. 

These 32-bit extensions are available in all 80386 
modes, including the Real Address Mode or the Vir­
tual 8086 Mode. In these modes the default is al­
ways 16 bits, so prefixes are needed to specify 32-
bit operands or addresses. 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 

8.2.3 Encoding of Instruction Fields 

Within the instruction are several fields indicating 
register selection, addreSSing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 
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8.2.3.1 ENCODING OF OPERAND LENGTH (w) 
FIELD 

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wField During 16·8it During 32·8it 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

8.2.3.2 ENCODING OF THE GENERAL 
REGISTER (reg) FIELD 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" byte. 

Encoding of reg Field When w Field 
is not Present in Instruction 

Register Selected Register Selected 
reg Field During 16·8it During 32·8it 

000 
001 
010 
011 
100 
101 
101 
101 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Data Operations Data Operations 

AX EAX 
CX ECX 
OX EDX 
BX EBX 
SP ESP 
BP EBP 
SI ESI 
01 EDI 

Encoding of reg Field When w Field 
is Present in Instruction 

Register Specified by reg Field 
During 16·8it Data Operations: 

Function of w Field 

(when w = 0) (when w = 1) 

AL AX 
CL CX 
DL OX 
BL BX 
AH SP 
CH BP 
DH SI 
BH 01 
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Register Specified by reg Field 
During 32-Bit Data Operations 

Function of w Field 
reg 

(whenw = 0) (whenw = 1) 

000 AL EAX 
001 CL ECX 
010 DL EDX 
011 BL EBX 
100 AH ESP 
101 CH EBP 
110 DH ESI 
111 BH EDI 

8.2.3.3 ENCODING OF THE SEGMENT 
REGISTER (sreg) FIELD 

The sreg field in certain instructions is a 2-bit field 
allowing one of the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3-bit field, allowing the 80386 FS and GS segment 
registers to be specified. 

2-Bit sreg2 Field 

2-Bit 
Segment 

sreg2 Field 
Register 
Selected 

00 ES 
01 CS 
10 SS 
11 DS 

3-Bit sreg3 Field 

3-Bit 
Segment 

sreg3 Field 
Register 
Selected 

000 ES 
001 CS 
010 SS 
011 DS 
100 FS 
101 GS 
110 do not use 
111 do not use 
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8.2.3.4 ENCODING OF ADDRESS MODE 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rim" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rim" byte has rim = 100 and mod = 00,01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rim" byte, 
also contains three bits (shown as TTT in Figure 8-1) 
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as 
a register field (reg). 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad· 
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the 
"mod rim" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 
"mod rim" byte is interpreted as a 32·bit addressing 
mode specifier. 

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit 
addressing modes. 
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Encoding of 16·bit Address Mode with "mod rIm" Byte 

mod rIm Effective Address mod rIm Effective Address 

00000 OS:[BX+Sil 10000 OS:[BX+SI +d16) 
00001 OS:[BX+Oil 10001 OS:[BX + 01 + d16) 
00010 SS:[BP+Sil 10010 SS:[BP+SI+d16) 
00011 SS:[BP+Oil 10011 SS:[BP+ 01 + d16) 
00100 OS:[Sil 10100 OS: [SI + d16) 
00101 OS:[Oil 10101 OS: [01 + d16) 
00110 OS:d16 10110 SS: [BP + d16) 
00111 OS:[BX) 10 111 OS:[BX+d16) 

,. 
01000 OS: [BX + SI + dB) 11000 register-see below 
01 001 OS: [BX + 01 + dB) 11 001 register-see below 
01 010 SS:[BP+SI+dB) 11 010 register-see below 
01011 SS: [BP + 01 + dB) 11 011 register-see below 
01100 OS:[SI+dB) 11 100 register-see below 
01 101 OS:[OI + dB) 11 101 register-see below 
01 110 SS:[BP+dB) 11 110 register-see below 
01 111 OS:[BX+dB) 11 111 register-see below 

Register Specified by rIm 
During 16·Bit Data Operations 

mod rIm 
Function of w Field 

(when w=O) (when w = 1) 

11000 AL AX 
11 001 CL CX 
11 010 OL OX 
11 011 BL BX 
11 100 AH SP 
11 101 CH BP 
11 110 OH SI 
11 111 BH 01 

Register Specified by rIm 
During 32·Bit Data Operations 

mod rIm 
Function of w Field 

(when w=O) (when w = 1) 

11000 AL EAX 
11 001 CL ECX 
11010 OL EOX 
11 011 BL EBX 
11 100 AH ESP 
11 101 CH EBP 
11 110 OH ESI 
11 111 BH EOI 
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Encoding of 32-bit Address Mode with "mod rIm" byte (no "s-i-b" byte present): 

mod rIm Effective Address mod rIm Effective Address 

00000 OS: [EAX) 10000 OS:[EAX+d32) 
00001 OS: [ECX) 10001 OS: [ECX + d32) 
00010 OS:[EOX) 10010 OS: [EOX + d32) 
00011 OS:[EBX) 10011 OS: [EBX + d32) 
00100 s-i-b is present 10100 s-i-b is present 
00101 OS:d32 10101 SS: [EBP + d32) 
00110 OS: [ESI) 10110 OS: [ESI + d32) 
00111 OS:[EOI) 10 111 OS: [EOI + d32) 

01000 OS:[EAX+dS) 11 000 register-see below 
01001 OS: [ECX + dS) 11001 register-see below 
01 010 OS:[EOX+dS) 11010 register-see below 
01 011 OS:[EBX+dS) 11 011 register-see below 
01 100 s-i-b is present 11 100 register-see below 
01 101 SS: [EBP + dS) 11 101 register-see below 
01 110 OS: [ESI + dS) 11 110 register-see below 
01 111 OS: [EOI + dS) 11 111 register-see below 

Register Specified by reg or rIm 
during 16-Bit Data Operations: 

mod rIm 
function of w field 

(when w=O) (when w= 1) 

11000 AL AX 
11001 CL CX 
11 010 DL DX 
11 011 BL BX 
11100 AH SP 
11 101 CH BP 
11 110 DH SI 
11 111 BH 01 

Register Specified by reg or rIm 
during 32-Bit Data Operations: 

mod rIm 
function of w field 

(whenw=O) (whenw= 1) 

11 000 AL EAX 
11001 CL ECX 
11 010 OL EOX 
11 011 BL EBX 
11100 AH ESP 
11 101 CH EBP 
11 110 DH ESI 
11 111 BH EDI 
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Encoding of 32-bit Address Mode ("mod rim" byte and "s-i-b" byte present): 

mod base Effective Address 

00000 OS: [EAX + (scaled index)] 
00001 OS: [ECX + (scaled index)] 
00010 OS: [EOX + (scaled index)] 
00011 OS: [ESX + (scaled index)] 
00100 SS: [ESP + (scaled index)] 
00101 OS: [d32 + (scaled index)] 
00110 OS:[ESI + (scaled index)] 
00111 OS: [EOI + (scaled index)] 

01000 OS: [EAX + (scaled index) + dB] 
01001 OS: [ECX + (scaled index) + dB] 
01010 OS: [EOX + (scaled index) + dB] 
01011 OS: [ESX + (scaled index) + dB] 
01100 SS; [ESP + (scaled index) + dB] 
01101 SS: [ESP + (scaled index) + dB] 
01110 OS: [ESI + (scaled index) + dB] 
01 111 OS: [EO I + (scaled index) + dB] 

10000 OS: [EAX + (scaled index) + d32] 
10001 OS: [ECX + (scaled index) + d32] 
10010 OS: [EOX + (scaled index) + d32] 
10011 OS: [ESX + (scaled index) + d32] 
10100 SS; [ESP + (scaled index) + d32] 
10101 SS: [ESP + (scaled index) + d32] 
10110 OS: [ESI + (scaled index) + d32] 
10 111 OS: [EOI + (scaled index) + d32] 

NOTE: 
Mod field in "mod rim" byte; ss, index, base fields in 
"s-i-b" byte. 
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ss Scale Factor 

00 x1 
01 x2 
10 x4 
11 xB 

index Index Register 

000 EAX 
001 ECX 
010 EOX 
011 ESX 
100 no index reg* * 
101 ESP 
110 ESI 
111 EOI 

"IMPORTANT NOTE: 
When index field is 100, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal 00, the effective address is undefined. 
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8.2.3.5 ENCODING OF OPERATION DIRECTION 
(d) FIELD 

In many two·operand instructions the d field is pres· 
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod r/m" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod r/m" or "mod ss index base" Indicates 
Source Operand 

8.2.3.6 ENCODING OF SIGN-EXTEND (s) FIELD 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 1S-bit or 32-bit destination. 

Effect on Effect on 
s Immediate Data8 Immediate Data 16132 

None None 

1 Sign-Extend Data8 to Fill None 
1S-Bit or 32-Bit Destination 

8.2.3.7 ENCODING OF CONDITIONAL TEST 
(tttn) FIELD 

For the conditional instructions (conditional jumps 
and set on condition), tttn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1), 
and ttt giving the condition to test. 
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Mnemonic Condition tttn 

0 Overflow 0000 
NO No Overflow 0001 
B/NAE Below/Not Above or Equal 0010 
NB/AE Not Below/Above or Equal 0011 
E/Z Equal/Zero 0100 
NE/NZ Not EquallNot Zero 0101 
BEINA Below or EquallNot Above 0110 
NBE/A Not Below or Equal/ Above 0111 
S Sign 1000 
NS Not Sign 1001 
PIPE Parity/Parity Even 1010 
NP/PO Not Parity/Parity Odd 1011 
L/NGE Less Than/Not Greater or Equal 1100 
NL/GE Not Less Than/Greater or Equal 1101 
LEING Less Than or Equal/Greater Than 1110 
NLE/G Not Less or Equal/Greater Than 1111 

8.2.3.8 ENCODING OF CONTROL OR DEBUG 
OR TEST REGISTER (eee) FIELD 

For the loading and storing of the Control, Debug 
and Test registers. 

When Interpreted as Control Register Field 

eeeCode Reg Name 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 DRO 
001 DR1 
010 DR2 
011 DR3 
110 DRS 
111 DR7 

Do not use any other encoding 

When Interpreted as Test Register Field 

eeeCode Reg Name 

110 TRS 
111 TR7 

Do not use any other encoding 
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