YAMAHA® L 5 I

OPL4 YNF278B APPLICATION MANUAL

FM+WAVE TABLE SYSTHESIZER

YMF278B APPLICATION MANUAL CATALOG No. : -LSI 6MF2782 1994. 3

- NOTICES -----

YAMAHA reserves the right to make changes in specifications in order to improve performance without notice.

The application circuits herein are presented only as an example.

No responsibility is assumed by YAMAHA for its use nor for any infringements of patents or rights of others which may result from its use. And no license is granted by implication or otherwise under any patent or patent rights of YAMAHA.

.

CONTENTS

OVERVIEW	1
FEATURES	1
BLOCK DIAGRAM	2
PIN LAYOUT	3
DESCRIPTION OF PIN FUNCTIONS	4
CPU INTERFACE	7
STATUS REGISTER	9
OVERVIEW OF WAVE TABLE SYNTHESIS	11
WAVE TABLE FOR WAVE TABLE SYNTHESIS AND MIXING	12
CHANNEL	
REGISTERS (WAVE TABLE SYNTHESIZER)	
ENVELOP	
HOW TO CALCULATE THE ACTUAL RATE	23
RELATION BETWEEN RATE VALUE AND ACTUAL TIME	24
EXTERNAL MEMORY DATA FORMAT	
HEADER PART	27
CONNECTION TO EXTERNAL MEMORY	29
EXTERNAL MEMORY CHIP SELECT SIGNALS	30
OVERVIEW OF FM SYNTHESIZER	
REGISTER TABLE FOR FM SYNTHESIS	
REGISTER SETTING	
REGISTERS (FM)	41
ENVELOP GRAPH (FM)	54
RATE VALUE AND ACTUAL TIME TABLE	
INPUT CLOCK	57
CONNECTION TO D/A CONVERTER AND EFFECT PROCESSOR	58
DAC OUTPUT CIRCUIT EXAMPLE	59
AUDIO OUTPUT INTERFACE	60
OUTPUT TIMING	60
ELECTRICAL CHARACTERISTICS	61

OVERVIEW

The YMF278B (OPL4) is a synthesizer LSI which integrates Wave Table synthesis and FM synthesis into one chip. It can generate 24 voices of Wave Table synthesis at one time. With wave data memory connected externally, it complies with GM System Level 1.

The FM synthesizer portion is register-compatible with the YMF262 (OPL3), which is a popular synthesizer LSI for IBM-PC.

With these features, this LSI (YMF278B) maintains software compatibility with applications currently in use and provides enhanced functions and higher performance when it is used in a multi-media personal computer (MPC) or sound board.

The YRW801 is also available as a Wave Table synthesis waveform data ROM.

FEATURES

- FM synthesis (same as YMF262)
 - 1. Sound generation mode
 - Two-operator mode

Generates eighteen voices in two operator modes or fifteen voices plus five rhythm sounds in two operator modes simultaneously.

- Four-operator mode Generates six voices in four operator modes plus six voices in two operator modes or six voices in four operator modes plus three voices plus five rhythm sounds in two operator modes simultaneously.
- 2. Eight selectable waveforms.
- 3. Stereo output.
- Wave Table Synthesis
 - 1. Generates twenty-four voices simultaneously.
 - 2.44.1kHz sampling rate for output sound data.
 - 3. Selectable from 8-bit, 12-bit, and 16-bit word lengths for wave data.
 - 4. Stereo output. (16-stage panpot for each voice)

Wave Data

- 1. Accepts 32M bits external memory at maximum.
- 2. Up to 512 wave tables.
- 3. External ROM or SRAM can be connected. With SRAM connected, the CPU can download wave data.
- 4. Outputs chip select signals for 1Mbit, 4Mbit, 8Mbit, or 16Mbit memory.
- Others
 - 1. Has six sound output channels and can be directly connected to the YAC513 (external DAC).
 - 2. Can be connected directly to the YSS225 (EP), which adds various sound effects.
 - 3.80-pin QFP package.

BLOCK DIAGRAM

< 80pin QFP Top View >

DESCRIPTION OF PIN FUNCTIONS

No	I/O	Pin Name	Function
1	1	AO	CPU interface address 0
2	I	A1	CPU interface address 1
3	1	A2	CPU interface address 2
4	l+	/CS	CPU interface chip select
5	I	/RD	CPU interface read enable
6	I	/WR	CPU interface write enable
7	+	/IC	Initial clear
8	_	VDD	+5V power supply
9	OD	/IRQ	CPU interface interrupt
10	I/O	D0	CPU interface data bus
11	I/O	D1	CPU interface data bus
12	I/O	D2	CPU interface data bus
13	I/O	D3	CPU interface data bus
14	I/O	D4	CPU interface data bus
15	I/O	D5	CPU interface data bus
16	I/O	D6	CPU interface data bus
17	I/O	D7	CPU interface data bus
18	-	VSS	Ground
19	0	CLKO	Clock output (16.9344MHz)
20	0	BCO	Audio interface bit clock output
21	0	LRO	Audio interface L/R clock output
22	0	DO0	Audio interface FM-EXT output
23	0	DO1	Audio interface PCM-EXT output
24	0	DO2	Audio interface MIX (FM+PCM) output
25	0	/MCS0	Chip select for external memory 0
26	0	/MCS1	Chip select for external memory 1
27	0	/MCS2	Chip select for external memory 2
28	0	/MCS3	Chip select for external memory 3
29	0	/MCS4	Chip select for external memory 4
30	0	/MCS5	Chip select for external memory 5

No	I/O	Pin Name	Function
31	-	N.C	No connection
32	_	VDD	+5V power supply
33	-	N.C	No connection
34	-	N.C	No connection
35	_	N.C	No connection
36	0	/MCS6	Chip select for external memory 6
37	-	VSS	Ground
38	0	/MCS7	Chip select for external memory 7
39	0	/MCS8	Chip select for external memory 8
40	0	/MCS9	Chip select for external memory 9
41	I/O	MD4	External memory data bus
42	I/O	MD3	External memory data bus
43	I/O	MD5	External memory data bus
44	I/O	MD2	External memory data bus
45	0	WCO	Audio interface word clock output
46	I/O	MD6	External memory data bus
47	I/O	MD1	External memory data bus
48	I/O	MD7	External memory data bus
49	I/O	MD0	External memory data bus
50	0	/MRD	External memory read enable
51	0	MA16	External memory address bus
52	0	MAO	External memory address bus
53	0	MA15	External memory address bus
54	0	MA1	External memory address bus
55	_	VDD	+5V power supply
56	0	MA14	External memory address bus
57	0	MA2	External memory address bus
58	0	MA13	External memory address bus
59	0	MA3	External memory address bus
60	0	MA12	External memory address bus

No	I/O	Pin Name	Function
61	0	MA4	External memory address bus
62	0	MA11	External memory address bus
63	0	MA5	External memory address bus
64	0	MA10	External memory address bus
65	_	VSS	Ground
66	0	/MWR	External memory write enable
67	0	MA6	External memory address bus
68	0	MA9	External memory address bus
69	0	MA7	External memory address bus
70	0	MA8	External memory address bus
71	0	MA17	External memory address bus
72	_	VDD	+5V power supply
73	0	MA18	External memory address bus
74	0	MA19	External memory address bus
75	0	MA20	External memory address bus
76	0	XO	Crystal oscillator connection pin
77	I	XI	Crystal oscillator connection pin or master clock input
			pin (33.8688MHz)
78	_	VSS	Ground
79	l+	/TST1	LSI test pin (Not connected normally)
80	l+	/TST2	LSI test pin (Not connected normally)

Notes: N.C., /TST1, /TST2: These pins should normally be open. I+: Pin with built-in pull-up resistor OD: Open drain output pin

CPU INTERFACE

A sketch of the CPU interface is shown below.

Sound generation is controlled by writing data to the registers.

An 8-bit parallel CPU interface is provided for this purpose.

A0 to A2 are address signals and D0 to D7 comprise the bi-directional data bus. /CS, /RD/ and /WR are control input signals.

This LSI has the modes shown below which depend on these input signals.

	/CS	/RD	/WR	A0	A1	A2	MODE
	Н	X	×	X	×	×	Inactive mode
	L	L	Н	L	L	L	Status read mode
FM	L	Н	L	L	L/H	L	Address write mode
1 171	L	Н	L	н	×	L	Data write mode
	L	Н	L	L	L	Н	Address write mode
PCM MIX	L	Н	L	Н	L	н	Data write mode
	L	L	Н	Н	L	н	Data read mode

× : Don't Care

 \Box Inactive mode

The data bus (D0 to D7) becomes high-impedance when /CS is high.

□ Address write mode

In this mode, a write address is specified. Set the register address onto this data bus. To write or read data after the address is written, a master clock wait of FM register56 cycles PCM, MIX register88 cycles * is necessary. When register array 0 of FM is to be specified, A1 must be L. When register array 1 is to be specified, A1 must be H. \Box Data write mode

In this mode, data is written to the address set in the address write mode. Set the set data onto the data bus.

56 master clock cycles (for FM) or 88 cycles (for PCM) are needed before the next address or data write cycle. *

Data read mode

In this mode, data is read from the address set in the address write mode. PCM and MIX register can be read. (FM register can't be read.)

Status read mode

In this mode, the status of this LSI is output. The status information is output on the data bus.

* Address setting (PCM registers \$03H to 05H) to external memory and external memory data write/read wait time is different from these values. See the description of each register for more information.

STATUS REGISTER

The structure of the status register is shown at the right.

D7	D6	D5	D4	D3	D2	D1	D0
IRQ	FT1	FT2				LD	BUSY

■ FT1, FT2, IRQ

The flags for the two timers built into the YMF278B are set in accordance with the set cycle. The CPU can read these flags by status information and interrupt signal. These timers can be used as the tempo counter, etc.

- □ FT1 (Flag Timer 1): Timer 1 flag This bit becomes "1" when the time set at timer 1 is counted. It is reset when the RST bit of FM register \$04H is set to "1".
- FT2 (Flag Timer2): Timer 2 flag
 This bit becomes "1" when the time set at timer 2 is counted.
 Similar to FT1, it is reset when the RST bit is set to "1".
- IRQ (Interrupt ReQuest): Interrupt request flag This bit becomes "1" when FT1 or FT2 becomes "1". It is reset when the RST bit is set to "1".

BUSY

- ☐ This flag becomes valid after the 05H_NEW2 bit of FM register array 1 is set to "1". (When NEW2 is "0", the BUSY flag is always "0".)
- This LSI requires a wait time at register access.
 The BUSY bit is provided as the flag that inhibits register access.
 When the BUSY flag is "1", do not execute a write or read operation, otherwise a malfunction may occur.
- The BUSY flag remains "1" while addresses and data are being written. It is automatically reset to "0" when writing is complete.
 Confirm that the BUSY flag is "0" before accessing a register.

■ LD (LOAD)

- □ This flag becomes valid after the 05H_NEW2 bit of FM register array 1 is set to "1". (When NEW2 is "0", this flag is always "0".)
- At the wave table synthesizer, the wave table header data from external memory is loaded into OPL4 by writing the wave table number to the register. During this time, access to some of the registers of that channel is inhibited.
 (Please see the section "PCM registers \$08H to 2FH wave table number" for more information.)
 LD remains "1" while the header data is being loaded (approximately 300µs).

■ The first value of the status regester. (Device ID)

□ When the status is read after initialization at OPL2, 06H (D1 and D2 bit="1") is output. For OPL3, 00H is read.

For the YMF278B, when the status is read after NEW2 was set to "1", 02H is output. After reading, this bit is reset.

However, 02H is read only once after initialization.

The device ID register can be used as LSI identifier.

OVERVIEW OF WAVE TABLE SYNTHESIS

■ Features

FM synthesis can generate a wide range of sounds, from the sounds of natural musical instruments to electronic sound, depending on the setting of the operators and the algorithm form. However, it is limited near the sound of natural musical instruments.

In simple terms, wave table synthesis plays back external memory sampled data and can therefore faithfully reproduce the sounds of natural musical instruments.

Of course, it is not limited to the sounds of natural musical instruments, but can also faithfully reproduce any sound as long as sampling data is available.

■ Wave table synthesis block diagram

The wave table synthesis block diagram is shown below.

External memory

This block stores the sampled data and the information (start and end addresses, envelop data, etc.) needed to generate sounds.

OPL4

This block outputs the external memory address and control signals and reads the memory data and generates sounds from the sampled data.

Of course, envelop and pitch, level control, and various sound effects (vibrato and tremolo, panpot, etc.) can be added in OPL4.

OPL4 handles 8, 12, and 16 bit sampling data. The sampling frequency is 44.1kHz. Therefore, playback at CD quality is possible.

 \square D/A converter and effect processor (YSS225)

The D/A converter converts the 16-bit, 44.1kHz digital data output from the OPL4 to analog data. An effect processor (YSS225), which can add reverberation, echo, flange, and other sound effects, is also available.

Higher quality playback is possible by connecting this LSI to it.

Since the OPL4 can digitally mix FM and wave table sounds, sounds over a wide wave table range, from sounds unique to FM to the sound of natural musical instruments, can be generated. Up to 44 sounds can be generated simultaneously as well. More advanced functions and higher quality than the OPL3 multi-media sound synthesizer are possible.

WAVE TABLE FOR WAVE TABLE SYNTHESIS AND MIXING

Address (HEX)	D7	D6	D5	D4	D3	D2	D1	D0	
00~01H				LSI	TEST				
02H		Device ID		Wav	re table he	ader	Memory type	Memory access mode	
03H				N	lemory add	dress reg	ister 		
04H	Memory address register								
05H	Memory address register								
06H		L		Memory (data registe	er	I		
07H		LJ	L	I	.I		1		
08H~	Wave table number								
1FH	N7	N6	N5	N4	N3	N2	N1	NO	
20H~ 37H			F	_NUMBE	R			Wave table number	
	f6	f5	f4	f3	f2	f1	fO	8	
38H~ 4FH		Oct	ave		Pseudo -reverb		F-NUMBE	R	
4111	O3	02	01	00		f9	f8	f7	
50H~ 67H	L6	L5	L4	Total leve L3	el L2	L1	LO	Level direct	
68H~ 7FH	KEY ON	DAMP	LFO RST	СН	3	Pa 2	inpot	0	
80H~				LFO	1		VIB		
97H			S2	S1	S0	V2	V1	V0	
98H~		A	R			-)1R		
AFH	3	2	1	0	3	2	1	0	
B0H~ C7H	3	D 2	L 1	lo	3	2)2R 1	0	
C8H~		Rate cor		0	5		11 3B	0	
DFH	3	2	1	l o	3	2	1 1	0	
E0H~		1		l			AM		
F7H						2	1	0	
F8H			Mixing	control (I	FM_R)	Mixin	g control (FM_L)	
F9H			Mixing	control (F	°CM_R)	Mixing	control (F	PCM_L)	

Notes:

- 1. These registers cannot be accessed unless the NEW2 bit of the FM register is set to "1".
- 2. LSI TEST are used for factory testing. Always set them to "0" for normal operation.
- 3. After initialization, the F8H FM_MIX register is made -9dB as the default value. The other registers are cleared.
- 4. _____ not used by the YMF278B may be used to expand the functions. Therefore, always set them to "0".

CHANNEL

\Box Channel number

The wave table synthesizer can generate up to 24 sounds simultaneously. Each sound is referred to as a "channel". The channels are numbered from 1 to 24. These numbers are called "channel numbers".

\square Relation between channel and register

As can be seen from the register table, registers 08 to 1FH and 20 to 37H have 24 addresses. These addresses correspond to channels 1 to 24.

Set the register corresponding to each channel.

00-01H LSI TEST

These registers are used for LSI testing. All the bits should be set left at

"0"	for	normal	ope	ra	tic	n		
•			~ ~ ~		OT C		••	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00
---	----

■ 02H MEMORY ACCESS MODE

When set to "0", this is the normal sound generation mode.

When set to "1", the CPU can

02H D7 D6 D5 D4 D3 D2 D1 D0 Memory Access Mode

read and write data to and from the external memory.

All the channels can not generate the sound in this mode.

02H MEMORY TYPE

This register represents what external memory can be connected.

When set to "0", ROM only.

When set to "1", SRAM plus ROM.

For a description of the external memory connection method, see the section "Connection to External Memory".

02H WAVE TABLE HEADER

The wave table header must be set from external memory address 0 for wave table numbers 0 to 383 of wave tables 0 to 511.

	D7	D6	D5	D4	D3	D2	D1	D0
02H				Wave 2	e Table He 1	eader 0		

(For a description of the header structure, see the section "external Memory Data Format".) When bits D2, D3, and D4 are all "0", specify all 512 headers from external memory address 0.

■ 02H DEVICE ID

When this register is read, 20H (D5="1", D6="0", D7="0") is output. This register can be used as ID register of OPL4.

0011	D7	D6	D5	D4	D3	D2	D1	D0
020	2	Device ID 1	0					

ഹാല	D7	D6	D5	D4	D3	D2	D1	D0
020							Memory Type	

The external memory setting area for the wave table headers from wave table numbers 384 to 511 can be changed in 4Mbit segments.

The header setting areas corresponding to wave header bits 0 to 2 are shown in the table below.

Wave	table h	eader	Header set external memory area	Fig.
D4	D3	D2	Theader set external memory area	r ig.
0	0	0	Header from wave table number 0 to 511 set from address 0	1
0	0	1	Header from wave table number 384 to 511 set from 4Mbit area	2
0	1	0	Header from wave table number 384 to 511 set from 8Mbit area	3
0	1	1	Header from wave table number 384 to 511 set from 12Mbit area	4
1	0	0	Header from wave table number 384 to 511 set from 16Mbit area	5
1	0	1	Header from wave table number 384 to 511 set from 20Mbit area	6
1	1	0	Header from wave table number 384 to 511 set from 24Mbit area	7
1	1	1	Header from wave table number 384 to 511 set from 28Mbit area	8

03-05H MEMORY ADDRESS REGISTERS

These registers are used to specify the addresses of external memory to be written to or read from.

Address setting is completed when 05H is set. Always set the addresses sequentially from the highest-order address.

This address is incremented automatically every time data

is written to or read from external memory.

06H MEMORY DATA REGISTER

Data is written to the currently set external memory address by writing to this register. Data from the currently set

06Н	D7	D6	D5	D4	D3	D2	D1	D0
			M	er				
	7	6	5	4	3	2	1	0

external memory address is read by reading this register.

28 master clock cycles are necessary before the next data write cycle. 38 master clock cycles are necessary before the next data read cycle.

08-37H WAVE TABLE NUMBER

The OPL4 supports up to 512 Wave Tables.

The wave table number that is to generate sound is selected from among 0 to 511 and the wave table header data set in the external memory is auto-

08 –	D7	D6	D5	D4	D3	D2	D1	D0
1FH	N7	N6	۱ N5	Wave Tabl N4	e Numbe N3	r N2	N1	NO
20 –	D7	D6	D5	D4	D3	D2	D1	D0 Wave Table

matically loaded into the LSI by setting this register.

Setting of the Wave Table Number is completed when the Wave Table Number (N0-N7) is set. Therefore, always set the Wave Table Number (N0-N7) after Wave Table Number (N8).

Do not access the wave table number, LFO, VIB, AR, D1R, DL, D2R, rate correction, RR, or AM register of that channel while a Wave Table header is being loaded, otherwise a malfunction may occur.

The registers of other channels can be accessed.

It takes approximately 300µs for the header to be loaded.

Bit D1 of the status register is the flag indicating that a header is being loaded.

03H	57	D5	04			
••••				Memory	Address	

04H	D7	D6	D5	D4	D3	D2	D1	D0
				-	Address			
	15	14	13	12	11	10	9	8

D7		D5	D4	D3	D2	D1	D0
7	6	5	Memory 4	Address 3	2	1	0

■ 20-4FH F-NUMBER, OCTAVE

These registers are used to control the pitch.

F_NUMBER is a positive number $(0 \sim 1023)$ and octave is a 2's complement number(-7 to +7).

Do not set -8 at octave.

When F_NUMBER is "0" and octave is "1", the wave data in the external memory is played back at 44.1kHz. This is referred to as normal pitch F(q)=0.

 $(\varphi: \text{Cent})$

20 –	D7	D6	D5	D4	D3	D2	D1	D0
37H	f6	f5	F f4	_NUMBE f3	R f2	f1	f0	

	D7	D5			D1	
4FH		 	 	F 19	_NUMBE f8	R f7

38 –	D7	D6	D5	D4	D3		D0
4FH	03	Oct 02	ave 01	00		 	

The offset from normal pitch is calculated from the following equation:

$F (c) = 1200 \times (Octave - 1) + 1200 \times \log_2$	1024 + F_NUMBER
$F(\psi) = 1200 \times (OClave - 1) + 1200 \times 109_2$	1024

however, 1 octave = 1200ϕ

■ 38-4FH PSEUDO-REVERB

A reverberation effect can be applied to the generated sound.

"0": Pseudo-Reverb effect OFF "1": Pseudo-Reverb effect ON

When the envelop reaches -18dB when the REV bit is set to "1", the value of the D1R, D2R, and RR registers is ignored and the reverb rate (RATE=5) is set automatically. This is illustrated in the figure below.

■ 50-67H TOTAL LEVEL

The total level is set in this register. Attenuation is given by the following equation:

50 –	D7	D6	D5	D4	D3	D2	D1	D0
67H	L6	L5	L4	Total level L3	L2	L1	LO	

 $\begin{array}{l} \text{Total level [dB] =} \\ (-24 \times \text{L6}) + (-12 \times \text{L5}) + (-6 \times \text{L4}) + (-3 \times \text{L3}) + (-1.5 \times \text{L2}) + (-0.75 \times \text{L1}) + (-0.375 \times \text{L0}) \end{array} \end{array}$

50-67H LEVEL DIRECT

This register is used to select how the envelop level changes when the total level was changed during sound generation.

i0 –	D7	D6	D5	D4	D3	D2	D1	D0
67H								Level direct

"0"......Total level is changed while being interpolated.

"1".....Total level immediately becomes the set value.

When the level was interpolated, the time from minimum volume to maximum volume is 78.2msec and the time from maximum volume to minimum volume is 156.4msec.

D6

D5

D7

KEY

ON

68 -

7FH

68-7FH KEY ON

This register controls sound generation.

"0": Key off "1": Key on

68-7FH DAMP

Forced damping can be enabled by making this register "1" in the decay state.

68 –	D7	D6	D5	D4	D3	D2	D1	D0
------	----	----	----	----	----	----	----	----

D4

D3

D2

D1

D0

The damping effect muffles the sound by making the decay and release rate times shorter. "0" ... Enable set rate

"1" ... Disable set rate and automatically change to damp rate internally

Damping is applied as shown in the table below depending on the elapsed time.

Time (msec.)	5.8	8.0	9.4	10.9
ATT. (dB)	-12	-48	-72	-96

Pseudo-reverb is disabled during damping.

0

2

--6

3

-9

0

4

-12

0

5

-15

0

80-97H LFC

Panpot

Output

level (dB)

This register speed.

The vibrato and tremolo oscil-

lation frequency is determined

LFO freq. (Hz)

by the spe)w.

2.019

LFO value	0	1	2	3	4	5	6

3.196

	1010
nie r	1 A I A I
- 1 - 1-	
	ble b

0								
r specifies the LFO								
	80 –	D7	D6	D5	D4			

97H

1

-3

0

0.168

This register controls panpot									
	60	D7	D6	D5	D4	D3	D2	D1	
(sound position).	100 - 1	0,				1 2 2			

The sound of a selected channel is output from the DO1 pin by setting its bit to "1".

68 –	D7	D6	D5	D4	D3	D2	D1	D0		
•						Panpot				
17FH						Par	ipot			

10

0

-18

LFO

S1

5.888

11

0

-15

D3

S0

6.224

CH

The s

0

0

0

L

R

outpu

7EU Panpot	
set values and L and R <u>3 2 1</u> ut levels are shown in the table below.	0

7

0

8

-~

9

0

S2

5.215

6

-18

0

LFORST controls the operation of this LFO.

"0": Activate

■ 68-7FH PANPOT

functions.

68-7FH LFO RESET

"1": Deactivate and reset LFO

An LFO (Low Frequency Oscillator) is built into this LSI for the vibrato and tremolo

■ 68-7FH OUTPUT CHANNEL SELECTION

and is output from the DO2 pin by setting its bit to "0".

This register select output

channel.

The sound of a selected channel is mixed with the FM sound

D7 D6 D5 D4 68 -

7FH

68 –	D7	D6	D5	D4	D3	D2	D1	D0
7FH			LFO					

68 –	D7	D6	D5	D4	D3	D2	D1	D0
7FH		•				Par	ipot	

D2

13

0

-9

D2

7

7.066

12 0

-12

14

0

-6

D1

15

0

-3

D0

D3

D1

D0

4.206

■ 80-97H VIB

This register specifies the vibrato depth.

80 –	D7	D6	D5	D4	D3	D2	D1	D0
97H						V2	VIB V1	vo

The vibrato depth is deter-

mined by the written value as shown in the table below.

Value	0	1	2	3	4	5	6	7
Vibrato depth (¢)	off	3.378	5.065	6.750	10.114	20.170	40.108	79.307

98-AFH AR

This register specifies the attack rate.

98 –	D7	D6	D5	D4	D3	D2	D1	D0
AFH	3	A 2	R 1					

For a description of how to find <u>3 2 1 0</u> the envelop waveform and rate value, see the sections "Envelop", "How to Calculate the Actual Rate" and "Relation Between Rate Value and Actual Time".

98-AFH D1R

This register specifies the decay 1 rate.

```
     98 -
     D7
     D6
     D5
     D4
     D3
     D2
     D1
     D0

     AFH
     D1R

     3
     2
     1
     0
```

For a description of how to find the envelop waveform and rate

value, see the sections "Envelop", "How to Calculate the Actual Rate", and "Relation Between Rate Value and Actual Time".

B0-C7H DL

This registers specifies the decay level. The decay level is given by the following equation:

B0 –	D7	D6	D5	D4	D3	D2	D1	D0
С7Н	DL3	D DL2	L DL1	DL0				

Decay level $[dB] = (-24 \times DL3) + (-12 \times DL2) + (-6 \times DL1) + (-3 \times DL0)$ When all the bits are set to "1", the decay level becomes -93dB.

B0-C7H D2R

This register specifies the decay 2 rate.

80 –	D7	D6	D5	D4	D3	D2	D1	D0
27H					2	D	2R	

For a description of how to find the envelop waveform and rate

value, see the sections "Envelop", "How to Calculate the Actual Rate", and "Relation Between Rate Value and Actual Time".

C8-DFH RR

This register specifies the release rate.

- 8	D7	D6	D5	D4	D3	D2	D1	D0
FH					3	2 2	R 1	0

For a description of how to find

the envelop waveform and the rate value, see the sections "Envelop", "How to Calculate the Actual Rate" and "Rate Value and Actual Time Table".

■ C8-DFH RATE CORRECTION

This is the rate correction value at (Eq. 1) of the section "How to Calculate the Actual Rate".

C8 –	D7	D6	D5	D4	D3	D2	D1	D0
DFH		Rate Co	rrection					
	3	2	1	0				

This value determines the degree of rate scaling.

"Rate scaling" simulates speeding up of the rate as the interval becomes higher.

When all the bits are set to "1", scaling is turned off, otherwise scaling is carried out in accordance with the "How to Calculate the Actual Rate" correction value.

E0-F7H AM

This register specifies the tremolo depth.

The tremolo depth is deter-

mined by the written value as shown in the table below.

Value	0	1	2	3	4	5	6	7
Tremolo depth (dB)	off	1.781	2.906	3.656	4.406	5.906	7.406	11.91

■ F8-F9H MIX CONTROL

This register specifies the MIX level of the FM and PCM output from the DO2 pin. The MIX level is determined by the written value as shown in the table below.

After the YMF278B is reset, FM_MIX control (F8H) becomes-9dB as the default value

	D7	D6	D5	D4	D3	D2	D1	D0
F8H				Control (F			Control (F	M_L)
			2	1	0	2	1	0
			2	1	0		1	0
F9H	D7	D6	2 D5	1 D4	0 D3	2 D2	1 D1	0 0

and PCM_MIX control (F9H) becomes 0dB to balance the FM sound and PCM volume.

Value	0	1	2	3	4	5	6	7
MIX Level (dB)	0	-3	-6	-9	-12	-15	-18	-8

ENVELOP GRAPH

The envelop is shown in the figure below.

KEY ON AND ENVELOP

The relationship between key on, key off, and the envelop is shown below. For non-percussive sounds, set D2R=0 (RATE=0, real time= ∞).

HOW TO CALCULATE THE ACTUAL RATE

The actual rate time can be calculated finding the RATE of (Eq. 1) below and referring to the section "Relation Between Rate Value and Actual Time" on the next page.

RATE is calculated from the following equation:

RATE = $(OCT + rate correction) \times 2 + f9 + RD \dots (Eq. 1)$

OCT : Octave value (-7 to +7) set in registers 38H to 4FH f9 : F_NUMBER f9 value (0 or 1)set in registers 38H to 4FH Rate Correction: Rate correction value (0 to 14) of registers C8H to DFH

RD in Eq. (1) above is determined by the value set in AR, D1R, D2R, and RR. The relation of the AR, D1R, D2R, and RR set value and RD is shown in the table below.

AR, D1R, D2R, RR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(Eq. 1) RD value	4	8	12	16	20	24	28	32	36	40	44	48	52	56	63

However, when is more than 63 at Eq. 1, it is always set to 63. When AR=D1R=D2R=RR="0", RATE is set to "0". When AR=D1R=D2R=RR="15", RATE is set to "63".

RELATION BETWEEN RATE VALUE AND ACTUAL TIME

Attack rate

RATE	Time (0 ~ 100%)	Time (10 ~ 90%)
0	×	∞
1	∞	×
2	∞	œ
3	∞	œ
4	6222.95	3715.19
5	4978.37	2972.20
6	4148.66	2476.83
7	3556.01	2122.99
8	3111.47	1857.60
9	2489.21	1486.12
10	2074.33	1238.41
11	1778.00	1061.50
12	1555.74	928.80
13	1244.63	743.08
14	1037.19	619.23
15	889.02	530.75
16	777.87	464.40
17	622.31	371.56
18	518.59	309.61
19	444.54	265.40
20	388.93	232.20
21	311.16	185.80
22	259.32	154.83
23	222.27	132.70
24	194.47	116.10
25	155.60	92.93
26	129.66	77.41
27	111.16	66.35
28	97.23	58.05
29	77.82	46.49
30	64.85	38.73
31	55.60	33.20

RATE	Time (0 ~ 100%)	Time (10 ~ 90%)
32	48.62	29.02
33	38.91	23.27
34	32.43	19.37
35	27.80	16.60
36	24.31	14.51
37	19.46	11.66
38	16.24	9.70
39	13.92	8.30
40	12.15	7.26
41	9.75	5.85
42	8.12	4.85
43	6.98	4.17
44	6.08	3.63
45	4.90	2.95
46	4.08	2.45
47	3.49	2.09
48	3.04	1.81
49	2.49	1.45
50	2.13	1.22
51	1.90	1.09
52	1.72	0.95
53	1.41	0.77
54	1.18	0.63
55	1.04	0.54
56	0.91	0.50
57	0.73	0.36
58	0.59	0.27
59	0.50	0.27
60	0.45	0.23
61	0.45	0.23
62	0.45	0.23
63	0.00	0.00

(Unit: ms)

(Unit: ms)

RATE	Time (0 ~ 100%)	Time (10 ~ 90%)
0	×	×
1	×	∞
2	∞	∞
3	∞	~
4	89164.63	19040.36
5	71331.75	15278.73
6	59443.13	12724.54
7	50951.25	10890.16
8	44582.31	9520.18
9	35665.90	7639.37
10	29721.59	6362.27
11	25475.65	5445.08
12	22291.16	4760.09
13	17832.97	3819.68
14	14860.82	3181.13
15	12737.82	2722.54
16	11145.58	2380.05
17	8916.51	1909.84
18	7430.43	1590.57
19	6368.93	1361.27
20	5572.79	1190.02
21	4458.28	954.92
22	3715.24	795.28
23	3184.49	680.63
24	2786.39	595.01
25	2229.16	477.46
26	1857.64	397.64
27	1592.24	340.32
28	1393.20	297.51
29	1114.60	238.73
30	928.84	198.82
31	796.15	170.16

RATE	Time (0 ~ 100%)	Time (10 ~ 90%)
32	696.60	148.75
33	557.32	119.37
34	464.44	99.41
35	398.10	85.08
36	348.30	74.38
37	278.68	59.68
38	232.24	49.71
39	199.05	42.54
40	174.15	37.19
41	139.37	29.84
42	116.15	24.85
43	99.55	21.32
44	87.07	18.59
45	69.71	14.92
46	58.10	12.43
47	49.80	10.66
48	43.54	9.23
49	34.83	7.44
50	29.02	6.08
51	24.90	5.31
52	21.77	4.67
53	17.41	3.72
54	14.51	3.13
55	12.43	2.68
56	10.08	2.36
57	8.71	1.95
58	7.23	1.59
59	6.21	1.36
60	5.44	1.18
61	5.44	1.18
62	5.44	1.18
63	5.44	1.18

Address	D7	D6	D5	D4	D3	D2	D1	D0	
0000H		A BIT		1		Iddress	1 -	t -	1
	1	0	S21	S20	S19	S18	S17	S16	
0001H	045		0.40						
	S15	S14	S13	S12	S11	S10	S9	S8	
0002H	S7	S6	S5	S4	S3				
		- 30			address	S2	S1	S0	_
0003H	L15	L14	L13	L00p	L11				
	LIS	L14	LIS	L12		L10	L9	L8	_
0004H	L7	L6	L5	L4	L3	L2	1 1 1		
	L/	LO	LU		Iddress		L1	LO	_
0005H	E15	E14	E13	End a	E11	E10	E9	E8	Wave number
	LIJ	L14	L13	EIZ		EIU	E9	EO	0 header part
0006H	E7	E6	E5	E4	Г о	— Г О			(12 bytes)
		EO	ED	LFO	E3	E2	E1	E0	-
0007H			<u> </u>			1/0	VIB		
			S2	S1	SO	V2	V1	V0	_
0008H	0	A					1R		
	3	2	1	0	3	2	1	0	_
0009Н	•	D					2R		
	3	2	1	0	3	2	1	0	_
000411		Rate co	rrection			F	R		
000AH	. 1			1			1	1	
000AH	3	2	1	0	3	2	1	0	
	3			0	3	2	1 AM		
000АН 000ВН	3			0	3			0	_
000BH	3		1	·		2	AM		v
000BH	3		1	·	3 header (12	2	AM		
000BH	3		1 Wave	number 1	header (12	2 2 bytes)	AM		
000BH	3		1 Wave	number 1		2 2 bytes)	AM		
000BH	3		1 Wave	number 1	header (12	2 2 bytes)	AM		
000BH	3		1 Wave	number 1	header (12	2 2 bytes)	AM		→ ↓ → → ≈ Header part
000BH	3		1 Wave	number 1	header (12	2 2 bytes)	AM		→ → Header part
000BH	3		1 Wave Wave	number 1 number 2 l	header (12 header (12	2 2 bytes) bytes)	AM		\sim Header part
000BH	3		1 Wave Wave	number 1 number 2 I umber 383	header (12 header (12	2 2 bytes) bytes)	AM		→ → → Header part
000BH		2	1 Wave Wave Wave n	number 1 number 2 I umber 383 16-bit da	header (12 header (12 : : : : : : : : : : : : : : : : : : :	2 bytes) bytes) 2 bytes)	AM 1	0	→ ↓ → → ≈ Header part
000BH	3		1 Wave Wave	number 1 number 2 I umber 383	header (12 header (12	2 2 bytes) bytes)	AM		\sim Header part
000BH	۲ D15	 D14	1 Wave Wave n D13	number 1 number 2 l umber 383 16-bit da D12	header (12 header (12 header (12 header (12 header (12 header (12 header (12)	2 bytes) bytes) 2 bytes) D10	AM 1 D9	0 0	
000BH		2	1 Wave Wave Wave n	number 1 number 2 l umber 383 16-bit da D12	header (12 header (12 B header (12 B header (12	2 bytes) bytes) 2 bytes)	AM 1	0	
000BH	D15 D7	 D14 D6	1 Wave Wave Wave n D13 D5	number 1 number 2 l umber 383 16-bit da D12 D4 12-bit da	header (12 header (12)header (12)	2 bytes) bytes) 2 bytes) D10	AM 1 D9	0 0	
000BH	۲ D15	 D14	1 Wave Wave n D13	number 1 number 2 l umber 383 16-bit da D12	header (12 header (12 B header (12 B header (12	2 bytes) bytes) 2 bytes) D10	AM 1 D9	0 0	
000BH	D15 D7	 D14 D6	1 Wave Wave Wave n D13 D5	number 1 number 2 l umber 383 16-bit da D12 D4 12-bit da	header (12 header (12)header (12)	2 bytes) bytes) 2 bytes) D10 D2	AM 1 D9 D1	0 0 D8	
000BH	D15 D7	 D14 D6	1 Wave Wave Wave n D13 D5	number 1 number 2 l umber 383 16-bit da D12 D4 12-bit da	header (12 header (12)header (12)	2 bytes) bytes) 2 bytes) D10 D2	AM 1 D9 D1	0 0 D8	
000BH	D15 D7 D11	2 D14 D6 D10	1 Wave Wave n D13 D5 D9	number 1 number 2 l umber 383 16-bit da D12 D4 12-bit da D8	header (12 header (12 	2 bytes) bytes) 2 bytes) D10 D2 D6	AM 1 D9 D1 D5	0 0 0 0 0 0 0 0 0 0 0 0	
000BH	D15 D7 D11	2 D14 D6 D10	1 Wave Wave n D13 D5 D9	number 1 number 2 l umber 383 16-bit da D12 D4 12-bit da D8	header (12 header (12 	2 bytes) bytes) 2 bytes) D10 D2 D6	AM 1 D9 D1 D5	0 0 0 0 0 0 0 0 0 0 0 0	
000BH	D15 D7 D11 D3	2 D14 D6 D10 D2	1 Wave Wave n D13 D5 D9 D1	number 1 number 2 l umber 383 16-bit da D12 D4 12-bit da D8 D0 D8	header (12 header (12	2 bytes) bytes) 2 bytes) D10 D2 D6 D2	AM 1 D9 D1 D5 D1	0 D8 D0 D4 D0	Header part

The external memory header structure and data format are shown below.

HEADER PART

DATA BIT

These specify the waveform data bit length.

The data bit length for each set value is shown below.

D7	D6	Data bit Length
0	0	8 bits
0	1	12 bits
1	0	16 bits
1	1	Prohibited

D7	D6	D5	D4	D3	D2	D1	D0
DATA	BIT						

START ADDRESS

The wave data read start address is shown by external memory absolute address.

For 12-bit data, always specify the start address beginning from bit 8 of the higher-order byte.

D7	D6	D5	D4	D3	D2	D1	D0
		A21	A20	A19	A18	A17	A16
A15	A14	A13	A12	A11	A10	A9	A8
A7	A6	A5	A4	A3	A2	A1	A0

LOOP ADDRESS

When the wave data read address reaches the end address, the wave data is re-read from the address specified by the loop address.

Always specify the difference of one

address subtracted from the number of data from the start address.

D7

L15

L7

D6

L14

L6

D5

L13

L5

D4

L12

L4

D3

L11

L3

D2

L10

L2

D1

L9

L1

D0

L8

L0

END ADDRESS

Shows the wave data read end address.

Specify the end address by subtracting one from the number of data from the start address and inverting all the bits.

D7	D6	D5	D4	D3	D2	D1	D0
E15	E14	E13	E12	E11	E10	E9	E8
							E0

■ START, END, AND LOOP ADDRESSES

This section explains how the wave data is played back.

The wave data is read from the start address and when the wave data read address exceeds the end address, the read address returns to the loop address and the address is counted up again from the loop address to the end address.

The waveform is reproduced by repeating this process.

This is illustrated below.

Note: A loop address and end address must be specified for all the sounds.

CONNECTION TO EXTERNAL MEMORY

This section describes how the the memory interface signal output from the YMF278B is connected to external memory.

/MCS0 to /MCS9 are available as external memory chip select signals. For the chip select signal connections, see the section "External Memory Chip Select Signals".

The method of connecting a 16Mbit ROM and a 1Mbit SRAM is shown below as an example.

■ 16Mbit connection method (ROM)

■ 1Mbit connection method (SRAM)

EXTERNAL MEMORY CHIP SELECT SIGNALS

The YMF278B can be used with 1M, 4M, 8M, and 16Mbit memories. Up to 32M bits can be connected.

/MCS0 to /MCS9 are output as the external memory (ROM, SRAM) chip select signals.

Chip select signals /MCS0 to MCS9 determine the memory capacity that is connected to address space.

This section describes 16M, 8M, and 4M bits as ROM and 1M bit as SRAM.

■ ROM only configuration (02H-memory type "0")

16Mbit chip select signals

2 8Mbit chip select signals

4Mbit chip select signals

	/MCS6 connected	
OPL4	/MCS7 connected	4M ROM
	/MCS8 connected	4M ROM
	/MCS9 connected	4M ROM
		4M ROM

Address 200000h~27FFFh Address 280000h~2FFFFh Address 300000h~37FFFFh Address 380000h~3FFFFFh \bigcirc Two connection examples are shown below.

ROM+SRAM structure (02H-memory type "1")

☐ 16Mbit chip select signal

 \square 8Mbit chip select signals

\square 4Mbit chip select signals

 \Box 1Mbit chip select signals

 \bigcirc Two ROM+SRAM connection examples are shown below.

\Box What is FM?

"FM" is the abbreviation for "frequency modulation". The FM synthesizer uses harmonics generated by frequency modulation to create music.

The FM system can generate high harmonic components containing non-harmonic sounds with a comparatively simple circuit. Since the correspondence of the modulation index and harmonics spectral distribution is extremely natural, a wide range of sounds, from synthesization of the sounds of natural musical instruments to electronic sounds, can be produced.

\square FM system structure

The block diagram of the basic FM system is shown in Fig. 1-1.

Fig. 1-1 Basic FM System

The part that generates one sine wave is called an "operator". A combination of these operators is called an "algorithm". The first stage operator is called the "modulator" and the second stage operator is called the "carrier".

The frequency and envelop can be set for each operator.

FM system equation

The block diagram shown in Fig. 1-1 is represented by Eq. (1).

 $FM(t) = Asin (\omega ct + Bsin \omega mt) \dots (1)$

Where, A is the amplitude of operator 2, B is the amplitude of operator 1, ωc is the angular frequency of operator 2, and ωm is the angular frequency of operator 1.

Eq. (1) can be rewritten by Fourier transformation as shown in Eq. (2).

Where, Jn(B) is an nth order Bessel function.

As can be seen from Eq. (2), when modulation is applied, elements having frequencies of $\omega c+\omega m$, $\omega c-\omega m$, $\omega c+2\omega m$, $\omega c-2\omega m$, $\omega c+3\omega m$, $\omega c-3\omega m$,..., in addition to the original carrier frequency, are mixed.

These elements are called "harmonics". The frequency of these harmonics is determined by the modulator frequency and the carrier frequency. Their amplitude is determined by the modulator amplitude B.
\Box Feedback FM

A system called "feedback FM" is available to generate a wider range of sounds. This system modulates itself as shown in Fig. 1-2. It is represented by Eq. (3).

Fig. 1-2 Feedback FM System

 $FM(t) = Asin \{\omega t + \beta FM(t)\}$ (3)

Where, β is the feedback rate. When feedback FM is used, the harmonic spectral becomes a sawtooth wave and the sound of string instruments can be easily created.

Since the YMF278B has four operators, the same as the YMF262 (OPL3), it can generate complex sounds.

REGISTER TABLE FOR FM SYNTHESIS

The registers are compatible with the YMF262 (OPL3).

When all the registers are initialized except COH~C8H CHA and CHB bit, they are cleared to (/IC="L").

Address		R	EGIST	ER AR	RAY 0	(A1='1	')			R	EGIST	ER AR	RAY 1	(A1=ʻl	H')	
(HEX)	D7	D6	D5	D4	D3	D2	D1	D0	D7	D6	D5	D4	D3	D2	D1	DO
00~01H				LSI T	EST							LSI -	TEST			
02H				TIME	ER 1											
03H				TIME	ER 2											
04H	RST	MT1	MT2				ST2	ST1					ONNEC	TION S	EL	
05H			L												NEW2	NEW
08H		NTS														
20H~ 35H	АМ	VIB	EGT	KSR	3	MU 2	LT 1	0	AM	VIB	EGT	KSR	3	MU 2	JLT 1	0
40H~	KS	SL			Т	L		I	K	SL		L	T	L	L	L
55H	1	0	L5	L4	L3	L2	L1	LO	1	0	L5	L4	L3	L2	L1	LO
60H~		A	R			D	R			A	R			C)R	
75H	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0
80H~		S	L			R	R			S	SL			F	۱R	
95H	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0
A0H~				F NUME	BER (L)							F NUM	BER (L)			
A8H	F7	F6	F5	F4	F3	F2	F1	F0	F7	F6	F 5	F4	F3	F2	F1	F0
B0H~			KON		BLOCK		FNU	M (H)			KON		BLOCK		FNU	M (H)
B8H			KON	B2	B1	B0	F9	F8			KUN	B2	B1	B0	F9	F8
BDH	DAM	DVB	RYT	BD	SD	ТОМ	тс	нн								
C0H~ C8H	CHD	СНС	СНВ	СНА	0	FB		CNT	СНД	снс	СНВ	СНА	0	FB	0	CNT
					2	1	0				I		2		ws	L
E0H~ F5H						W2	WS W1	WO						W2	WS W1	WO

Notes:

1. The register array 1, 05H NEW2 bit is expanded from the YMF262 (OPL3) to the YMF278B (OPL4). For a detailed description of the NEW2 bit, see the description of the registers.

2. LSI TEST is used in factory testing. Always set it to "0" for normal operation.

3. _____ not used with the YMF278B may be used to expand the functions. Therefore, always set them to "0".

REGISTER SETTING

The YMF278B has 36 circuits that generate a sine wave. Sounds are generated by performing FM operations with these circuits.

A circuit which generates a sine wave is called a "slot". One sound unit which is generated by combining two or four operators is called a "channel".

■ Setting of registers in slot units

There are two kinds of sound generation control registers: registers settable in slot units and registers set in channel units.

The registers that can be set in slot units are 20 to 35H, 40 to 55H, 60 to 75H, 80 to 95H, and E0 to F5H.

These registers do not have addresses $\times 6H$, $\times 7H$, $\times EH$, or $\times FH$. (Register addresses 20 to 35H are shown below as an example.)

F	legist	er ado	lresse	es															
20H	21H	22H	23H	24H	25H		28H	29H	2AH	2BH	2CH	2DH		30H	31H	32H	33H	34H	35Н

Slot No.

The 36 slots are numbers from 1 to 36. These numbers are called the "slot number". The relation between slot No. and register address set for each slot is shown in the table below.

Slot No.	Se	t registe	er addre	ess (A1=	=0)	Slot No.	Se	t registe	er addre	ess (A1	=1)
1	20H	40H	60H	80H	E0H	19	20H	40H	60H	80H	E0H
2	21H	41H	61H	81H	E1H	20	21H	41H	61H	81H	E1H
3	22H	42H	62H	82H	E2H	21	22H	42H	62H	82H	E2H
4	23H	43H	63H	83H	E3H	22	23H	43H	63H	83H	E3H
5	24H	44H	64H	84H	E4H	23	24H	44H	64H	84H	E4H
6	25H	45H	65H	85H	E5H	24	25H	45H	65H	84H	E5H
7	28H	48H	68H	88H	E8H	25	28H	48H	68H	88H	E8H
8	29H	49H	69H	89H	E9H	26	29H	49H	69H	89H	E9H
9	2AH	4AH	6AH	8AH	EAH	27	2AH	4AH	6AH	8AH	EAH
10	2BH	4BH	6BH	8BH	EBH	28	2BH	4BH	6BH	8BH	EBH
11	2CH	4CH	6CH	8CH	ECH	29	2CH	4CH	6CH	8CH	ECH
12	2DH	4DH	6DH	8DH	EDH	30	2DH	4DH	6DH	8DH	EDH
13	30H	50H	70H	90H	F0H	31	30H	50H	70H	90H	F0H
14	31H	51H	71H	91H	F1H	32	31H	51H	71H	91H	F1H
15	32H	52H	72H	92H	F2H	33	32H	52H	72H	92H	F2H
16	33H	53H	73H	93H	F3H	34	33H	53H	73H	93H	F3H
17	34H	54H	74H	94H	F4H	35	34H	54H	74H	94H	F4H
18	35H	55H	75H	95H	F5H	36	35H	55H	75H	95H	F5H

■ Two-operator mode and slot and channel

In the two-operator mode, two slots are used to generate one FM sound.

Consequently, since there are 36 slots, in the two-operator mode, 18 channels of sound can be generated.

Channels are also numbered, the same as slots. These numbers are called the "channel number".

For two operators, the following two algorithms are available:

Algorithm 2 is the same regardless of the operator 1 and 2 slots. However, for algorithm 1, since the wave table depends on which slot is the carrier and which slot is the modulator, care must be given to the slot No.

The slot No. corresponding to operators 1 and 2 is fixed. the channel number and slot numbers corresponding to operators 1 and 2 are shown in the table below.

A1	Slot	No.	Channel No.
	Operator 1	Operator 2	Channel No.
	1	4	1
	2	5	2
	3	6	3
	7	10	4
0	8	11	5
	9	12	6
	13	16	7
	14	17	8
	15	18	9
	19	22	10
	20	23	11
	21	24	12
	25	28	13
1	26	29	14
	27	30	15
	31	34	16
	32	35	17
	33	36	18

Registers set in channel units (two-operator mode)
 The registers set in channel units are A0 to A8H, B0 to B8H, and C0 to C8H.
 The relation between channel number and set register address is shown in the table below.
 However, this relation is different in the four-operator mode. (The four-operator mode will be described later.)

Channel No.	Set regi	ster address	s (A1=0)	Channel No.	Set reg	ister address	(A1=1)
1	A0H	BOH	СОН	10	A0H	B0H	СОН
2	A1H	B1H	C1H	11	A1H	B1H	C1H
3	A2H	B2H	C2H	12	A2H	B2H	C2H
4	АЗН	ВЗН	СЗН	13	АЗН	B3H	СЗН
5	A4H	B4H	C4H	14	A4H	B4H	C4H
6	A5H	B5H	C5H	15	A5H	B5H	C5H
7	A6H	B6H	C6H	16	A6H	B6H	C6H
8	A7H	B7H	C7H	17	A7H	B7H	C7H
9	A8H	B8H	C8H	18	A8H	B8H	C8H

■ Four-operator mode and slot and channel

In the four-operator mode, four slots are used to generate one FM sound. Sounds can be generated simultaneously by six channels by using 24 slots.

In the four-operator mode, the slot numbers corresponding to operators 1, 2, 3, and 4 are fixed, the same as in the two-operator mode.

The channel No. and slot Nos. corresponding to operators 1, 2, 3, and 4 are shown in the table below.

A1		Slot	No.		Channel No.
	Operator 1	Operator 2	Operator 3	Operator 4	Channel No.
	1	4	7	10	1
0	2	5	8	11	2
	3	6	9	12	3
	19	22	25	28	4
1	20	23	26	29	5
	21	24	27	30	6

Registers set in channel units (four-operator mode)

The registers set in channel units are A0 to A2H, B0 to B2H, and C0 to C2H. However, to select the four algorithms, only the CNT bit of C0 to C8 require register setting other than C0 to C2H.

For more information, see the CNT bit of the section "Registers".

Channel No.	Set regi	ster address	s (A1=0)	Channel No.	Set reg	ister address	(A1=1)
1	A0H	B0H	СОН	4	A0H	BOH	СОН
2	A1H	B1H	C1H	5	A1H	B1H	C1H
3	A2H	B2H	C2H	6	A2H	B2H	C2H

■ Rhythm slot No.

Rhythm uses six slots to generate the sounds of five musical instruments (bass drum, snare drum, tom-tom, top cymbal, high hat). Slot numbers 13 to 18 generate rhythm sounds. For the relation between slot No. and musical instrument, see the section "Registers".

■ All 36 slots

How all 36 slots are used is summarized below.

Slot Nos. 1 to 12 can be used as the two-operator mode or four-operator mode. Slot Nos. 13 to 18 can be used as the two-operator mode or rhythm. Slot Nos. 19 to 30 can be used as the two-operator mode or four-operator mode. Slot Nos. 31 to 36 can be used as the two-operator mode.

REGISTERS (FM)

00-01H LSI TEST

These two registers are used for LSI testing. All bits should be left at "0" for normal operation.

00 – D7 D6 D5 D4 D3 D2 D1 D0	00 -	D7		D5	D4	D3	D2	D1	DO
-------------------------------------	------	----	--	----	----	----	----	----	----

(REGISTER ARRAY 0, 1)

■ 02H TIMER 1

TIMER 1 is a 80.8µs resolution timer. Set the timer count value in this register. The count value that can be set is 0 to 255.

02H				TIME	ER 1			L
	D7	D6	D5	D4	D3	D2	D1	D0

(REGISTER ARRAY 0)

The timer operation is described here.

Counting is started by setting the timer count value and starting the timer.

When the set time elapses, the flag becomes "1" and the /IRQ pin is made "L" and a timer interrupt is sent to the CPU. At the same time, the count value is reloaded into the timer and counting is continued.

Time t1 until the timer 1 flag is raised is given by the following equation:

 $t1 [ms] = (256 - N1) \times 0.08$ N1: Count value (0 ~ 255)

03H TIMER2

Timer 2 is a 323.1µs resolution timer. Set the timer count value into this register.

	О ЗН	07	00	05	04	03	D2		
--	-------------	----	----	----	----	----	----	--	--

(REGISTER ARRAY 0)

Timer 2 operation is the same as timer 1.

Time t2 until the timer 2 flag is raised is given by the following equation:

t2 [ms] = $(256 - N2) \times 0.32$ N2: Count value $(0 \sim 255)$

* Note:

The resolution of timers 1 and 2 is somewhat different from that of the YMF262 (OPL3).

 OPL3
 Timer 1
 Resolution 80.5μs

 Timer 2
 Resolution 321.8μs

 OPL4
 Timer 1
 Resolution 80.8μs

 Timer 2
 Resolution 323.1μs

■ 04H TIMER 1,2 CONTROL

This register controls starting and stopping of timers 1 and 2.

ST1 is the timer 1 control bit and ST2 is the timer 2 control bit.

0411	D7	D6	D5	D4	D3	D2	D1	D0
04日							ST2	ST1

(REGISTER ARRAY 0)

When the pertinent bit is set to "1", the timer operates and when it is set to "0", the timer stops.

04H FLAG CONTROL

When MT1 is set to "1", the flag always becomes "0" regardless of timer 1 operation. (The /IRQ pin does not become "L" either.)

	D7				D2	
0411	RST	MT1	MT2			

(REGISTER ARRAY 0)

MT2 controls timer 2 the same as MT1 controls timer 1.

When the RST bit is set to "1", the flags of status register bits D5, D6, and D7 are reset. The /IRQ pin becomes "H" level. (When pulled-up externally)

After the flags are reset, the RST bit automatically returns to "0".

■ 04H 4-OPERATOR MODE SETTING

When a bit is set to "1", the corresponding slot can be used as the four-operator mode.

04Н	D7	D6	D5	D4	D3	D2	D1	D0
0411				CON	INEC.	TION	SEL	

(REGISTER ARRAY 1)

The relationship between the

CONNECTION SEL bits and four-operator mode channel No. is shown below.

CONNECTION SEL	D5	D4	D3	D2	D1	D0
Four-operator mode channel No.	6	5	4	3	2	1

For the relation between channel No. and slot No., see the section "Channel and Slot".

05H EXPANSION REGISTER

When accessing the registers (REGISTER ARRAY 1) expanded to OPL3 from OPL2, the NEW bit must be set to "1".

	D7	D6	D5	D4	D3	D2	D1	D0
05H							NEW2	NEW

(REGISTER ARRAY 1)

When accessing the registers expanded to OPL4 from OPL3, the NEW2 bit must be set to "1".

Since these bits become "0" after reset, when used as OPL4, set both the NEW and NEW2 bits to "1" before accessing the registers.

08H KEYBOARD SPLIT SELECTION

Eight octaves are split into a total of 16 and rate key scaling is performed by splitting one octave in half.

പാല	D7	D6	D5	D4	D3	D2	D1	D0
		NTS						

(REGISTER ARRAY 0)

This octave splitting is called "keyboard split".

NTS determines the keyboard split separation point.

When NTS is set to "0", the separation point is determined by the higher two bits of the F number.

When NTS is set to "1", the separation point is determined by the MSB of the F number. This is shown in the table below.

□ NTS="0"

BLOCK data	()		1	2	2		3	4	1		5	6	6	7	7	
F number MSB																	*
F number 2nd	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
Key scale No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

□ NTS="1"

BLOCK data	(2		1		2	;	3	4	1		5	e	3	-	7	
F number MSB	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
F number 2nd																	*
Key scale No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

* Don't care

■ 20-35H, BDH TREMOLO EFFECT

When AM is set to "1", a tremolo effect can be applied to the corresponding slot. The tremolo frequency is 3.7Hz. Its depth is determined by DAM. DAM="1": 4.8dB DAM="0": 1dB

		D6				D0
35H	AM		 	L	L	

(REGISTER ARRAY 0, 1)

врн	D7	D6	D5	D4	D3	D2	D1	D0
	DAM							

(REGISTER ARRAY 0)

■ 20-35H, BDH VIBRATO EFFECT

When VIB is set to "1", a vibrato effect can be applied to the corresponding slot.

The vibrator modulation frequency is 6.0Hz. Its depth is determined by DVB. DVB="1": 14 cent DVB="0": 7 cent (One cent is a semi-tone divided by 100.)

20 –	D7	D6	D5	D4	D3	D2	D1	D0
35H		VIB					•	•

(REGISTER ARRAY 0, 1)

200200000000000000000000000000000000000	D7		~~~~~			
воп		DVB				

(REGISTER ARRAY 0)

■ 20-35H PERCUSSIVE SOUND/NON-PERCUSSIVE SOUND

EGT="0": Non-percussive sound EGT="1": Percussive sound

The envelop waveform of each
mode is shown below.

20 –	D7	D6	D5	D4	D3	D2	D1	D0
35H			EGT					

Percussive sound

(REGISTER ARRAY 0, 1)

■ 20-35H RATE KEY SCALE

Rate key scaling is carried out by setting KSR to "1". "Key scaling" simulates the phenomena that speeds up the rise and fall of the sound

20 –	D7	D6	D5	D4	D3	D2	D1	D0
35H				KSR				

(REGISTER ARRAY 0, 1)

as the interval of natural musical instruments increases.

Relation between rate value and actual time
 The actual ATTACK, DECAY, and RELEASE times are the sum of the rate value and the offset by key scaling shown below.

The offset Rof by key scale (KSR) value is shown in the table below.

Key s	scale value	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Rof	KSR = 0	0	0	0	0	1	1	1	1	2	2	2	2	3	3	3	3
Rot	KSR = 1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

* For the key scale Nos., see the section "08H KEYBOARD SPLIT".

To find the actual rate time, calculate the following RATE value and refer to the "Rate Value and Actual Time Table".

The rate is found from the following equation:

RATE=(Rate value) \times 4 + Rof Where, (when (rate value) = 0, RATE = 0.

When the RATE value exceeds 63, RATE is set to 63.

20-35H MULT

MULT specifies the multiplier for the frequency set by BLOCK and F-NUMBER.

The actual frequency of each

20 –	D7	D6	D5	D4	D3	D2	D1	D0
35H					3	ML 2	ILT 1	0

(REGISTER ARRAY 0, 1)

operator is the product of the specified frequency multiplied by the multiplier shown in the table below.

MULT determines the frequency ratio between operators.

MULT	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
Multiplier	1/2	1	2	3	4	5	6	7	8	9	10	10	12	12	15	15

■ 40-55H TOTAL LEVEL

Total level sets the damping for the envelop. It controls the volume and modulation rate.

40 –	D7	D6	D5	D4	D3	D2	D1	D0
55H			L5	L4	L3	L L2	L1	LO

(REGISTER ARRAY 0, 1)

Total level is given by the following equation: TL [dB] = $(-24 \times L5) + (-12 \times L4) + (-6 \times L3) + (-3 \times L2) + (-1.5 \times L1) + (-0.75 \times L0)$

■ 40-55H LEVEL KEY SCALE

For natural musical instruments, the volume decreases as the interval increases. Level key scale simulates this phenomena.

40 –	D7	D6	D5	D4	D3	D2	D1	D0
55H	K:	SL 0						

(REGISTER ARRAY 0, 1)

The damping for each octave is set by KSL set value.

The relation between set value and damping is shown below.

KSL	0	1	2	3
Damping	0	3 dB/oct	1.5 dB/oct	6 dB/oct

The actual level damping is determined by splitting one octave into 16 parts by the value of the higher four bits of F-NUMBER.

The damping rate shown below is the damping for 3dB/oct.

(Unit:	s: dB
(0 1110	J. u

oct F_NUM	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	3.000	6.000	9.000
2	0	0	0	0	3.000	6.000	9.000	12.000
3	0	0	0	1.875	4.875	7.875	10.875	13.875
4	0	0	0	3.000	6.000	9.000	12.000	15.000
5	0	0	1.125	4.125	7.125	10.125	13.125	16.125
6	0	0	1.875	4.875	7.875	10.875	13.875	16.875
7	0	0	2.625	5.625	8.625	11.625	14.625	17.625
8	0	0	3.000	6.000	9.000	12.000	15.000	18.000
9	0	0.750	3.750	6.750	9.750	12.750	15.750	18.750
10	0	1.125	4.125	7.125	10.125	13.125	16.125	19.125
11	0	1.500	4.500	7.500	10.500	13.500	16.500	19.500
12	0	1.875	4.875	7.875	10.875	13.875	16.875	19.875
13	0	2.250	5.250	8.250	11.250	14.250	17.250	20.250
14	0	2.625	5.625	8.625	11.625	14.625	17.625	20.625
15	0	3.000	6.000	9.000	12.000	15.000	18.000	21.000

For 1.5dB/oct, the damping is 1/2 the above and for 3.0dB/oct, the damping is double the above.

60-75H AR

This register specifies the attack rate.

The set value is 0 to 15. The larger the value, the shorter the rise time of the sound

the rise time of the sound.
To find the actual rate time, see the sections "\$20-35H RATE KEY SCALE" and "Rate Value

and Actual Time Table".

For the envelop flag, see the section "Envelop".

■ 60-75H DR

Specifies the decay rate. The set value is 0 to 15. The larger the set value, the shorter the time.

					DR				
60 –	D7	D6	D5	D4	D3	D2	D1	D0	

(REGISTER ARRAY 0, 1)

To find the actual rate time, see the sections "\$20-35H RATE KEY SCALE" and "Rate Value and Actual Time Table".

■ 80-95H RR

Specifies the release rate. The set value is 0 to 15. The larger the set value, the shorter the time.

80 –	D7	D6	D5	D4	D3	D2	D1	D0
95H					3	P 2	IR 1	0

(REGISTER ARRAY 0, 1)

To find the actual rate time, see the sections "\$20-35H RATE KEY SCALE" and "Rate Value and Actual Time Table".

	80-9	95H	SL
--	------	-----	----

Specifies the sustain level. The sustain level is the transition point which holds the level after the decay reaches the set level when the en-

80 –	D7	D6	D5	D4	D3	D2	D1	D0
95H	<u> </u>	SI 2	L	SI 0				

(REGISTER ARRAY 0, 1)

velop is a non-percussive sound.

During damping, it is the transition point from decay to release rate.

The sustain level (SL) is represented by damping amount as follows: SL [dB] = $(-24 \times SL3) + (-12 \times SL2) + (-6 \times SL1) + (-3 \times SL0)$

When all bits are "1", SL is set to -93dB.

					D3		
75H	3	2 A	R 1	0			

(REGISTER ARRAY 0, 1)

A0-A8H, B0-B8H F_NUMBER

This register determines the frequency information for one octave.

The set value is 0 to 1023.

A0 -	D7	D6	D5	D4	D3	D2	D1	D0
A8H	F7	F6	F5	F_NU F4	MBER F3	F2	F1	F0

B0 –	D7	D6	D5	D4	D3	D2	D1	D0
B8H							F_NU	MBER

(REGISTER ARRAY 0, 1)

B0-B8H BLOCK

taves.

"BLOCK" is the octave information. The set value is 0 to 7 oc-

B0 –	D7	D6	D5	D4	D3	D2	D1	D0
B8H		L		B2	BLOCK B1	В0		

(REGISTER ARRAY 0, 1)

The F_NUMBER setting can be found from the desired frequency and set BLOCK value.

The relation of the desired frequency, $F_NUMBER,$ and BLOCK is given by the following equation:

$$F_NUMBER = \frac{(Desired frequency) \times 2^{19} \div (Sampling frequency/684)}{2^{BLOCK-1}}$$

Examples of F_NUMBER setting using the F_NUMBER equation are shown below. (BLOCK value is "4".)

Note	Frequency	F_NUMBER	Note	Frequency	F_NUMBER
C	261.6	346	G	392.0	519
C#	277.2	367	G#	415.3	550
D	293.7	389	А	440.0	582
D#	311.1	412	A#	466.2	617
E	329.6	436	В	493.9	654
F	349.2	462	С	523.3	693
F#	370.0	490			

F_NUMBER can also be set to other than the above.

However, when the F_NUMBER setting is small, the difference between the frequency generated by the YMF278B and the frequency of the note becomes large.

B0-B8H KEY ON

This register controls sound generation. "1": Key on "0": Key off

B0 –	D7	D6	D5	D4	D3	D2	D1	D0
B8H			KEY ON					

(REGISTER ARRAY 0, 1)

BDH RHY (RHYTHM)

When RHY is set to "1", slots 13 to 18 are set to the rhythm mode.

BD	D7	D6	D5	D4	D3	D2	D1	D0
Н			RHY					

(REGISTER ARRAY 0)

■ BDH RHYTHM INSTRUMENT SELECTION

This register controls sound generation of each rhythm. When the bit corresponding to the each musical instrument is set to "1" after RHY is set to "1" (rhythm), sound is generated.

ווחם	D7	D6	D5	D4	D3	D2	D1	D0
חעס				BD	SD	TOM	тс	НН

(REGISTER ARRAY 0)

The slot No. used by each rhythm instrument is shown below. Set the rate, etc. to match the special features of each musical instrument.

Rhythm instrument	Slot No.
Bass drum (BD)	13, 16
Snare drum (SD)	17
Tom-tom (TOM)	15
Top cymbal (TC)	18
High hat (HH)	14

When a slot is set to the rhythm mode, set KEY ON of slots 13 to 18 to "0".

■ C0-C8H CNT

This register selects the algorithm.

"Algorithm" is a combination (connection form) of operators.

C0 –	D7	D6	D5	D4	D3	D2	D1	D0
C8H		•		•				CN

(REGISTER ARRAY 0, 1)

 \Box Two-operator mode

When CNT is set to "0", algorithm 1 is selected. When CNT is set to "1", algorithm 2 is selected.

Registers C0 to C8H are set for each channel. Therefore, select algorithm 1 and 2 at each channel.

\Box Four-operator mode

To select the four-operator mode, CONNECTION SEL of 05H (REGISTER ARRAY 1) is set and four algorithms are selected by setting two CNT bits.

The two CNT bits needed in algorithm selection at each channel are shown in the table below.

A1	Channel No.	Set CNT t	oit register
	Channel NO.	CNTn	CNTn+3
	1	COH	СЗН
0	2	C1H	C4H
	3	C2H	C5H
	4	COH	СЗН
1	5	C1H	C4H
	6	C2H	C5H

The algorithm form by CNTn and CNTn+3 combination is shown on the next page.

 \bigcirc Algorithm 1 CNTn = "0" CNTn+3 = "0"

$$\bigcirc$$
 Algorithm 3 CNTn = "1" CNTn+3 = "0"

■ C0-C8H FEEDBACK

Feedback modulation can be applied to slot 1 of each channel.

CO	D7	D6	D5	D4	D3	D2	D1	D0
C8H		L				FB	L <u></u>	
C8H					2	гь 1	0	

(REGISTER ARRAY 0, 1)

When feedback modulation

is used, string instrument sounds can be created.

The feedback modulation modulation rate can be selected by FB setting. The relation between FB value and modulation rate is shown below.

FB	0	1	2	3	4	5	6	7
Modulation rate	0	π/16	π/8	π/4	π/2	π	2π	4π

C0-C8H OUTPUT CHANNEL SELECTION

A total of four channels are output from the FM synthesizer.

C0 –	D7	D6	D5	D4	D3	D2	D1	D0
C8H	CHD	СНС	СНВ	СНА				

(REGISTER ARRAY 0, 1)

Each bit "1": Output "0": Not output

□ CHA, CHB

The FM synthesizer output is digitally mixed with the wave table synthesis of the channel at which the CH bit of the wave table synthesizer register \$68 to 7FH is set to "0" and is output from the DO2 pin.

CHA is mixed with the wave table synthesis Lch and CHB is mixed with the wave table synthesis Rch.

CHC, CHD

The output set by CHC and CHD is output from the DO0 pin.

Since FM is output from the DO0 pin and PCM is output from the DO1 pin, a sound effect can be applied to a certain sound by connecting an YSS225 to the DO0 and DO1 pins. Of course, a D/A converter can also be connected.

■ E0-F5H WAVE SELECT

The waveform used in FM operation can be set for each slot.

This allows the generation of complex sounds.

E0 –	D7	D6	D5	D4	D3	D2	D1	D0
E5H				•			WS	
						2	1	0

(REGISTER ARRAY 0, 1)

The relation between WS value and selectable waveform is shown below. When this LSI is used in the OPL2 mode, only WS0 to WS3 can be selected.

□ Non-percussive sound envelop

This envelop has a dynamic range of 96dB (resolution: 0.1875dB) and is expressed by damping amount.

The attack rate changes exponentially by time from key on to 0dB.

When 0dB is reached, attack rate is switched to decay rate. Decay rate changes linearly by time up to the sustain level.

At key off, the rate switches to release rate. Release rate changes linearly with the time from the sustain level to -96 dB.

□ Damping sound envelop

The attach rate changes exponentially with the time from key on to 0dB.

When 0dB is reached, attach rate is switched to decay rate. Decay rate changes linearly with the time up to the sustain level. Release rate changes linearly with the time from the sustain level to -96dB.

Transition to release rate is unrelated to KEY ON.

■ Attack rate

RATE	Time (0 ~ 100%)	Time (10 ~ 90%)
0	×	×
1	œ	œ
2	×	œ
3	œ	œ
4	2826.24	1482.75
5	2252.80	1155.07
6	1884.16	991.23
7	1597.44	868.35
8	1413.12	741.38
9	1126.40	577.54
10	942.08	495.62
11	798.72	434.18
12	706.56	370.69
13	563.20	288.77
14	471.04	247.81
15	399.36	217.09
16	353.28	185.34
17	281.60	144.38
18	235.52	123.90
19	199.68	108.54
20	176.76	92.67
21	140.80	72.19
22	117.76	61.95
23	99.84	54.27
24	88.32	46.34
25	70.40	36.10
26	58.88	30.98
27	49.92	27.14
28	44.16	23.17
29	35.20	18.05
30	29.44	15.49
31	24.96	13.57

(Units: ms)

RATETime (0 ~ 100%)Time (10 ~ 90%)3222.0811.583317.609.023414.727.743512.486.783611.045.79378.804.51387.363.87396.243.39405.522.90414.402.26423.681.94433.121.70442.761.45452.201.13461.840.97471.560.85481.400.73491.120.61500.920.49510.800.43520.700.37530.560.31540.460.26550.420.22560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00630.000.00			(Onits. ms)
33 17.60 9.02 34 14.72 7.74 35 12.48 6.78 36 11.04 5.79 37 8.80 4.51 38 7.36 3.87 39 6.24 3.39 40 5.52 2.90 41 4.40 2.26 42 3.68 1.94 43 3.12 1.70 44 2.76 1.45 45 2.20 1.13 46 1.84 0.97 47 1.56 0.85 48 1.40 0.73 49 1.12 0.61 50 0.92 0.49 51 0.80 0.43 52 0.70 0.37 53 0.56 0.31 54 0.46 0.26 55 0.42 0.22 56 0.38 0.19 57 0.30 <td>RATE</td> <td>Time (0 ~ 100%)</td> <td>Time (10 ~ 90%)</td>	RATE	Time (0 ~ 100%)	Time (10 ~ 90%)
34 14.72 7.74 35 12.48 6.78 36 11.04 5.79 37 8.80 4.51 38 7.36 3.87 39 6.24 3.39 40 5.52 2.90 41 4.40 2.26 42 3.68 1.94 43 3.12 1.70 44 2.76 1.45 45 2.20 1.13 46 1.84 0.97 47 1.56 0.85 48 1.40 0.73 49 1.12 0.61 50 0.92 0.49 51 0.80 0.43 52 0.70 0.37 53 0.56 0.31 54 0.46 0.26 55 0.42 0.22 56 0.38 0.19 57 0.30 0.14 58 0.24 <td>32</td> <td>22.08</td> <td>11.58</td>	32	22.08	11.58
35 12.48 6.78 36 11.04 5.79 37 8.80 4.51 38 7.36 3.87 39 6.24 3.39 40 5.52 2.90 41 4.40 2.26 42 3.68 1.94 43 3.12 1.70 44 2.76 1.45 45 2.20 1.13 46 1.84 0.97 47 1.56 0.85 48 1.40 0.73 49 1.12 0.61 50 0.92 0.49 51 0.80 0.43 52 0.70 0.37 53 0.56 0.31 54 0.46 0.26 55 0.42 0.22 56 0.38 0.19 57 0.30 0.14 58 0.24 0.11 59 0.20	33	17.60	9.02
36 11.04 5.79 37 8.80 4.51 38 7.36 3.87 39 6.24 3.39 40 5.52 2.90 41 4.40 2.26 42 3.68 1.94 43 3.12 1.70 44 2.76 1.45 45 2.20 1.13 46 1.84 0.97 47 1.56 0.85 48 1.40 0.73 49 1.12 0.61 50 0.92 0.49 51 0.80 0.43 52 0.70 0.37 53 0.56 0.31 54 0.46 0.26 55 0.42 0.22 56 0.38 0.19 57 0.30 0.14 58 0.24 0.11 59 0.20 0.11 60 0.00	34	14.72	7.74
37 8.80 4.51 38 7.36 3.87 39 6.24 3.39 40 5.52 2.90 41 4.40 2.26 42 3.68 1.94 43 3.12 1.70 44 2.76 1.45 45 2.20 1.13 46 1.84 0.97 47 1.56 0.85 48 1.40 0.73 49 1.12 0.61 50 0.92 0.49 51 0.80 0.43 52 0.70 0.37 53 0.56 0.31 54 0.42 0.22 56 0.38 0.19 57 0.30 0.14 58 0.24 0.11 59 0.20 0.11 60 0.00 0.00 61 0.00 0.00	35	12.48	6.78
38 7.36 3.87 39 6.24 3.39 40 5.52 2.90 41 4.40 2.26 42 3.68 1.94 43 3.12 1.70 44 2.76 1.45 45 2.20 1.13 46 1.84 0.97 47 1.56 0.85 48 1.40 0.73 49 1.12 0.61 50 0.92 0.49 51 0.80 0.43 52 0.70 0.37 53 0.56 0.31 54 0.46 0.26 55 0.42 0.22 56 0.38 0.19 57 0.30 0.14 58 0.24 0.11 59 0.20 0.11 60 0.00 0.00 61 0.00 0.00	36	11.04	5.79
39 6.24 3.39 40 5.52 2.90 41 4.40 2.26 42 3.68 1.94 43 3.12 1.70 44 2.76 1.45 45 2.20 1.13 46 1.84 0.97 47 1.56 0.85 48 1.40 0.73 49 1.12 0.61 50 0.92 0.49 51 0.80 0.43 52 0.70 0.37 53 0.56 0.31 54 0.46 0.26 55 0.42 0.22 56 0.38 0.19 57 0.30 0.14 58 0.24 0.11 59 0.20 0.11 60 0.00 0.00 61 0.00 0.00	37	8.80	4.51
405.522.90414.402.26423.681.94433.121.70442.761.45452.201.13461.840.97471.560.85481.400.73491.120.61500.920.49510.800.43520.700.37530.560.31540.460.26550.420.22560.380.19570.300.14580.240.11600.000.00610.000.00	38	7.36	3.87
414.402.26423.681.94433.121.70442.761.45452.201.13461.840.97471.560.85481.400.73491.120.61500.920.49510.800.43520.700.37530.560.31540.460.26550.420.22560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00	39	6.24	3.39
42 3.68 1.94 43 3.12 1.70 44 2.76 1.45 45 2.20 1.13 46 1.84 0.97 47 1.56 0.85 48 1.40 0.73 49 1.12 0.61 50 0.92 0.49 51 0.80 0.43 52 0.70 0.37 53 0.56 0.31 54 0.46 0.26 55 0.42 0.22 56 0.38 0.19 57 0.30 0.14 58 0.24 0.11 59 0.20 0.11 60 0.00 0.00 61 0.00 0.00	40	5.52	2.90
433.121.70442.761.45452.201.13461.840.97471.560.85481.400.73491.120.61500.920.49510.800.43520.700.37530.560.31540.460.26550.420.22560.380.19570.300.14590.200.11600.000.00610.000.00	41	4.40	2.26
44 2.76 1.45 45 2.20 1.13 46 1.84 0.97 47 1.56 0.85 48 1.40 0.73 49 1.12 0.61 50 0.92 0.49 51 0.80 0.43 52 0.70 0.37 53 0.56 0.31 54 0.46 0.26 55 0.42 0.22 56 0.38 0.19 57 0.30 0.14 58 0.24 0.11 59 0.20 0.11 60 0.00 0.00 61 0.00 0.00	42	3.68	1.94
452.201.13461.840.97471.560.85481.400.73491.120.61500.920.49510.800.43520.700.37530.560.31540.460.26550.420.22560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00	43	3.12	1.70
461.840.97471.560.85481.400.73491.120.61500.920.49510.800.43520.700.37530.560.31540.460.26550.420.22560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00	44	2.76	1.45
471.560.85481.400.73491.120.61500.920.49510.800.43520.700.37530.560.31540.460.26550.420.22560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00	45	2.20	1.13
481.400.73491.120.61500.920.49510.800.43520.700.37530.560.31540.460.26550.420.22560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00	46	1.84	0.97
491.120.61500.920.49510.800.43520.700.37530.560.31540.460.26550.420.22560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00	47	1.56	0.85
500.920.49510.800.43520.700.37530.560.31540.460.26550.420.22560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00	48	1.40	0.73
510.800.43520.700.37530.560.31540.460.26550.420.22560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00620.000.00	49	1.12	0.61
52 0.70 0.37 53 0.56 0.31 54 0.46 0.26 55 0.42 0.22 56 0.38 0.19 57 0.30 0.14 58 0.24 0.11 59 0.20 0.11 60 0.00 0.00 61 0.00 0.00	50	0.92	0.49
530.560.31540.460.26550.420.22560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00620.000.00	51	0.80	0.43
540.460.26550.420.22560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00620.000.00	52	0.70	0.37
550.420.22560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00620.000.00	53	0.56	0.31
560.380.19570.300.14580.240.11590.200.11600.000.00610.000.00620.000.00	54	0.46	0.26
570.300.14580.240.11590.200.11600.000.00610.000.00620.000.00	55	0.42	0.22
58 0.24 0.11 59 0.20 0.11 60 0.00 0.00 61 0.00 0.00 62 0.00 0.00	56	0.38	0.19
59 0.20 0.11 60 0.00 0.00 61 0.00 0.00 62 0.00 0.00	57	0.30	0.14
60 0.00 0.00 61 0.00 0.00 62 0.00 0.00	58	0.24	0.11
61 0.00 0.00 62 0.00 0.00	59	0.20	0.11
62 0.00 0.00	60	0.00	0.00
	61	0.00	0.00
63 0.00 0.00	62	0.00	0.00
	63	0.00	0.00

RATE	Time (0 ~ 100%)	Time (10 ~ 90%)
0	×	œ
1	œ	œ
2	∞	∞
3	∞	∞
4	39280.64	8212.48
5	31416.32	6574.08
6	26173.44	5509.12
7	22446.08	4730.88
8	19640.32	4106.24
9	15708.16	3287.04
10	13086.72	2754.56
11	11223.04	2365.44
12	9820.16	2053.12
13	7854.08	1643.52
14	6543.36	1377.28
15	5611.52	1182.72
16	4910.08	1026.56
17	3927.04	821.76
18	3271.68	688.64
19	2805.76	591.36
20	2455.04	513.28
21	1936.52	410.88
22	1635.84	344.34
23	1402.88	295.68
24	1227.52	256.64
25	981.76	205.44
26	817.92	172.16
27	701.44	147.84
28	613.76	128.32
29	490.88	102.72
30	488.96	86.08
31	350.72	73.92

Decay and release rates

(Omts.ms)	(Units:	ms)
-----------	---	--------	-----

T : (0, 10,00()	
	· · · · · · · · · · · · · · · · · · ·
	64.16
	51.36
	43.04
-	36.96
153.44	32.08
122.72	25.68
102.24	21.52
87.68	18.48
76.72	16.04
61.36	12.84
51.12	10.76
43.84	9.24
38.36	8.02
30.68	6.42
25.56	5.38
21.92	4.62
19.20	4.02
15.36	3.22
12.80	2.68
10.96	2.32
9.60	2.02
7.68	1.62
6.40	1.35
5.48	1.15
4.80	1.01
3.84	0.81
3.20	0.69
2.74	0.58
2.40	0.51
2.40	0.51
	0.51
2.40	0.51
	102.24 87.68 76.72 61.36 51.12 43.84 38.36 30.68 25.56 21.92 19.20 15.36 12.80 10.96 9.60 7.68 6.40 5.48 4.80 3.84 3.20 2.74 2.40 2.40

INPUT CLOCK

Connect a 33.8688MHz crystal oscillator to the XI and XO pins. Rate, pitch, and everything else related to frequency are based on this clock. An input clock circuit reference example is shown below.

CONNECTION TO D/A CONVERTER AND EFFECT PROCESSOR

This section describes how OPL4 and YAC513 OPL4-dedicated DAC are connected. Connection examples are shown below.

OPL4 outputs three serial data (DO0-DO2).

Basically, DO0 to DO2 can connect to pin 8 (SD) of the YAC513.

However, a sound effect should be applied to a specified sound by connecting DO2 to the YAC513 and connecting DO0 and DO1 to the YSS225.

The method of connecting the YSS225 Effect Processor, which applies reverberation, echo, and other effects to the OPL4 wave table, is described below.

A connection example is shown below.

Note: Do not connect YSS225 pins 6 and 7. (WLS0,1...input data length (16/18bit) switching.)

DAC OUTPUT CIRCUIT EXAMPLE

A DAC (YAC513) output circuit example is shown below.

The CH1 and CH2 low-pass filters are the same circuit. The low-pass filter cutoff frequency should be about 15 to 20kHz.

AUDIO OUTPUT INTERFACE

The YMF278B output data is 16-bit 2's complement digital data. The data is MSB first output. The sampling frequency is 44.1kHz. The data output from each pin is shown below.

- DO0 pin: FM sound only (Sound of channel set by CHC and CHD of FM registers \$C0 to C8H is output.)
 When CHC is set, sound is output to Lch.
 When CHD is set, sound is output to Rch.
- □ DO1 pin: Wave table sound only. (Sound of channel set at CH="1" of wave table registers \$68 to 7FH is output.)
- DO2 pin: FM and wave table mixed data. (Sound of channel set by CHA and CHB of FM registers \$C0 to C8H and sound of channel set at CH="0" of wave table registers \$68 to 7FH are mixed and output.)
 When CHA is set, sound is output to Lch.
 When CHB is set, sound is output to Rch.

The YSS225 Effect Processor and YMF278B dedicated DAC are available from YAMAHA to apply effects (echo, reverberation, etc.) to the output sound.

OUTPUT TIMING

The BCO frequency is 48fs. Its duty is 50%. (fs=44.1kHz) DO0, DO1, and DO2 fs is 44.1kHz. The LRO frequency is fs. Its duty is 50%. The WCO frequency is 2fs. Its duty is 50%.

ELECTRICAL CHARACTERISTICS

■ Absolute maximum rating

Item	Symbol	Rating	Unit
Power supply voltage	Vdd	-0.3 ~ 7.0	V
Input voltage	Vin	$-0.3 \sim V_{DD}+0.5$	V
Operating ambient temperature	Top	0 ~ 70	> ℃ ℃
Storage temperature	Tstg	-50 ~ 125	°C

Recommended operating conditions

Item	Symbol	Min.	Typical	Max.	Unit
Power supply voltage	Vdd	4.75	5.00	5.25	v ℃
Operating ambient temperature	Тор	0	25	70	°C

DC characteristics (conditions : $Ta = 0 \sim 70^{\circ}C$, $V_{DD} = 5.0\pm0.25V$)

Item	Symbol	Condition	Min.	Max.	Unit
Power consumption	P□	V _{DD} = 5.0V fм = 33.8688MHz		250	mW
High level input voltage (1) Low level input voltage (1)	Vihi Vili	Applicable to /WR, /RD, /CS, A0-A2, D0-D7, MD0-MD7.	2.0	0.8	V V
High level input voltage (2) Low level input voltage (2)	V_{1H2} V_{1L2}	Applicable to /TST1, /TST2, X1.	3.5	1.0	V V
Input leak current	Lu	$0V \leq V_{IN} \leq V_{DD}$ Applicable to /WR, /RD, /CS, A0-A2, D0-D7, MD0-MD7.	-10	10	μΑ
Input capacitance	C			10	рF
High level output voltage (1) Low level output voltage (1)	V_{CH1} Vol1	Іон = −80µА Іо∟ = 2mA *1	Vdd -1.0	Vss +0.4	V V
High level output voltage (2) Low level output voltage (2)	Voh2 Vol2	Іон = 160µА Іог = 4mA *2	Vdd -1.0	Vss +0.4	V V
Output capacitance	Co			10	рF
Output leak current	Iol	/CS = VIH	-10	10	μA
Pull-up resistor	Rυ	/CS, /IC, /TST1, /TST2	50	400	kΩ

*1 Applicable to D0-D7 (at output), CLKO, BCO, LRO, WCO, DO0-DO2, /MWR, /MRD, MD0-MD7 (at output).

*2 Applicable to MA0-MA20, /MCS0-/MCS9.

■ AC characteristics 1 Clock, CPU interface (conditions : $Ta = 0 \sim 70^{\circ}C$, $V_{DD} = 5.0\pm0.25V$)

Item	Symbol	Fig.	Min.	Typical	Max.	Unit
Master clock frequency Duty	fм1 D	Fig1-1	40	33.8688	60	MHz %
Output clock frequency Duty	fм2 D	Fig1-2		16.9344 50		MHz %
Reset pulse width	Nicw	Fig1-3	3000 *3			Cycle
Address set-up time Address hold time	tas tah	Fig1-4, 5 ″	5 5			ns ns
Chip select write width Chip select read width	tcsw tcsr	Fig1-4 Fig1-5	50 80			ns ns
Write pulse width Data set-up time Write data hold time	tww twos twoн	Fig1-4 "	50 10 10			ns ns ns
Read pulse width Read data access time Read data hold time	trw tacc trdн	Fig1-5 "	80 10		60	ns ns ns

*3 Number of master clock cycles

 \Box Input clock timing

□ Output clock timing

Fig. 1-1

Fig. 1-2

 \square Reset pulse width

Fig. 1-3

\Box CPU write timing

Note: tcsw, tww, and twDH are based on either /CS or /WR being driven to High level.

Fig. 1-4

\Box CPU read timing

Note: tacc is based on whichever of /CS or /RD goes to the Low level last. tcsr, trw, and trDH are based on either /CS or /RD being driven to High level.

Fig. 1-5

■ AC characteristics 2 Audio interface (conditions : $Ta = 0 \sim 70^{\circ}C$, $V_{DD} = 5.0\pm0.25V$)

Item	Symbol	Fig.	Min.	Typical	Max.	Unit
Bit clock frequency	fвc	Fig1-6		48 fs*		MHz
Bit clock high level cycle	tсн	"	110			ns
Data out set-up time	toos	"	100			ns
Data out hold time	tрон	"	280			ns
LR clock set-up time	tLRS	"	100			ns
LR clock hold time	t LRH	"	280			Unit MHz ns ns ns ns ns
Word clock hold time	twcн	"	280			ns

* fs = 44.1 kHz

64

■ AC characteristics 3 Memory interface (conditions : $Ta = 0 \sim 70^{\circ}C$, $V_{DD} = 5.0\pm0.25V$)

Item	Symbol	Fig.	Min.	Typical	Max.	Unit
Write cycle time	twc	Fig1-7	600			ns
Address confirmation time for /MWR /MCS confirmation time for /MWR	taw tcw	"	500 450			ns ns
Write address set-up time Write recovery time Write pulse width	twas twr tww	"	250 50 150			ns ns
Write data set-up time Write data hold time	twos twoн	"	150 5			ns ns
Address access time	trc	Fig1-8			150	ns
Chip enable access time	t CE	"			150	ns
Output disable time Read data hold time	tof trdн	"	0		90	ns ns

 \Box Memory write timing

Fig. 1-7

Note: The values above are the values when the write wait cycle time was secured.

□ Memory read timing

Notes:

- 1. The read timing above is the memory read timing at sound generation.
- 2. The /MRD signal is always "L".

■ AC characteristics test conditions

Item	
Input pulse voltage	$ \begin{array}{ll} V_{\text{IH}} = 2.4 V & V_{\text{IL}} = 0.4 V \; (\text{except XI}, \mbox{/TST1}, \mbox{/TST2}) \\ V_{\text{IH}} = 3.9 V & V_{\text{IL}} = 0.6 V \; (\text{XI}, \mbox{/TST1}, \mbox{/TST2}) \end{array} $
Input pulse rise and fall times	t _{RF} = 5ns
Timing measurement reference voltage	Vон = 0.7*VDD Vol = 0.2*VDD (CLKO, BCO, LRO, WCO, DO0 ~ 2)
	Voн = 2.2V VoL = 0.8V (D0 ~ D7, MA0 ~ 20, /MCS0 ~ 9, MD0 ~ 7, /MWR, /MRD) CL = 100pF
Output load	C _L = 100pF

\Box Output load circuit

■ EXTERNAL DIMENSIONS

• YMF278B-F

UNIT: mm

The specifications of this product are subject to improvement changes without prior notice.

 AGENCY	

.

.

,