EEEEE

MODEL 100

BASIC
LANGUAGE LAB

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADHO SHACK, COMPUTER EQUIPMENT AND S0FTWARE
PURCHASED FROM A RADID SHACK COMPANY-OWNED COMPUTER CENTER. RETAIL STORE OF FADM &
RADIC EHACK FRAMCHISEE OR DCALLR AT TS AUTHORIZIO LOCATION

LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A CUSTOMER sssumes ful responsability that this Radio Shack compeler hardware purchased (the ““Equipment’’|, and any cooies of Radio
Smack waMuare michaded with the Equipment or licersed gaparstaly (the ~SoRlears) mostc the cpecifications, capacity, capabilbes,
versatiity, and other seguinements of CLUSTOMER:.

CUSTOMER assumes holl respoesility for the condion and stfectiveness of the opmatng emvirammeand in which the Eguipment and Saltware
ane 1 lunction, and lor @8 nstallaion

AADID SHACK LIMITED WARRANTIES AND CONDITIDNS DF SALE

A Fer @ perod of ninety (90) calendar days from the date of the Radso Shack seles document recerved upan puichase of e Equipment, RADD
SHAGK warrants 1o i origingl CLISTOMER thet the Equidment and the meduim upne which e Salrasrs ic stored ic free from manutaciunmg
defects. THIS WASRANTY |5 (MUY APPUICABLE TO FURCHASES OF RADIC SHACK EOUIPMENT BY THE ORIGINAL CUSTOMER FROM
RA0I0 SHACK COMPANY-0OWNED COMPUTER GENTERS, RETAIL STORES AND FROM RADID SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty is void § the Equipment's case or cabinel has been apened, oo 4 the Eguipment o Sobware has been
subijscind b enproper or abrormsd age. IF @ maratackunng Select i@ dcoverad during the stted waranty pavied. the deloctive Equipmen
mus! be retumed to a Racio Shack Computer Center, & Radin Shack retail siore. participaimg Radic Shack fanchisse or Radio Skack dealer
far repai, @ong with 2 copy ol the sales document ar lease agreement. The original CUSTOMER'S soke and exclusive remady in the event ol
a delect is limited to the comection of the defect by repar, replacement. of rehend of the purchase price, at RADND SHACK'S dection and sols
mupangn . AADNO SHACK hat ne abligaion %o roplaco or ropair espendoblo tems
AADIG SHACK makes no warranty 25 1o the design. capabdity. capacity. or suitabalty for use of the Saftware. extept a8 provided m this
paragraph Software is fcensed on an “AS 15" bess, withoul warsarly, The original CUSTOMER'S exclesive remedy, In the event of a
Softwang mamufacturing detect, i iis repair or replacement within thirty (300 calendar days of the date of the Fado Shack salet document
receied upon license of the Joftwere. The deleclive Soltware shall e rewined 0 8 Radso Shack Comipater Cemmer. @ Rain Shack remail sioem,
particgating Radio Shack fanchises or Radio Shack dealer along with the sales document

c Eﬁmg Erl:ld:?TI herem no employee, agernt, Iranchises, deaber Or OUher person s authorizec 1o give any warranties of a0y nalune on behali

H
] ;JL- { as proviced herein, AADKD SHAGK MAKES MO WAMRANTIES, INCLULING WARRANIIES UF MERCHANTARILITY UR FITWESS FOR A
AR PURPOSE.
E. Some states do not akow benitations on how kang an implisd wasranty fasts. so e above limitatanis) may nol apely % CUSTOMER

LINMITATIIN DF LEABELITY

A EXCEPT AS PROVIDED HEREIN, RADID SHACK SHALL HAVE NO LIABILITY DR RESPOMSIBILITY TO CUSTOMER OR ANY OTHER PERSON
O ENTITY WITH RESPECT TD ANY LIABRLITY, LOSS OR DAMAGE CAUSED DA ALLEGED T0 BE CAUSED DYRECTLY OF INDIBECTLY 8y
CLOWPMERT OR “SOFTWARE" S0LD. LEASED, LICENSED OR FURNISHED BY AADID SHAGEK, INCLLRDING, BUT NOT LIMITED TO. ANY
INTERRLFTION OF SERVICE. LOSS OF BUSINESS OA ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR DPERATION OF THE “ECUIPMENT OF ~SOFTWARE" N MO EVENT SHALL RADID SHACK BE LIASLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR COMSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARIEIMG QUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE WSE UM ANTILIFATEL USE UF 1HE “ECUIPMENT - DH “SOFTWARE

MOTATHETANDING THE ABOVE LIMITATIONS AND WARRANTIES. RADID SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURIRED BY
CUET'!JIIFE:H DR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR “EOLIPMENT 0A “SOFTWARF
(L0

FADI0 SHACK shall not be lizbie tor ary damapes cawsec Dy delay in delivenng or furmishing Foupment andior Sotteare

Mo actios arising cart of a7y claimed breach of this Warranty or transactions under this Warranty may be brought mare than two (2} years
after the cause o achon MEs arcieed of mMOre than 1our (4] years akel the date ol the Radio Shack siles document for the Equipment oe
Softwane, whichaver hirsl Doours

Some states o not allow the limitation o exclusior of incdental or consequential dameges, 5o the abowe feetation(s) or exclusion(sh may
ot apgdy 1o CUSTOMER

RADAD SHACK grants to CUSTOMER 2 non-exclusive, paid-up lcence to use the RADIC SHACK Software on ops computes, subject 10 the feliowsag
provisions:
Excap? ae stherwies provided in this Ecfrwary Liconse. apgplcalbie copynght aws shall apply 15 the Softwane
Terke iy £he maciiam o which e Software is mooided |cassete andiar dsiafie) or stored (ROM] 5 fransterred 10 CUSTOMER , but nod tile to
Ihe Saltware.
CUSTOMER may use Software on one hos! compuder and access that Safware through one o more Termingls it the Softears pammits 1his
functsan.
CUSTOMER shall mat ute, make, manufacture, or repoduce copies O Software except for use on one compuier and &5 15 spectically
proveded in This Sofware License Customer is Hpmhgﬂrﬂihitll frgim disaszembdrg the Somware
CUSTOMER i6 pesmifted to make additional copies of fhe Sokwars only for backup or archival purposes os if sdditeanal copies are requinsd in
the gperalivn ol gne Copuier with e S09ware. DUT ORIy 10 The EXIENL M SOMWArE 3%aws A Dackup copy 0 Dbe mace Howewer, 1nf
TRSDOS Softwane, CUSTOMER i3 permitted to malke 3 limied number of addtiona! copies for CUSTOMER'S own use
CUSTOMER may resall ar distribute unmoddied copies of the Software provided CUSTOMER hat purchasad one copy of the Software kar each
one sod or cestribwted. The pravissond of this Saftwane License shall alsa be applicatée 1o third panies receiving copies of the Soltware lmen
LS T UNER
G A copynight nolices £had be retained on all copes of fhe Sofware

APPLICABILITY OF WARRANTY

A Ihe terms and conditans of fus 'Wasranty are apolicable as between RADID SHACK and CUSTOMER to aither 3 <% of e Equipment andior

Sﬂ?ﬁr&lﬁmm to CUSTOMER or to a transaction whereby RADIO SHACK s#is or cormveys sech Equipmesn m a thirg party 1ol leas o
[

B The limiasons oF Habiliny anc WaimanTy provissans Nergin SHan inure t e benem of RADYW SHALK, e aumor. awner sndiar kcemsar of the
SoMware and any manulacturer of the Equipment sold by FADKD SHACK.

STATE LAW RIGHTS

Thee warranbies granted fein give the original CUSTOMER specific legal nghts, and the arigingl CUSTOMER may hawe other rights whach vary
from slabe to @k,

TRS-80

Model 100

BASIC Language Lab

Radio fhaek

A DIVISION OF TANDY CORPORATION
FORT WORTH, TEXAS 76102

Model 100 BASIC Language Lab Program:
© 1983 Tandy Corporation
All Rights Reserved.

Model 100 BASIC Language Lab Program Manual:
© 1983 Tandy Corporation
All Rights Reserved.

Reproduction or use, without express written permission from
Tandy Corporation, of any portion of (his manual is prohibited.
While reasonable efforts have been taken in the preparation of this
manual to assure its accuracy, Tandy Corporation assumes no
liability resulting from any errors or omissions in this manual, or
from the use of the information contained herein.

10987654321

Contents

010 oY 11 Lot 3 T o A OO 1
Lesson #1 Introduction to BASICo\ttt 3
Lesson #2 Saving Programso i i i5
Lesson #3 Interest Calculationsccitiiiii i, 31
Lesson #4 Sales CommiSSIONS . ..o v v vt ittt i it i i e 45
Lesson #5 Day, Timeand Date i, 57
Lesson #6 Using the Editor. 0 i, 69
Lesson #7 Sales Trend ittt i ... 87
Lesson #8 Plot Your Data. e 99
Lesson #9 FUNCHONS i e e e 111
Lesson #10 Data Files. e 123
Lesson #11 Average Sales i i i e 131
Lesson #12 Sound & Simulation i, 145
Lesson #13 Function Keys 0. i 155
Lesson #14 Using the COM Option.coovi ittt 165
Lesson #15 TELCOM Applicationsoooiiii i, 175
Application #1 Calculator 185
Application #2 Memory Master Game.ootiiiiiennninennann. 189
Application #3 Descriptive Statistics o e 195

Introduction

If you’ve used your TRS-80 Model 100 just once, you know how simple, versatile,
and powerful a computer it is. Its built-in application programs allow you to perform
normally complex computer operations with ease. This includes data manipulation,
computer-to-computer communications, word processing, and more.

However, as you become more familiar with your Model 100, you can make the
computer even more useful by customizing it to suit your own special needs. This is
done through BASIC, the built-in programming language.

For instance, from BASIC, you can:

® Re-define the Function Keys D through F8).

® Communicate with information services and other computers.

® Write programs for a wide range of applications such as forecasting sales trends and
performing interest or mortgage calculations.

® Make use of the computer’s graphic and sound capabilities.

and a host of other operations!

This course will show you how to perform operations such as these by explaining in
detail the BASIC section of your Model 100 Owner’s Manual. This means that by the
time you’ve finished this course, you’ll be writing your own programs and using the
built-in application programs more effectively.

Since most of the application programs not built-in will be written in BASIC, and
since BASIC interacts with the other built-in programs, you’ll find it is definitely to
your advantage to become familiar with BASIC.

So sit back and get ready to enjoy your Model 100 even more. You’re about to find
out how powerful a computer it really is!

Lesson #1 Introduction to BASIC

To use the BASIC capabilities of the Model 100, you must first learn how to
communicate with your Computer. Essentially, this involves typing instructions on the
keyboard and watching the display for responses from the Computer.

While you can type anything you wish on the keyboard, the Model 100 only responds
to words written in its own ‘‘language.”’ This ‘‘language’’ is BASIC. If you type

something which the Model 100 does not recognize as a BASIC word, it will respond
with an error message. B
In this lesson, you will learn a few BASIC commands to communicate with your {IST .

Computer and write simple programs.

It should be mentioned at this point, that even when you type a BASIC word, the CONT
Model 100 will not respond until the ENTER key (located in the right side of the Rhbre
keyboard) is pressed. After pressing (ENTER), the line just typed is placed in memory
for processing by the Computer.

Throughout this Manual, the phrase ‘‘enter this command’’ will be used often. This
simply means that you should press after typing the command or instruction.

Also, when we tell you to press (BREAK), you should press both SHIFT) and
together.

Accessing BASIC

Prior to typing or editing a BASIC program, you must access the BASIC interpreter of
the Model 100.

When you Power-Up the Computer, you will see the Main Menu, which shows all the
“files’’ that exist in the Model 100’s memory. Think of these computer files simply as
file folders that may hold text or programs.

If you haven’t created any files, the Main Menu displays the built-in application
programs:

(CyMicrosaft
ADDRSS

23897 PButes free

X 4D CT 48 TD = b TS c— T o 8T

On initial Power-Up, the Main Menu Cursor — the large, dark rectangle — is
positioned over the word ‘‘BASIC.”’” The Cursor can be placed on any other Menu
word by pressing the Cursor Movement Keys ((=) , (=), (), or (D).

To access the BASIC interpreter, simply position the Cursor over the word BASIC
and press (ENTER). The Display will then look like this:

TRE-82@ Model 1200 Software
Copr. 1983 Microsoft
2119@ BPytes free

(:)k

]

=1 =/| D24 3/ CCd40 ¢ 570 = 603 =70 8 ™

The number 21 18@ indicates the number of free bytes for creating any programs and
it may vary depending upon the capacity of your machine and whether any other files
have been created and saved.

The word 0K and the flashing cursor symbol below it, indicate that you are in the
Command Mode of BASIC and ready to begin programming.

Experiment #1 Entering a Command

A command is an instruction to the Computer ordering it to do something
immediately. In this experiment you will learn how to enter a simple command.

First you will attempt to have the Model 100 print out a name on the display. .Type
the name:

JOHN SMITH

You may use any other name. Now, press (ENTER). As soon as you do this, the
Computer displays the message:

YS8N Error

This message indicates that an etror, specifically a syntax error, has been made. The
syntax error occurred because the Computer doesn’t recognize John Smith as part of
its vocabulary (also known as the Instruction Set).

The correct way to instruct the Computer to print the name is to type:
PRINT "JOHN SMITH" (ENTER

Be sure to press (ENTER) at the end of the line. The key word PRINT and the
quotation marks enclosing the name are recognized as part of the Computer’s
vocabulary. This way no syntax error occurs and the name appears printed right below
the command.

PRINT "JOHM SMITH®
JOHN SMITH
Ok

1 T D (oD Ch 3TO =4S = b3 = b=3 = /T3 L8 3

Use the PRINT command to print your own name if you haven’t already done so.
Also, try printing other phrases. For example, to print How now brown cow, type:

PRINT "HOW NOW BROWN COW" (ENTER

Notice that the phrase is printed exactly as it appears within the quotation marks,
including spaces.

Experiment #2 What is a BASIC Program?

A BASIC program is a list of instructions (or statements) that the Computer
executes, one at a time, in a sequential order. An instruction differs from a command
in that it is preceded by a line number.

Here is a simple BASIC program:
19 PRINT "JOHN SMITH"

This program, consisting of only onc statement, the PRINT statement, accomplishes
the same thing as the command:

PRINT "JOHN SMITH" (ENTER)

But because the word PRINT is being used in a program and preceded by a line
number, it is now called a statement. The number 10 which is typed before the PRINT
statement is called a line number. Every line in a BASIC program must have a line
number, even if the program contains only a single line.

Type line 10 as it appears above. Notice that nothing happens this time when you

* press (ENTER). Unlike a command, which instructs the Computer to perform a task
immediately, a program does nothing until the Computer is instructed to execute it.
This is accomplished with the command:

RUN
Type the RUN command. Don’t forget to press (ENTER) after typing it.

After entering the RUN command, the program is executed and the name is displayed.

10 PRINT *JOMN SMITH®
RUN

— o/ o= 2 TR CC 3T = A TS o= 5T = 6= o= 7 —m o= 8 =2

A more economical way of instructing the Computer to execute your program is to
press the RUN Function Key, (F8). This accomplishes the same thing as typing RUN
(ENTER.

Now try a slightly more ambitious program. Enter the following two-line program:

18 PRINT "RADIO SHACK MODEL i1@@"
20 GDTO i@

The second statement in this program begins with line number 20, indicating that this
instruction should be executed after the first line which has a smaller line number.
There is nothing special about the line numbers used in this program. The important
thing is that the PRINT instruction has a smaller line number than the GOTO
instruction.

Execute the program with the RUN command or by pressing (F4).

As you can see, unlike the first single line program, this second program prints the
name within quotation marks repeatedly. This is known as an ‘‘infinite loop”’

. program because the GOTO statement in the second line of the program simply
transfers control back to the first line which prints the ‘‘string’’ (a group of characters
and/or numbers) again on the next line.

Because of this continuous transfer, the program has no way of terminating and so it
must be terminated manually by you. To ‘‘break’’ the program, press (BREA
(GHIFD (PAUSE).

When you press (BREAK), the Computer will display a message to show where the
program stopped when it was ‘‘broken.’’ For example:

Break in 18

Ok
=

E

ol tm =2 = 3T cm 4SO o= ST £ b = 7T o 8 T

Note that the program you wrote ‘*scrolls up and off”’ the screen as the program
began printing. If you wish to see the program as you wrote it again, enter the
command:

LIST

or simply press the LIST Function Key, (F5). In either case, the program will appear
on the Display again.

List

183 PRINT "RADIO SHACK MODEL 1Q8°
2@ GOTO 1@

Qk

o) T/ =2 =329 — 49 L 573 X 6T =7 T3 =8 —

Execute this program again with the RUN command or by pressing (F4).
After letting the program run a few seconds, terminate it by pressing BREAK.
This time after pressing (BREAK), enter the command:

CONT

As you can see, the program resumes execution. The CONT command is used to
CONTinue execution after the program has been “‘broken.’’ Execution will start at the
same place where the program was interrupted.

Experiment #3 Simple Editing

Here’s the program from the previous experiment:

1@ PRINT "RADIO SHACK MODEL iee"
20 GOTO 1o

Suppose you want to change line 10 so that the message reads:
I LOVE MY MODEL 100
This can be done by retyping linc 10 entirely:
1 PRINT "I LOVE MY MODEL 102" (ENTER

Now, when you list the program with the LIST command or with the (F5) Function
Key, the following is displayed:

1@ PRINMT "I LOVE MY MODEL 12a®
2@ GoTo 1@
Ok

Tl 2T 3T o 4T = 6T &= T3 = 7-2 C— 8§

Execute this program to verify that the new phrase is displayed. Now, instead of
pressing to interrupt execution, press the key. This will cause the
program to stop momentarily. To continue execution, simply press the key
again. Pausing a program may be useful when you want to read what is being
displayed before it scrolls off view. Of course this program must still be terminated by
pressing because it still is in an infinite loop.

Try a few other experiments with the PRINT command. Type in the following
program:

18 PRINT "MY NAME IS"
2@ PRINT "LEE"

Run this program. The output should be:

MY NAME I&
LEE
Ok

CC 2903 CC 33 4D C=5H=A C=S 6= C=7=-2 C—8—

Now, retype line 10 to insert a space between the word ‘‘IS’’ and the quotation mark.
Also, add a semicolon at the end of line 10. The changed program should look like
this

18 PRINT "MY NAME IS "}

20 PRINT "LEE"

Execute this program. The output should appear as:

MY NAME I8 LEE
(:H.::

-1 2T =39 /4TS Cc= 559 = 67— C— I/ —3 =85

The printing appears all in one line because the semicolon instructs the Computer to
continue printing immediately after the first line is printed. The space after *‘IS’’ in
the first line was added so that the words “‘IS’’ and ‘‘LEE’’ would not run together.

If you wanted to space the name further apart, you could add more spaces after *‘IS’’
or you could add spaces before ‘‘LEE’’ in line 20.

Another way to space the printing is to use a comma instead of a semicolon. Retype
line 10 so that it reads:

1@ PRINT "MY NAME IS ",

Now list the program and it should read:

LIST

18 PRINT *"MY NAME IS *,
2@ PRINT "LEE"

qk

e

CZ 13 C= 290 C= 3303 47D = 5703 = 6=/ C=7=/ C= 8=

Run this program. The output should appear as:

MY NAME IS
Ok

%?Z

c= 3 = = 2 /= = 3= T 4TS = % T/ — 6 = = 7= C= 8T

This time ‘IS’ and “‘LEE’" are spaced several columns apart. The comma in the first
line means ‘‘begin printing in the next field’” (more on fields later).

Enter the following program:

1@ PRINT "HOW " "NOW "3
2@ PRINT "BROWN"3 "COW"

Would you guess what the output of this program will produce? When executed, the
display will show:

NOW BROWNCOW

Co 1l TD™ T 2D = 3T9D C= 4SS0 £ 570 X 603 o= 7 TS o= 8 T

The comma in line 10 caused the two strings HOW and NOW to be spaced several
columns apart. The semicolon between the two words ‘‘BROWN’’ and *“‘COW”’
caused them to print without a space. Now if line 10 is retyped so that the comma is
changed to a semicolon and the semicolon at the end of the statement is omitted,

1¢ PRINT "HOW "3 "NOW "
20 PRINT "BROWN"3§ "COW"

the output would be

HOW NOW
BROWNCOW
(:) f:

CZ 1S C=T 29 =3T3 OO 47D o= 570 S 6T3 =71 C= 8 -

The second PRINT statement produces output on the second line because the carriage
return after the first PRINT statement has not been suppressed with a semicolon or
comma. If you wanted to print the words on one line, neatly spaced one column apart,
you could rewrite your program as follows:

1@ PRINT "HOW "§ “NDW "3
20 PRINT "BROWN "§ "CDW"

10

When it is executed, it produces, as expected, the following:

HOW NOW BROWN COW
Ok

CT 1T/ ez 2 S C- 30 = 4 T2 = b3 £ 6§03 £= 7 =3 t— 8§

A BASIC program can be edited a line at a time simply by retyping the entire line as
you have been doing.

To delete an entire line from a program, all you have to do is to type the line number
of the statement you wish to delete and press (ENTER).

For example, list the current program:

18 PRINT "HOW "5 "NOW "j
2@ PRINT "BROWN "5 "COW"
Ok

]

3.0 49D C= 9 C-e—m =)0 =B

Now type
29 (ENTER

If you list the program again, you will see that line 20 has been effectively deleted:

12 PRINT "HOW "3 “"NOW °3
Ok

(CT 2 S D3T3 4 = 50D =63 =7 X 8T/

Retype line 20 to restore your program to its previous form:

18 PRINT "HOW "§ "NOW "3
20 PRINT "BROWN "3§ "COMW"

11

BY

A new line can be added to a BASIC program at any time simply by typing it with the
appropriate line number. If you want to add a statement before line 10, give it a
number less than 10 (the smallest line number allowed is 1). If you want to add a line
between the two lines, give it a number between 10 and 20 (e.g., 15).

Line numbers 10 and 20 were used to allow insertion of new lines. If successive line
numbers had been used, for example 15 and 16, then no new lines could have been
inserted. It is a good practice to use line numbers that are multiples of 10 (or at least
5).

Here’s your program again:

1@ PRINT "HOW "3§ "NOW "3i
20 PRINT "BROWN "3 "COW"

Suppose you want to insert a line between 10 and 20. Simply type:
15 PRINT "SPLENDID "3 (ENTER

When you list the program now, it will show:

PRINT "HOW "3 "NOW "3
PRINT "SPLENDID “;
PRINT "BROWN "5 " COW!

[eswagil B = 2 3/ — 33 = 4 4™ c— 5/ — & 4™ = 71/ — 8 /™

Even though line 15 was typed after lines 10 and 20, it takes its correct place in the
program because its line number falls between 10 and 20.

Execute this program. The following output will result:

HOW NOW SPLENMDID BHROWN COW
il

1o em 2D =390 4D /= LT D673 o7 T3 = 8§ T/

It should be clear by now that any BASIC program can be edited easily with the use
of the line numbers. You can add, delete, insert, and change lines and that is all you
ever need to do.

12

‘k

Experiment #4 Writing Your Own Programs

By now you should be able to write simple BASIC programs using the two
instructions PRINT and GOTO.

Before you go on expcrimenting with the spacing in PRINT statements using the
comma and the semicolon, you should be aware of another useful command, the
NEW command.

When you enter the NEW command, any program that has been previously typed and
is currently residing in working memory will be erased automatically.

Before you begin typing in a new program, you should always use the NEW
command to clear out the old program. Otherwise, you may end-up with a
combination of your new and old programs.

Assume that your old program still resides in memory:

18 PRINT “HOW "3 “NOW "3
15 PRINT "SPLENDID "j
20 PRINT "BROWN "3 "COW"

Now, without deleting this program, enter the following new program:

14 PRINT "MY COMPUTER IS A "}
2¢ PRINT "TOOL."

If you list the program, you will find it is:

LIST

18 PRINT "MY COMPUTER
15 PRINT “SPLENDID "3
2@ PRINT "TOOL.*™

Dk

i

1/, 2D/ =390 47D 6= 500D = 6§D Cc—I1IT C— 8 T

Note that line 15 still exists because that line number was not used in the new
program. So remember, before typing a new program, clear the memory with the
command NEW. This won’t be necessary, however, if you are certain that no program
exists in memory.

What you have learned:

In this lesson you have learned some commands to write and execute a simple BASIC
program. The PRINT and GOTO statements have been used to display simple
messages. Editing a BASIC program can be accomplished by retyping existing lines or
typing new lines. The NEW command is used to delete an entire program from
memory.

13

Lesson #2 Saving Programs

In this lesson you will learn how to save programs in memory and on cassette tapes. e
You will also learn how to recall a program from storage and how to merge a stored MERGE
program with another program.

ETE————

KILL

Experiment #1 Saving a Program In RAM

NAME

As it was mentioned before, the Model 100 can hold several files, many of which can
be program files. In Lesson 1 you learned to write simple BASIC programs in the CSAUE ‘
BASIC system of the Computer. When you have written a program that you intend to : .
use repeatedly, it is a good idea to save it in memory (also known as RAM, for ,
Random Access Memory). When you save a program in RAM, in effect, you create a CLQQD
program file.

The following program serves to demonstrate how any program can be saved in RAM: EL‘DAD?

10 PRINT "THIS IS5 A TESBT"
20 PRINT "OF THE MODEL 100 COMPUTER"

Access BASIC. Clear working memory with the NEW command and then type the
program as it appears above.

Execute the program. The following will be displayed:

THIS 18 A TESET
FFOTHE MODEL 128 COMPUTER
(935

cx V= = 2D £ 300 Cc—4TTM S 58T o= gt — 7T/ tTT R T
o

The first step for saving a program in RAM is to decide upon a filename. This
filename appears listed as a file in the Main Menu and it serves to identify the
program. Filenames cannot exceed six characters in length.

You may use any combination of letters and digits for a filename. However, the first
character in a filename must always be a letter. The following are examples of valid
filenames:

MYPROG
SKETCH
ACCNT2

15

The following are examples of illegal filenames:

1PROG (must begin with a letter)
MICROCOMPUTER (exceeds the maximum of six characters in any file
name) :

Suppose you want to save the program above under the filename
PROG1
To do this, simply type:
SAVE "PROGL"
The Display will show the prompt OK to indicate that the program has been SAVEJ.

Use the command NEW to clear the program from working memory. To verify that
the program no longer exists in working memory, enter the command:

LIST (ENTER
or press (F5), the LIST Function Key. The computer will respond with:

LIST
Ok

and nothing else, indicating that there is no program currently in working memory.

The program has not been wiped out. It has been erased from working memory but it
now exists in RAM. To confirm that this is true, enter the command:

FILES (ENTER

or press the FILES Function Key, (FD. In response to this command, the names of all
the files stored in RAM, including all BASIC programs, will be displayed. In this
case, if you haven’t SAVEd any other programs or files, the name :

PROG1.BA
will be displayed.

This is your program. The characters ‘‘.BA’’ form a ‘file extension’” which indicates
that this file is a BASIC program. The Computer automatically appends this extension
to the name of any BASIC program when it is saved in RAM.

If you want more proof that your program was indeed saved as a file, press the Menu
Function Key, (E8). You will see PROG1.BA displayed in the Main Menu as shown
below.

Jun 22, 1983 Wed 1@:342017 {(CiMicrosoft
BAaGIC TEXT TELCOM HDDRESE
SCHEDL PROGL . BA

Selects

c= 1/ c— 2 22 = 33 c— 4 92 == 5 ™= = 6 4™ =1 = c— 8 D™

16

A simpler way to save a program in RAM, is to usc the SAVE Function Key, 3.
After typing a program you wish to save, simply press (F3). The Computer will
prompt you with the message:

Save "

All you have to do then is to type a name for the file as you did before and press

(ENTER.

The number of files which can be saved is limited only by the amount of RAM
available. If you continue to add files to RAM, eventually all available RAM will be
used up and no more programs can be saved.

Experiment #2 Loading a Program From RAM

After you have saved a program in RAM, you may execute it simply by positioning
the Cursor over the word identifying it in the Main Menu and pressing (ENTER).

However, if you wish to modify or alter the program in any way, it is very convenient
to LOAD it into the BASIC system.

Let’s use PROG1 which you SAVEd in the last experiment and LOAD it into the
BASIC system.

You can do that with the command:
LOAD ®*PRDG1®

Another way to LOAD the program is to press the LOAD Function Key, £2). After
pressing (F2) the message

Load *
appears on the Display. All you should do then is to type
PROG1™

After Loading PROG1 with the LOAD command or (£2), LIST the program to verify
that it is indeed in working memory. The following should be displayed:

L.ist

i@ PRINT "THIS I8 & TEST®
=@ PRINT "OF THE MODEL 10a"
O

2T T 1T a4 T s 6t o 6 T o= 7 s = 8 =

If you execute the program with the RUN command you will see that the output is the
same as before.

Enter the command FILES or press FD.

17

You will see that the program PROG1.BA is still listed, indicating that it is still saved
in RAM. Loading a program from RAM does not erase it from storage.

Notice, however, that an asterisk appears to the right of PROG1.BA. The asterisk
indicates that the program is currently in working memory.

Use the NEW command to delete the program PROG1 from working memory. Use
the LIST command to verify that working memory does not contain the program. Now
type the command

RUN "PROGL"
The following should appear on the LCD:

THIS I8 A TEST
OF THE MODEL 128 COMPUTER
015

Cr 10D €C=2~a C=3-3 =493 =543 C= § 3 =] =3 C=820

This illustrates a useful option of the RUN command. If the RUN command is
followed by the name of a program stored in RAM (the name must be enclosed in
quotes), then the program will be loaded into working memory and executed
immediately. Thus the command:

RUN *PROG1®

is equivalent to the two commands:

LOAD "PROGL"
RUN

Use the LIST command to verify that the program now resides in working memory.
The program will be modified by adding a third line. Type the following line:
3¢ PRINT "AND ITS ABILITY TO STORE FILES" :

List the program to verify that it is:

LIST

1@ PRIMT *"THIS I8 & TEST®

2@ PRINT "OF THE MODEL 128 COMPUTER"

3@ PRINT "AND ITS ABILITY TO STORE FILES

= 10— c— 23 — 33 c— 4 2 = 5273 = 6 3™ c— 7= — 8 ™

18

When you LOAD a program from RAM into working memory, you may add, delete,
or insert new lines as you wish. The changes you make are immediately incorporated
into the program.

Delete, the program from working memory with the NEW command. Use the LOAD
command to recall program ‘‘PROG1”’ from RAM. Type:

LOAD "PROGI™
List the program with the LIST command. You should see:

LIsT

18 PRINT *"THIS IS & TEST®

2@ PRINT "0OF THE MODEL 189 COMPUTER"

3@ PRINT "AND ITE ARILITY TO STORE FILES

"

e

)/ =2/ Cs=3D3d - 4Td S 5T 6T s 7 TD = BT

The new line was effectively incorporated in ‘‘PROG1’’ which is stored in RAM.
You can also LOAD and execute a BASIC program directly from the Main Menu.

Press (F8) to exit BASIC and return to the Main Menu. You should see something
similar to

TEXT

PRGL LT

o 1D =250 o3I/ C—4amh C=HYD 63 =72 =383

—i31 -/ M 2T M 1T 43 AT r— T e — 77— 8T

19

If you press (ENTER), several things will happen: the computer enters BASIC and then .
loads and executes PROG1.BA. You will see

THIS I8 A TEST

OF THE MODEL 100 COMPUTER

AND ITS ARILITY TO STORE FILES
Ol

— 1 = =2 =3 — 33 — 4=/ o= 5/ c= 6 /= == 7 =3 C— 8

with the Ok prompt indicating that you are in BASIC. If you list the program you will
see that PROG1.BA is in working memory.

Experiment #3 Changing a Filename

It is possible to change a file name using the command:
NAME ““old filename.extension’” AS ‘‘new filename.extension”

where old filename is the name of the program as it now exists, and new filename is
the.new program name you wish to assign to it. ’

For example, if you wish to change the filename ‘‘PROG1”’ to ‘“TEST1,”’ type:
NAME “PROG1.BA" AS "TEST1.BA"

Verify the name change with the FILES command or by pressing ED.

Now, using the NAME. . . AS command, change the file name back to ‘‘PROGL1.”’
NAME "TEST1.BA" AS “PRDG1.BA" (ENTER

Again, you may confirm that the name was changed to PROG1 with the FILES
command.

Experiment #4 Saving a Program on Cassette

While it is convenient to save your programs in RAM, there is only a finite amount of
space available. Eventually, there will be no room left for new programs to be saved.

An alternatg: method of saving your files is to store them on cassette tapes using a
cassette recorder. Using cassettes, you can store essentially an unlimited number of
programs.

20

PROG] should still be in working memory. Use the LIST command to confirm that it
is. It should appear as:

LIgT

1@ PRINT *THIS I8 & TESBT!

FRAOPRINT "OF THE MODEL 100 COMPUTER®

A@ PRINT "AND ITE ABRILITY TO BTORE FILES

o/, CE2/m =3/ £ aTD = 5D3 6T/ c— 7T/ - 8T

If it is not in memory you should LOAD it from RAM or type it in as shown above.

To save a program on cassette, it is first necessary to connect the Model 100 to a
suitable cassette recorder. For optimum results we recommend the Radio Shack
CCR-81 Computer Recorder (catalog number 26-1208) with connecting cable and

instructions supplied. Be sure that the proper connections are made before proceeding
further.

Place a blank tape in the cassette recorder and rewind it, if necessary. Then advance
the tape past the leader. (If you use Radio Shack Leaderless cassettes, catalog number
26-3019, this isn’t necessary.)

Press the RECORD (red key) and PLAY keys down together. They should stay down,
but the tape will not move. If it does, you do not have the remote jack inserted. Insert
the jack.

Now you are ready to save the program onto the tape. Enter the following command:
CSAVE "PROCL™

The recorder will run briefly and then stop. The RECORD and PLAY keys, however,

will stay down. Afler the tape stops, you may press the STOP key and rewind the
tape.

The program now has been saved with the filename ‘‘PROGI1.””

Another way to save the program on tape, instead of using CSAVE ““PROG1”’ is to
use the command:

SAVE "CAS:filename"

where CAS: specifies the device to be used for the saving operation, in this case the
cassette recorder, and filename is the name of the program to be saved. Using this
command, you would specify:

SAVE "CAB:PROGL"

21

Experiment #35 Loading a Program from
Cassette

The program you just saved on tape in the previous experiment, PROG1, will now be
loaded back into working memory. But first, delete PROG1 from working memory
with the NEW command.

Verify that it has been deleted with the LIST command or by pressing the LIST
Function Key, 5.

Be sure that the cassette recorder is properly attached to the Computer. Insert the
cassette containing the program into the recorder and rewind if necessary.

Press PLAY on the recorder. The key will stay down, but the tape will notk advance.
Enter the following command:
CLOAD "PROGL®

As soon as you press (ENTER), the tape will start turning and the program will be read
into the Computer. If this is accomplished successfully, the computer will display:

FOUND: PROGI
U ke

=1t tm =27 = 350 S 4T92 = 5T = 6T C— 7T = 8%

If the tape was not read successfully, an VO (Input/Output) error message will be
displayed. If this happens, rewind the tape and adjust the volume control. Then use
the CLOAD command again to read the tape.

If the tape is read successfully, you may verify that the program is in working
memory by listing it with the LIST command (or with (). The following will be
displayed:

LIST

1@ PRINT "THI&E IS A& TEBT®

Z@OPRINT "OF THE MODEL 1868 COMPUTER®
SEBOPHINT "aAND I7TS ARILITY TO STORE FILES

ik

1D 22D/ CC 30 = 4é4TmoC= 5= = 623 =7/ c— 8=

22

When the command CLOAD ‘‘PROG1”’ is entered, the Computer searches the tape

until a program stored under the name ‘‘PROG1"”’ is found. This program is then read
into working memory.

The command
LOAD "CAS:filename"

may be used in place of CLOAD ‘‘filename’’. Remember that filename specifies the
name of the program you wish to LOAD from the cassette.

Delete the program from working memory with the NEW command and verify that it
has been erased by using the LIST command.

Rewind the cassette and press the play key. This time type the command:
CLOAD

When this command is entered, the cassette recorder will run briefly and then stop.
Also, the computer will display:

FOUND: PROGH
[81%

01D 20/ =39 4TS = 5T3 C— 693 o= 7= C= 8

indicating that the program was read successfully. List the program in memory with
the LIST command. You will see that the same program was loaded from the tape.

This illustrates another option of the CLOAD command. When the filename of the
program is omitted, the first program encountered on the tape is loaded into memory.
Since your program PROG1 was the first program on the tape, it was loaded into the
Computer.

Experiment #6 Verifying a Stored Program

Your Model 100 allows you to verify that a program has been saved successfully (i.e.
without any errors) on cassette tape. Another option of the CLOAD command is used
to accomplish this. :

23

Verify that the program still resides in working memory with the LIST command. If it
has been deleted, load it from the cassette tape or type it in from the keyboard. Here
is the listing again:

LIsT

18 PRINT "THIS IS A TEGT"

2@ PRINT "OF THE MODEL 1@ COMPUTER"

3@ PRINT "AND ITS ABILITY TO STORE FILES

H
Ok

Cr 1T T 2ITm 3753 CT 43D CS ST LS 6D =70/ = 8T

Rewind the cassette tape containing the program and press the PLAY key on the
recorder.

Type the command
CLOAD? "PROGL" (ENTER
The recorder will run briefly and then stop. The Computer will display:

Found: PROGI
0K

In this case, the program stored on tape was not SAVEd into working memory, but
was compared, character by character, with the program already in working memory.
If an inconsistency is found at any point, an error message will be displayed,
indicating that the program saved on the cassette tape was not the same as the one in
working memory.

If an error has occured, you can reSAVE the program and use the CLOAD? command
again to check the saved program.

As with the CLOAD command, if the file name is omitted from the CLOAD?
command, the first program encountered on the tape is compared with the program in
working memory.

List the program in working memory. You should see:

LIST

18 PRINT "THIS I8 A TEST"

2@ PRINT "OF THE MODEL 10@ COMPUTER®

3@ PRINT "AND ITS ARILITY TO STORE FILES

i

Ok

Tl /|, EZ 2, = 3I0 C 4D = 573 = 63 = 7T C— 8§

Delete line 3@ by entering the line number. Now list the program to verify that it is:

List

1@ PRINT "THIS IS A TEST"®

2@ PRINT "OF THE MODEL 1920 COMPUTER®
Ok

C=- 1.0 =290 =3I 4TS = 5T 6T /s o= 8T

This is not the program that was saved on the cassette (line 30 is missing). The
CLOAD? command will be used to compare the program in working memory to the

program saved on cassette. Since they are not the same, an error message will be
displayed.

Rewind the cassette and press the play key. Enter the command
CLOAD?
This time, the message:

Verify failed

will be displayed, indicating that the two programs are not the same.

Don’t forget the question mark (?) after CLOAD since otherwise the program saved on
tape will be loaded into working memory, replacing the resident program there. If the
CLOAD? command indicates a ‘‘bad’’ program on tape, then the CSAVE command
can be used again to resave it.

Experiment #7 Merging two Programs

Rewind the cassette tape containing the saved program and press the PLAY key. Then
load the program back into memory with the CLOAD command. List the program to
confirm that it is:

LIST

1@ PRINT ®THIS IS5 A TEBT®

2@ PRINT "OF THE MODEL 1@@ COMPUTER®

3@ PRINT "AND ITS ARILITY TO STORE FILES

oy T3 c—2/—/43 CL 3.3 =490 =673 C= 63 7= C=287:3

25

The program will now be saved in RAM in ‘“ASCIT’’ format, rather than the usual ‘
“‘compressed’” format. This means that the program will be saved exactly as it was

written. Ordinarily, programs are saved in compressed form. In compressed form, key

words such as PRINT, are replaced by a single character to conserve storage space.

Type the following command:

SAVE "PROGZ" A (ENTER

The “*A’’ following the name indicates that the program is to be saved in ASCIL
mode.

Another way of saving a program in ASCII format, is to use the extension .DO as part
of the SAVE command. For example, to SAVE PROG?2 in this way you could type:

SAVE "PROGZ.DO"
Delete the program from working memory with the NEW command.
Confirm that it has been saved in RAM with the FILES command.
PROG2 will be listed as:

PROGZ.,DO

The extension **DO’’ (for DOcument) will be attached to any BASIC program saved
with the ASCII option. There are several reasons why you might want to save a file in
the ASCII format. As it will be illustrated later in this experiment, merging files is
one of the main ones.

Delete the program from working memory with the NEW command, and type the .
following one line program.

5 PRINT "HELLO MODEL 1800 USER" (ENTER

Merge PROG2, which is saved in RAM with the ASCII option, with this one line
program, by typing the command:

MERGE "PROGZ" (ENTER
List the program in working memory to confirm that it is

5 PRINT "HELLO MODEL 100 USER"

19 PRINT "THIS IS8 A TE&T"

20 PRINT "OF THE MODEL 190@¢ COMPUTER"

30 PRINT "AND ITS ABILITY TO STORE FILES"

Merging a program in working memory with one that has been saved in RAM, can
only be done if the program in RAM was saved with the A (ASCII) option.

Delete lines 20 and 30 by entering just the line numbers and then rewrite line 10 as
follows:

10 PRINT "HERE IS A MESSAGE FOR YOU" (ENTER

26

List the program in working memory to confirm that it is:

LIST

5 PRINT "HELLO MODEL 18@ USER"

1@ PRINT "HERE IS A MESDAGE FOR YOUY
[#1%

Co 1M =2 2370 4T3 C= 5TD CC 6T =70 O R

PROG?2 will now be merged with this two line program. Remember that PROG?2 is in
RAM and consists of:

16 PRINT "THIS IS A TEST"
2@ PRINT "OF THE MODEL 100 COMPUTER"
30 PRINT "AND ITS ABILITY TO STORE FILES®

Note that the program in working memory and PROG2 both have a line 10. Merge the
two programs with the command

MERGE "PROGZ" (ENTER
List the program. It will be:

LIET
B OPRINT "HELLO MODEL 1
1@ PRINT "THIS I8 & TES

ag useR”
-
E@OPRINT "OF THE MODEL 1

aa COMPUTER®
¥ T STORE FILES

F@ OPRINT "apnD ITS ABILIN

H

Cz 12 290 330 £ 479/ CT 570 CCF=a =773 C— 8§ -3

Line 10 of the program (PROG2) saved in RAM replaced line 10 of the program
resident in working memory. This will always happen. If two programs to be
MERGEd have any line numbers in common, the lines of the program SAVEd in
RAM will replace the lines of the program in working memory.

Programs saved on cassette tape may also be merged with a program in working
memory as long as they are saved with the A option. The appropriate command is:

CSAVE "PROGZ2" :A
or

SAVE "CAS:PROGZ2":A

27

Then, to merge a program in working memory with one stored on tape, use the .
command:

MERGE "CAS:PROG2" (ENTER

Once you have MERGEd PROG2 with the program in working memory, SAVE the
newly formed program in the conventional way (without the A option) using the
SAVE ““PROG1”’ command.

If you return to the Main Menu by pressing (F8), you will see the two programs that
have been SAVEd:

Jun FE. 1983 Wed 11:@1:852 (CorMicrosoft
uRete TEXT TELCOM ADDRSS
SCHEDL PHOGL . BA PROGE . Ba -

cZyod D2/ £ 373 CE4D =50 C 6T =71/ CT 8-

Experiment #8 Deleting a file from RAM

Often times you’ll need to eliminate files and programs that are no longer useful, or
that you have SAVEd on tape to free additional memory space.

You can delete a file from the RAM storage area with the KILL command. The
general form of the KILL command is :

KILL "“filename.extension"

where filename is the name of the program you wish to delete, and extension specifies
the characters .BA, in the case of a BASIC program, .DO, in the case of a program
SAVEd with the A option or a text document, and .CO, in the case of a machine
language program.

Use the KILL command to delete PROG1 from RAM:
KILL "PROG1.BA"

The prompt Ok and the blinking cursor will appear on the Display after the program
has been deleted.

Use the FILES command (or (FD) to list the files in RAM storage. You will notice
that PROG1.BA is no longer listed. This is because the program has been deleted
from RAM.

To summarize, the KILL command deletes a file from RAM storage. The NEW

command deletes a program from working memory, but does not affect the file in
RAM storage.

28

Also, you should be aware that a file cannot be deleted if the same file is also in
working memory. That is, if you LOAD a program from RAM into working memory
and then attempt to KILL this file, you will get an error message. You should first
delete the program in working memory with the NEW command and then proceed to
KILL the file in RAM.

What you have learned:

You have learned how to SAVE BASIC programs in RAM and on cassette tape. You
learned how to LOAD a program from RAM or from tape and how to verify that a
program has been saved correctly. You also learned how to MERGE a SAVEd*
program with a program in working memory. You found out that in MERGE
operations, if line numbers in RAM are in common with line numbers in working
memory, the line numbers of the RAM file take precedence over those in working

memory. Finally, you learned how to delete files from working memory and from
RAM.

29

les

it

:?U iab
T

e :
Arithmeti
lelpressions

Lesson #3 Interest Calculations

This lesson illustrates the use of variables and the assignment of values to variables.
Applications to the calculation of interest and mortgage payments will serve as useful
examples of the use of variables in BASIC programs.

Assidgnment

The programs used in this and all the following lessons will be explained line by line
to give you a thorough understanding of the operations and the concepts involved.

Experiment #1 Simple interest

If P dollars are borrowed at the simple interest rate r, then the amount S that must be
repaid after t years is given by the formula

S=P1 + 1t

S is called the sum and P is the principal. The first program in this lesson calculates S
for the following values of P, r and t:

P = $10,000
r = 18% per year
t = 10 years

Carefully enter the following program into the Computer:

1¢ P = 10000

20 R = .18

30 T = 10

49 S = P * (1 + R * T)

5@ PRINT "THE SUM IS $"% §

After the program is entered, execute it by entering the RUN command or pressing the
RUN Function Key, (F4). The output from the program should be:

THE SUM IS5 $ 28000

Eiens N e = B = e s SUN s e T] 6/ c— 7T/ 8D

If $10,000 is borrowed for 10 years at the simple interest of 18%, you will have to
pay back $28,000.

3

How the simple interest program works: .

Line 10 assigns the value of 10000 to the variable P. This is called an assignment
statement. The letter P is called a numeric variable because numerical values can be
assigned to it. Note that the principal, $10,000, is written without the dollar sign (8)
or comma (,). In general, numeric constants should be written without commas or
dollar signs in BASIC.

Line 20 assigns the value of .18 to the variable R. This is the decimal equivalent of
the 18% interest rate. The conversion to decimal form is necessary because BASIC
does not allow numeric constants to be written with a percent (%) symbol.

Line 30 assigns the value of 10 to the variable T. This is the length of time (10 years)
allowed to repay the loan.

Line 40 computes the sum of principal and interest and assigns it to the variable S.
Note that the expression,

P*(1 + R*T),

looks very much like the formula previously seen for calculating the sum. The symbol
%7 is used to denote multiplication and, as usual, + denotes addition.

Line 50 prints an explanatory message and the value of S.

The variables P, R, T and S are all valid examples of numeric variables. A numeric
variable can be

a) any letter

b) any two letters .

or
¢) a letter followed by a number.

For example, the following are all valid numeric variables:
A AA B2 CQ Y9

But the following are not valid numeric variables:
18 $s A?

The first four lines of the program are assignment statements. In general, an
assignment statement follows the form:

variable = expression

Fd
where ‘‘variable’’ is any valid numeric variable and ‘‘expression’’ is any valid
numeric expression. The right hand side can be a constant. The value of the
expression is assigned to the variable.

The arithmetic operators in BASIC are:

+ addition

- subtraction

* multiplication
/ division
~ exponentiation

32

Line 40 contains an example of a valid expression containing arithmetic operators.
Here are some more:

a) A*B/C
b) Q-+ A4 -65
c) F*HS8 + J9

You should note that spaces or blanks are not significant in arithmetical expressions of
this type. For example, the expression in a) could have been written

A*B/C or A*B/C or A * B/IC
This allows you to space out the symbols so that they can be easily read.

However, it is important to note the order in which expressions such as c) are
evaluated.

In BASIC, mathematical operations always follow a hierarchical order. Exponentiaton
has the highest priority, multiplication and division are next, and finally. addition and
subtraction have the lowest.

Therefore, expression c) above, is interpreted as ‘‘the product of F times H8 is added
t0 J9.”” However, if you wanted to add H8 and J9 together before multiplying their
sum times F, you would have to place parentheses around H8 + J9:

F*(H8 + J9)

In this case the addition is performed first because the operation inside the parentheses
is carried out before the outside multiplication.

Multiplication and division have equal priority and will be performed from left to
right. The same is true of addition and subtraction. If you look at line 40 again

40S =P*(1 + R*T)

it should be clear that the parentheses are needed. However, inside the parentheses,
the expression:

1+R*T

is calculated correctly because the multiplication has higher priority than addition.

Experiment #2 Compound Interest

If you invest P dollars at an annual interest rate r, compounded k times a year, then
after t years, your investment will have grown to the amount S:

S = P(1 + vkik

A program will be written to calculate the value of S, for the following values of the
other variables:

P is $ 5,000

ris 12% per year

tis 5 years

k is 4 (i.e. interest is compounded 4 times a year.)

33

Enter the command NEW to clear the previous program from memory. Then type the
following program:

18 P = Soooe

20 R = ,12

30 T = 5

46 K = 4

5@ S = P % (1 + R / K)"(T * K)

E@ PRINT "TOTAL IS $“3§ S

After the program is entered, execute it by entering the RUN command or pressing
(E4. The output from this program will be:

TOTAL I5 % 9030.55%461733465

Ol

Even though the total is supposed to represent dollars and cents, the computer has
displayed the number with 14 significant digits, including 10 to the right of the
decimal place (becausc this is the precision of numeric variables in Model 100
BASIC). You will see later how to display numbers in dollars and cents format.

The expression in line 50
P* (1 + R/K)(T *K)

uses addition, multiplication and exponentiation operators. The exponentiation operator
has the highest priority and will be performed before multiplication or division and of
course before addition and subtraction. Because of this prionty, it was necessary to
place parentheses around the exponent

T*K
Otherwise, the computer would have calculated
P*(1 +R/K)"T

and then multiplied this expression by K.

Experiment #3 Compound Interest with
Keyboard Input

If you wanted to run the compound interest program with different values for the
variables, you would have to retype the appropriate lines in the program. Obviously
that isn’t very praclical, specially if you just wanted to figure the interest for several
values.

34

It would be more convenient if you could simply type in the values for the variables
as the program is being executed.

The program will be changed so that the value for P, the principal, can be entered
during execution. The values for the other variables will be assigned, as before, with
assignment statements.

Change line 10 to

1@ PRINT "ENTER THE PRINCIPAL":
and insert line 15

15 INPUT P
List the program to verify that it is:

18 PRINT "ENTER THE PRINCIPAL"3

15 INPUT P

20 R = .12

30 T = 5

42 K = 4

5@ 8 = P % (1 + R / K)*"(T % K)

6@ PRINT "TOTAL IS5 "3 S
Execute the program.

When the program executes, the following message (called a ‘‘prompt’’) will be
displayed:

ENTER THE PRINCIPAL?

and the computer will wait for you to enter the value for P. When a value for P is
entered, for example 5000, the program will execute as before and print out the total.
Be sure to press (ENTER) after typing the amount for P.

Here is what the output looks like:

ENTER THE PRINCIPAL? S000
TOTAL IS ¢ 9030.5561733465

Line 10 prints the prompt message. The semicolon at the end of the line suppresses
the carriage return so that the next character printed will be on the same line.

Line 15 is the INPUT statement. When this statement is executed, a question mark is

printed and the computer will wait for you to enter a number from the keyboard. After
you type the number and press (ENTER), the number will be assigned to the variable P

which appears after INPUT.

The remainder of the program is the same as before.

If the semicolon is left out in line 10, then the question mark and the number you type
will be printed on the next line below the prompt.

35

Experiment #4 Another Way to INPUT ()

The INPUT. statement is usually preceded by a prompt message to remind you what
value to enter. An optional form of the INPUT statement allows the prompt to be
printed without using a separate PRINT statement.

Delete line 15 (by entering just the line number 15) and retype line 10 as follows:
16 INPUT "PRINCIPAL"3F P

This single line is equivalent to the previous lines 10 and 15. The word PRINCIPAL
will be printed immediately followed by a question mark. Then the Computer will
wait for you to enter the value for P. The ending quotation mark must be followed by
a semicolon, a comma cannot be used.

List the program. It should read:
12 INPUT “PRINCIPAL"F P

20 R = 12

3¢ T = 3

490 K = 4

S50 8 = P % (1 + R / K)Y*(T % K)

6@ PRINT "TOTAL IS %"3 §

Execute the program. The following output occurs when you type 1000 for the
principal:

FRINCIPAL? 1000 .
TOTAL IS % 1886.11123346693
8%

CT 1D EZ 20 CL 30 CC4TD = hAhTD C 6= 1 Da o 8§ 0

Run the program several times, entering different values for the principal.

Experiment #5 Compound Interest with More
Keyboard Input

In this experiment, the compound interest program will be changed so that the rate, as
well as the principal, can be input from the keyboard.

Delete line 20 by entering just the line number.
Retype line 10 as:
18 INPUT "PRINCIPAL . RATE"3 Ps R

36

Now list the program to verify that it is:

16 INPUT "PRINCIPAL, RATE"S P» R

30 T =5
40 K = 4
50 8§ = P % (1 + R / K)" (T * K)

B® PRINT "TOTAL IS $"§ S

When you execute this program, the following prompt will be displayed
PRINCIPAL,» RATE?

In response, you should enter two numbers separated by a comma. For example:
PRINCIPAL sRATE? 2000, .14

and again the amount of the investment will be printed. The complete output will be:

FRIMCIPAL,y RATE? 00O, .14
TOTAL 18 % 3979.5777269318
8]

C= 1 "D =29/ 3/ Co 40D £ 5m4m T T = 7 —=a = 8 -/

This program illustrates another option of the INPUT statement. Values for more than
one variable can be assigned with a single INPUT statement. The variables should be
separated by commas and listed after the prompt. When the INPUT statement is
executed, you must type a value for each variable, separating the values with commas.
After the last value has been typed, you should press (ENTER).

Two separate INPUT statements could have been used, the first for the principal P and
the second for the rate R as follows

10 INPUT “*PRINCIPAL”’; P
20 INPUT ““RATE’”"; R

- However, it is more convenient to use just a single statement as was done in the
program.

Experiment #6 Compound Interest with All
Variables Input

The previous program will be rewritten so that the values for all the variables can be
entered from the keyboard. The program will also be changed so that it will not
terminate after the total is printed. Instead, the program will ask again for values for
the variables so that the amount of the investment can be calculated for any number of
different values.

37

Delete line 40 by entering just the line number and retype line 30 as follows: .
30 INPUT "TIME, NUMBER OF PERIODS"3i T, K (ENTER
Then add two new lines:

7@ PRINT (ENIER
80 GOTOD 1@ (ENTER

List the program to verify that it is:

1@ INPUT "PRINCIPALs RATE"3 P, R

3@ INPUT "TIME. NUMBER OF PERIODS"3F T, K
5¢ § = P % (1 + R /7 K" (T % K)

6% PRINT "TOTAL IS $"3i &

78 PRINT

80 GOTO 1@

The program will prompt you for values for all four variables. Here is an example of
the output of the program with the following inputs:

PRINCIPAL, RATE? 2@0@. . i
TIME, NUMBER OF PERIODS? S, 4

FOTAL I8 & 3979.5377724%318

PRIMCIPAL, RATE?

CC 1T 2/ CC 3 CC4TD C= ST CC 63 7D/ = 89O

The program will continue to ask for values for the variables until you terminate the
program manually by pressing (BREAK).

Line 10 prints a prompt and allows you to enter values for the principal P and
the rate R.

Line 30 prints a prompt and allows you to enter values for the time T and the number
of periods K. Lines 10 and 30 could have been combined into one line if desired.

Line 60 prints out the message ““TOTAL IS $** and the value of S, the total of
principal and interest at the end of T years.

Line 79 skips a line on the display after thc output from line 60. This spaccs the
output so that it doesn’t run together vertically.

Line 80 transfers control back to line 10, where the program starts over again. This
allows you to input a variety of values for the variables without entering the RUN
command each time.

38

Experiment #7 Personalizing the Output —
Printing a Name

The compound interest program as it currently exists is:

12 INPUT "PRINCIPAL s RATE"S P» R

30 INPUT "TIME, NUMBER OF PERIODS"§ T K
50 S = P % (1 + R / K)*{(T % K)

60 PRINT "TOTAL IS $"3 S

79 PRINT

80 GOTO 1@

Add line 40 as follows:

49 INPUT “NAME": N$
and change line 60 to

6@ PRINT "TOTAL FOR "
Add line 65

BS PRINT N#:i" IS5 $"3 §
List the program to confirm it is

1@ INPUT "PRINCIPALs RATE": ¥ R

30 INPUT "TIME» NUMBER OF PERIODS"§ T K
49 INPUT "NAME" 3§ N#%

S@ S = P % (1 + R /7 K)"(T % K)

6@ PRINT "TOTAL FOR"

63 PRINT N#$i" IS $"3 §

70 PRINT

80 GOTO 1@

When you execute the program you will be prompted, as before, for the principal,
rate, time and number of periods. In addition, you will be prompted for a name. After
this data is entered, the name and the amount of the investment will be printed. Run
the program and enter the data as indicated below (of course, you may enter any other
name you wish):

PRINCIPAL, RaATEY ZB6G, .
TIiME, NUMBER OF PERIODSY
NaME? JANICE SMITH

TOTalL I8 $ 17618, 22531759

13
1

@,

PRINCIPAL, R&TE?

o1 T3 D293 L33 45D £ ST X 6T/ — 7 T3 o8 3

Execute the program several times with various numeric values and names. To
terminate execution, (BREAK) must be pressed.

Lines 10 - 30 allow you to enter values for the numeric variables in the program.

39

Line 49 is another INPUT statement. This time, however, you are expected to enter a .
name instead of a number. The name which you enter is stored in the variable NS$.

This variable, N§, is an example of a “‘string variable.’” The name that you type, for

example, JANICE SMITH, is called a *‘character string.”

Line 5@ calculates the total of principal and interest.
Line 60 prints the message ‘‘TOTAL FOR.”’

Line 65 prints the name stored in N$ followed by the word IS, the symbol $, and the
amount of the investment.

Line 70 skips a line (PRINTs a blank line).
Line 80 transfers control back to line 10.

A string is any sequence of keyboard characters, for example

JOHN SMITH

1023 N. MAIN STREET
1982

MACROCORP

MARCH 12, 1984
$120.95

In some cases the string may consist entirely of digits (c.g. 1982), but it can still be
considered a string as well as a numerical constant.

A valid string variable is any numeric variable followed by a dollar sign ($). The
following are all valid examples of string variables: .

NS$, A3$, DAS, ADS, ST$

In line 40, it is essential that the variable be a string variable. If you tried to use a
numeric variable, the computer would continue to ask for data until a numeric constant
was entered.

The assignment of the name to the string variable N$ was made with the INPUT
statement. It is possible to use assignment statements with string variables and
constants just as with numeric variables and constants. For example, the following
statement:

100 A% = "RADID SHACK"

- assigns the string RADIO SHACK to the string variable A$. When using an
assignment statement, it is necessary to enclose the string in quotes, as shown above.

Each string variable can hold up to 256 characters. If the total number of characters
assigned to string variables exceeds 256, you must set aside additional space. This is
done with the CLEAR statement. For example, the following line could be added to
the program:

5 CLEAR 3090

This particular instruction allocates space for 300 characters. If you attempt to store
more than 300 characters in N$, an error will result and the program will terminate.
When the Computer is turned on, space for 256 characters is allocated automatically.

40

If you require more, then the CLEAR statement must be used. Since it is unlikely a
name will be longer than 256 characters, the above program should not need the
CLEAR statement.

If, on the other hand, your program had twenty string variables, each of which is used
to hold a name, then the maximum of 256 would probably be exceeded. In this case,
the CLEAR statement would be needed.

Experiment #8 Mortgage Payment Calculation

Clear working memory with the NEW command and type the following program from
the keyboard:

1@ INPUT "INTERESYT RATE (@ - 10@)"5 R
20 R = R / 109

30 INPUT "AMOUNT OF LOAN "5 A
49 INPUT "NUMBER OF YEARS";
56 N = 12 % T

60 I = R / 12

70 MP (1 - (1 + IY*"(=-N)) / 1

89 MP A / MP

99 PRINT "MONTHLY PAYMENT IS $"i MP

[}

When you execute this program, you will be prompted for the interest rate, the
amount of the loan and the length in years of the loan. If the interest rate is 12% then
12 should be entered, not .12. Here is an example of the execution of the program.

INTEREST RATE (@ —-1@@7 12

AMOUNT OF LOAN 7 200080

MUMBER OF YE&RE 7 25

MONTHLY PAYMENT I8 $ 315.96724246592HX

CC 1D =290 CC3IT 490 =50 =6 7T =8

Line 10 allows the interest rate to be entered and stores it in variable R.
Line 20 converts the interest rate to a decimal value.

It is important to note that the equals symbol (=) in a BASIC program means *‘assign
the value computed on the right side to the variable on the left side.”’ It does not
mean the right side is equal to the left side as in an algebraic equation. Thus the
assignment statement:

R =R/ 100
means to compute the right side, R / 100, and then store the result back in R.

Line 30 allows the amount of the loan to be entered and stored in numeric variable A.
Remember that numeric values are entered without a comma.

41

Line 40 allows the length pf the loan (in years) to be entered and stored in variable T.

Line 56 computes the number of pavment periods (months) of the loan and stores the
value in variable N.

Line 60 computes the interest rate per month and stores it in variable I.

Lines 70 - 88 compute the monthly payment. The computation was done in two lines
rather than one, to avoid having a long, complicated expression in a single line.

Recall that the equals symbol (=) means to assign the value computed on the right
side to the variable on the left side. In line 80 the value of A/MP is computed and
then stored in MP.

Line 99 prints the amount of the monthly payment.

Run the program several times with your own data. Have you ever wondered what
effect a change in the interest rate would have on your mortgage payment? Just run
the program and vary the interest rate while keeping the other variables constant.

Experiment #9 Calculation of Total Amount and
Loan Balance

In addition to calculating the monthly mortgage payment, as in the last experiment,
you might wish to compute the total amount you have to pay. This is done by
multiplying the number of pay periods N by the monthly payment MP. Type in lines
100 and 110 as follows:

100 TA = N * MP
110 PRINT "TOTAL AMOUNT PAID IS "3 TA

Another calculation that can be made is the determination of the loan balance or
outstanding principal, after a certain number of payments. Enter the following lines:

120 INPUT "CURRENY YEAR OF LOAN"§ Y

130 M = 12 * ¥
140 B = (1 - (1 + IN"(M-N)) / 1
150 B = MP * B

160 PRINTY "PRINCIPAL REMAINING IS 4%"3 B
Here is a listing of the the complete program:

19 INPUT "INTEREST RATE (@
20 R =R /7 100

340 INPUT "AMOUNY OF LOAN"]3
49 INPUT"NUMBER OF YEARS"3
36 N = 12 % 7

66 I = R /7 12

7¢ MP (1 - (1 + I)"(-N)) / 1

886 MP A / MP

80 PRINT "MONTHLY PAYMENT IS "3 MP
100 TA = N *# MP

1180 PRINT "TOTAL AMOUNT PAID IS $"35 TA
120 INPUT "CURRENT YEAR OF LOAN"3 Y
130 M = 12 * Y

100)"3 R

-4 D

0 u

42

140 B = (1 - (1 + ID"(M-N)) / 1
150 B = MP * B
16@ PRINT "PRINCIPAL REMAINING IS %"3 B

Here is an example of the execution of this program:

INTEREST RATE (@ -~
AMOUNT OF LOaAN 7 7
MUMBER OF YEARS? 3@

MONTHLY PAYMENT IS5 4 759.38752477191
TOTaL AMOUNT PATID IS $ 273559, 5@%64509
CURREMT YEAR OF LOaNT 1@

FRINCIPAL REMAINIMG I8 % 4H&48BE, 232623194

ajn]
Z

4
&
4
£

3
ﬁ.’lﬁ

— 1™/ c— 23 - 33 — 4 = —= 55— —_— 6™/ — 11 c— 8 T2

This example would be typical of an $ 89,000 home purchased with a conventional
80% mortgage at 12.5% over 30 years. The amount of the loan would be $ 71,200.
The discouraging result of running this example is that the total you will have to pay
over the 30 years is $ 273,559.51. By entering a current year of 10, you can see that
the principal remaining unpaid after 10 years is still $ 66,883.23. This means that in
10 years you have paid

$ 71,200 — $66,883.23 = §$ 4,316.77

toward the original amount borrowed.

What you have learned:

In this lesson, the use of string and numeric variables has been illustrated. Arithmetic
expressions have been used in the calculation of interest and mortgage rates. The
INPUT statement was found to be a very convenient method of entering data into the
Computer.

43

IF / THEN/
ElsE
- f

| i
PRINTUSLNQl

Lesson #4 Sales Commissions

It is often necessary to write programs that will do one task if a condition is true and
another if the condition is false. This is called branching. In this lesson you will learn
why this concept is important and how to implement branching in your programs.

"READ/DATA/Y
'RESTORE

Experiment #1 Sales Commissions

A salesman is to receive a flat rate commission of 15% of his total sales. However, if
the total sales is over $2000, then he will receive an additional 20% of the amount
over $2000.

The formulas are as follows:

.15 * gales if sales are less than 2000
.15 * sales + .20 * (sales - 2000) if sales are over 2000

Commission
Commission

Clear memory with the NEW command and type the following program:

1@ INPUT "AMOUNT OF SALES"§ 8T

2@ CM = 8T % .15

3¢ IF 8T > 2000 THEN CM = CM + .20 * (ST - 280¢)
4¢ PRINT "COMMISSION IS"iCM

Execute this program.
The program begins by asking you to enter the amount of sales. Type:
1¢0¢ (ENTER

to compute the commission on one thousand dollars sales. Note that a dollar sign is
not entered. The computer will respond with the message

COMMIGSION IS 15@
indicating a commission of $150.
Since the sales were less than $2000, the commission is a straight fifteen percent.

RUN the program again and this time when you are asked to enter the amount of
sales, type:

3000 (ENTER

to compute the commission on three thousand dollars sales. The computer will respond
with the message:

COMMISSION IS GS@

indicating a commission of $650. Since the sales exceed $2000, the commission will
be 15% of $3000 plus 20% of $1000 (the amount exceeding $2000).

Try running the program using your own sales data and confirm that the program
computes the commission properly.

45

How the Sales Commissions Program Works .

10
_ INPUT . AMOUNT
KEYBOARD SALES OF SALES?

.

COMPUTE 15%
COMMISSION

COMPUTE
ADDITIONAL
COMMISSION

SALES > 2000

Y

Figure 4-1. Flowchart of Sales Commission Program

40

When you execute the program, you will be prompted for the total sales. The
commission then will be computed according to the above scheme and printed.

Line 16 allows you to enter the total sales, which is stored in the variable ST.
Line 26 computes the flat rate sales commission and stores it in the variable CM.

Line 36 contains a new statement, the IF/THEN statement. As can be seen from the
flow chart in figure 4-1, the program must branch after line 20.

If the sales exceed $2000, an additional computation must be performed. However, if
this is not the case, then the sales commission is already calculated in line 20 and no ‘
additional computation is required.

To accomplish this, the program must be able to test whether or not sales (ST) is
greater than $2000, and branch accordingly. This can be done with the use of the
IF/THEN statement.

The inequality
ST > 2000

appearing in line 30 (between IF and THEN) is called a ‘‘condition.’’ If this condition
is false, then the next statement to be executed is in line 40. On the other hand, if the
condition is true, then the statement following THEN:

CM = CM + .20 * (ST - 2000)

will be executed before control passes on to line 40. In other words, if total sales are
not greater than 2000, no additional calculations are performed in line 30. But, if total
sales are greater than 2000, the additional commission is calculated and added to the
original flat rate commission.

The general format of the IF/THEN statement is
IF “‘condition’> THEN °‘‘statement’’

where “‘statement’’ is executed only when “‘condition’’ is true. In either case, the
next line executed is the one following the IF/THEN statement.

The condition is usually the comparison of two numeric or string expressions. Two
numeric expressions are compared with the use of a relational operator. In this case,
““>""in line 30 is the relational operator.

Here is a table of numeric relational operators:

numeric operator meaning

> greater than

< less than

<>or>< not equal to

>=or => greater than or equal to
<=or =< less than or equal to

Assuming the variable A has the value 2, the logical values of some conditions are
given below.

condition logical value
A>1 true
A< -1 false
A< >1 true
A>=2 true
A<=0 false

Here are some more examples of valid IF'THEN statements
S55IFA*B - C<DTHENA =B
65 IF 5.6 < > AB — 4.6 THEN STOP
75 IF CD/AC < > 1 THEN CD = AC

47

Each condition can contain only one relational operator. Thus the following condition
is not allowed:

A<>B<>C

It should be clear that IF/THEN is a very powerful statement because it allows the
program to carry out different tasks and functions, depending upon the value or values
of numeric expressions.

Experiment #2 Printing Dollars and Cents
One unsatisfactory aspect of the Sales Commision program is that the value printed for
the commission does not directly indicate dollars in the customary fashion.

Run the program and enter the value 1763.89 for the total sales. You will see that
264.5835 is printed out for the amount of the commission. The output of the program
is a decimal number that sometimes contains more than two digits to the right of the
decimal point.

It would be much neater if the commission were printed to the nearest cent each time.
One way of accomplishing this is to use a different print statement. Instead of using
PRINT, the PRINTUSING statement can be used to format the output.

Make the following changes to the program:
Change line 40 as follows:

44 PRINT "COMMISSION IS "i
and add a new line 50

50 PRINTUSING "ssus,ss"j CM
Line 40 will display the message

COMMISSION IS

and line 50 will print the value of the commission. Now if you execute this revised
program you will see that the commission is printed, as desired, rounded to the nearest
cent.

For example, run the program and enter 1763.89 as the sales amount. This time the
commission amount prints as 264.58.

The string enclosed in quotes,
HHHEH HH#
is called a format specifier, and it indicates how a number is to be printed.

Since two of the # symbols appear to the right of the decimal point, exactly two
digits will be printed to the right of the decimal point. By the same token, a maximum
of four digits to the left will be printed. (Fewer than four digits to the left of the
decimal point may be printed, depending on the size of the number.)

Since there are six # symbols and one decimal point specified, a total of seven
columns will be used for the printing of the number. The number will be printed
*‘right justified’’ in this seven column field, meaning that there may be some blanks in
the left most columns, but not in the right-most.

Instead. of using a constant string, such as “‘####.##’, it is permissible to usec a
string variable for the format specifier. For example, the program can be changed as
follows

4s A% = "sunu, a8
50 PRINTUSING A5 CM

This will give the same output as before. Again, the value printed for the commission
will be rounded to the nearest cent. Note that the format specifier, whether it is a
string or a string variable, is always followed by a semicolon.

For some more examples, suppose CM = 1416.3812 (actual value as computed) and
this is printed out with line 50 above. The following table gives the output for various
format specifiers

format specifier output

AS = “##H##HH 1416.38
AS = “#### . # 1416.4

AS = “##F#H #H#H 1416.381
AS = “#### ##H#F#H 1416.38120

Experiment #3 Dollar Signs

There are other possibilities for format specifiers. Change line 45 in the program so
that it is:

45 A% = “"S$#usauy,#u"

Now run the program and input a variety of values for the sales. In each case there
will be a dollar sign ($) printed to the left of the field (9 column). In many cases there
will be some blanks between the $ and the left most digit of the number.

Now change line 45 so that it is:
45 A% = “Seuuuuss,un"

Run the program with a sales amount of 1111. As you can see, the $ is now printed
just to the left of the number $166.65. The use of two dollar signs to the left of the
numeric field specifier instructs the computer to print a dollar sign immediately to the
left of the leading digit.

Experiment #4 Checks

Many times, payroll checks are printed with asterisks padding the leftmost columns of
the field.

Change line 45 in the previous program to:

45 At = "xxtasnagan, wn"

49

Run the program with a sales amount of 1111. In this case you can see that in the .
output of the commission

**%x%¥%¥$166.65

the unused positions are, indeed, padded with the ‘“*’’ symbol.

Large dollar amounts are ysually printed with commas. Try changing line 45 to
45 A% = "kxbHud uuG, 88"

Run the program with a sales amount of 123456. In the output of the commission,
*#%x447 ,809.60

the digits are now separated with a comma to make the reading of the number easier.

If your number requires more columns than you have specified, for example printing
34.56 with *‘#.###°’, the number will be printed anyway, but the symbol “*%’> will
be printed to the left of the number to indicate the field overflow,

Experiment #5 Sales Commission Revisited

Change the sales commission program so that it is computed according to the
following scheme:

if sales are $2000 or under, commission is 15% of sales
if sales are over $2000, commission is 20% of sales ‘

The program must now make two different computations depending upon the total
sales.

The program is illustrated with the flow chart in figure 4-2. The branching can be
accomplished with the use of a variation of the IF/THEN statement, called the
IF/THEN/ELSE statement.

50

‘

— INPUT — AMOUNT
KEYBOARD SALES OF SALES?

COMPUTE 15% COMPUTE 20%
COMMISSION COMMISSION

30, 40, 50 l

PRINT ‘
COMMISSION — —— < COMMISSION IS

Figure 4-2. Flowchart of Experiment 5

Modify the program by deleting line 20 and replacing line 30:

30 IF 8T <= 200@¢ THEN CM = .15 % 8T ELSE CM
= 420 * ST

Since this line requires more than 40 columns, it will not fit on a single line of the
display of your Model 100, but will overflow to the next line. A line in your program
may contain up to 255 characters, in which case it will extend over several lines of the

display.

51

A line is terminated only when you press and not at the end of a display line. .
List the program to confirm that it is:

19 INPUT "AMOUNT OF SALES"i 8T

Z@ IF 8T <= Z@@@ THEN CM = ,13 * BT ELSE CM = ,20 * 8T
4@ PRINT “"COMMISSION IS"i

45 A% = "xxsuun,uun,84u8"

SO PRINTUSING A% § CM

Execute the program.

When prompted for the amount of sales, enter 1000. The commission will be
computed as $150.00, which is a straight 15%.

Run the program again and enter a sales of 3000. This time the commission will be
computed as $600.00 which is a straight 20%.

The IF/THEN/ELSE statement is used to execute one of two different statements
depending upon the logical value of the condition.

If sales are less than or equal to 2000, the commission is calculated as 15% of sales
and control passes to line 40. However, if sales are over 2000, then the statement
following ELSE is executed instead, so that the commission is calculated as 20% of
sales and again control passes to line 40.

The general format of the IFFTHEN/ELSE statement is:
IF ““condition’’ THEN “‘statement 1°° ELSE “‘statement 2°°

““statement 1’ is executed.if ‘‘condition’ is true, but ‘‘statement 2’ is executed ‘
if “‘condition’’ is false

In either case, control passes to the next line in the program. The statements executed
can be any valid BASIC statements. Here are some more valid examples of the
IF/THEN/ELSE statement:

100 IFA =0THENA =B + 1ELSEA =B - 1
200IFA + B< 100 THEN A = BELSEA =0

Experiment #6 Computing Commissions for
Several Salesmen

The Commission Sales program, as it currently exists, will compute the commission
for one salesman and terminate. To compute the commissions for several salesmen, it
must be maodified.

List the program to confirm that it still looks like this:

14 INPUT "AMOUNT OF SALES"S ST
28 IF ST <= 2¢0@¢ THEN CM = ,15 * 8T ELSE
CM = ,20 * 8T
4 PRINT "COMMISGSION IS";
45 A% = Uxxdiuas , tait, ant
5@ PRINTUSING A% 5 CM ‘

52

Line 10 will be changed so that the name of the salesman can be entered along with
the sales amount.

10 INPUT "NAMEs SALES"§ N$:+ 8T

The name will be placed in the string variable N$ and the sales amount in the numeric
variable ST. Line 20 will correctly calculate the commission, but line 40 must be
altered so that the name is printed. Change line 40 to:

4¢ PRINT “COMMISSION FOR "3 N$i" I§ "j
If the name entered is SMITH, then line 40 will print
COMMISSION FOR SMITH IS
and line 50 will print the amount of the commission after the word IS.
Here is a listing of the program after the changes have been made:

1@ INPUT “NAME:; SALES" 3 N%,» 8T

20 IF 8T <= 2000 THEN CM = .15 % 8T ELSE
CM = .20 * §T

43 PRINT "COMMISSION FOR "i N#&s3" IS "3

45 A% = "%xtsus,sus, 48"

50 PRINTUSING A% CM

If this program were executed, it would compute the commission of a single salesman
and execution would terminate. If the program is to compute more than one sales
commission, it must branch back to line 10. This can be accomplished with the use of
a GOTO statement after line 50. Type in a new line:

6@ GOTOD 1@
Now the program is complete:

i@ INPUT "NAME, SALES"3F N, 5T

20 IF 8T <= 2000 THEN CM = ,15 % 5T ELSE
CM = ,20 * 5T

4¢ PRINT "COMMISSION FOR " iN%s" IS "3

45 A% = "H*xFH#N HE8, 88"

SO PRINTUSING A%§ CM

6@ GOTO 1@

This program illustrates a concept in programming called ‘‘looping.”’ This means that
a block of statements are repeated several or perhaps many times in a program. In the
program above, the entire program is repeated, each time with a different salesman
and sales total. It should be noted that the program is an *‘infinite loop,”” which
means it will not terminate and must be manually terminated by pressing (BREAK).

Try running the program and entering several names and sales amounts. Be sure to
press when you wish to terminate execution.

53

Experiment #7 How to Escape From an Infinite
Loop

It is easy to add some statements so that programs that contain infinite loops will
terminate upon request.

In the Sales Commission program, for example, the sales total will never be negative.
But you can modify the program so that it terminates whenever a negative value for
sales is entered.

Type the new line:
15 IF 8T < @ THEN STOP (ENTER

The STOP statement, terminates execution and has the same effect as pressing
BREAK). The program will terminate if ST is negative, but continue if it is not.

Run the program.

When prompted to do so, enter 2 dummy name (such as END) and a negative sales
amount (such as —1). Note that the program terminates immediately without
computing any commission.

The dummy name was necessary because the INPUT statement in Line 10 requires
you to enter two input quantities. Since a negative sales amount terminates execution,
the name you enter will not be used.

You can have more than one STOP statement in your program. Of course your
program need not have any STOP statements in it at all.

Experiment #8 Individual Commissions for the
Salesmen
The Sales Commission program calculates every salesman’s commission using the

same rate. Now we will modify the program so that each salesman has his own
commission rate. Here is a list of salesmen and their commission rates:

Name Rate
ADAMS 15%
JONES 16%
LEE 18%
SMITH 20%
VINSON 14%

When any of the above names is entered, the program must look in the table to find
the corresponding rate before the commission can be calculated. Make the following
changes to the program:

Retype line 20 as follows
28 READ Ni%, CR

54

and add lines 24, 26 and 28

24 IF N1$ <> N& THEN GOTO z@
26 CM = 8T # CR
28 REGBTORE

Delete line 30.

Now the only remaining change is to add the table to the program. Type the following
line:

79 DATA ADAMS,,15,JONES,»+16,LEE,»+18,8MITH, .20,
VINSON,. 14

List the program to confirm that you have:

1@ INPUT "NAME . SALES"3 N%, 57

15 IF 8T < @ THEN 5TOP

20 READ N1%$, CR

24 IF Ni4¢ <> N$ THEN GOTO 20

26 CM = CR * ST

28 RESTORE

4¢ PRINT "COMMISSION FOR "3§ N#$3" IS "3
45 A% = "xdaus sus,ue’

50 PRINTUSING A%3 CHM

60 GOTO 10

70 DATA ADAMS,.15,JONES:.16,LEE».18,,8MITH,.20,
VINSON .14

Run this program.

Be sure to enter one of the five names listed in the table. The program will compute
and print the commission for that salesman. Continue to input names in any order and
their corresponding sales totals. To end the program enter a dummy name and
negative value for the sales amount.

Line 2@ reads the first name (ADAMS) listed in the DATA statement in line 70 and
places it in the string variable N1$. It reads the first commission rate (.15) and places
it in the variable CR.

Line 24 compares the name in N$, which was entered in line 10, to that in N1$. If
they are different, the program jumps back to line 2@ which then reads the next name
and commission rate in the DATA statement. The program continues looping in this
way until a match is found. When this happens, CR will contain the correct
commission rate for the salesman.

Line 26 computes the commission for the salesman.

Line 28 is the RESTORE statement. When this statement is executed, the computer
will go back to the first item in the data list. Therefore the next time a READ
statement is executed, it will use the first item in the DATA list.

Without RESTORE, the reading of the data would continue where it left off from the
time hefore. If the names are entered in an arbitrary order, the data list must be read
from the beginning each time.

The remainder of the program is the same as before, with the exception of line 70.
Line 70 contains the DATA statement from which the names and rates are read. This

55

statement can be placed anywhere in the program, but it is traditional to place it either
at the beginning or the end of the program.

What would happen if a name is entered, which is not in our list?

Run the program and enter the name CARTER and a sales amount of 1000. The
program continues reading names in the DATA list until it runs out of data. The
program terminates and displays the error message:

70D ERROR IN Z0

indicating that an OUT OF DATA error occurred in line 20. The program tried to read
past the last name and rate in the list.

Additional names and rates can be added to line 70 or placed in another DATA
statement. The computer treats multiple DATA statements as one continuous list.

What you have learned:

In this lesson you have learned how a program can be madc to BRANCH and
accomplish different tasks depending upon the value of a variable or expression. This
can be done by using the IFF/THEN statement. The PRINTUSING statement was used
to format the output so that it was presented in a more reasonable fashion than would
be the case with just the PRINT statement. You saw how to use the STOP statement
to terminate execution under program control. You also learned that the READ/DATA
statements often provide a convenient method of inputing data to the program,
especially frequently referenced data like tables and lists.

56

DAYS

TINES
Lesson #5 Day, Time and Date oates

Your Model 100 has a number of string functions which allow you to manipulate
string constants and string variables in various ways.

STRS

In this lesson you will learn how to use some special string functions that ‘‘return”’ STR INGS
the day, time and date. Also, other string functions will be used to extract information = " >"¥%
from string constants and string variables and to output character data.

¥
=

Experiment #1 What Day is it?

DAYS is a string function which returns the day of the week. If you type:
PRINT DAY$ (ENTER

you will see that the first three letters of the present day are displayed. For example, if ?R'I'GH
today happens to be Thursday, the Computer will display

+ M
Thu e

Note: You must initialize the day sometime prior to using the DAY$ function. Once
initialized, the day will be automatically updated.

If you have not already initialized the day, this can be done by entering the following
command:

DAY$ = “xxx’’

where “‘xxx’’ are the first three letters of the current day. For example, if today is
Monday, enter

DAY$ = "MON" (ENTER

While the DAY$ function returns the first three letters of the day of the week, it is
often desirable to print the full name of the day (e.g. Thursday, not Thu).

The following program, which we’ll call DAY, accomplishes this. Refer to Figure 5-1
for a flowchart of the program.

Clear working memory with the NEW command and type the following program in
from the keyboard.

19 READ D%

20 1IF LEFT$(D%.,3) = DAY$ GOTO 40

30 GOTO 1@

49 PRINT “TODAY IS5 "5 D%

o® DATA Sunday» Mondavy,» Tuesdavy Wednesday
6@ DATA Thursday» Fridavys Saturday

Execute this program.
The program will output the day of the week. Here is an example of the output:

TODAY IS5 Thursdavy

How program DAY works: .

i Y

READ DAY
ASSIGN TO D$

20

LEFT(D$,3)
= DAY$?

40

Fyu —_— TODAY IS

Figure 5-1. Flowchart of Program DAY

Line 10 A string from line 60 or 70 is read and assigned to the string variable DS$.
The first time line 10 is executed, the string Sunday will be assigned to D$, the
second time line 10 is executed, Monday will be assigned to D$, etc.

Line 26 The IF / THEN statement compares DAY$ with the first three characters
stored in D$. DAY$ contains the first three characters of the current day (SUN,
MON, etc.). LEFT$(D$,3) returns the three leftmost letters of the string stored in DS$.
If a match occurs, the program jumps to line 40, otherwise line 30 is executed next.

Note that the IF statement does not contain the keyword THEN. The keyword is
optional in an IF statement when it is followed by a GOTO statement.

Line 38 The GOTO statement transfers control back to line 10 where the next day will
be read from the data list.

Line 40 The PRINT statement displays the message ‘“TODAY IS’ followed by the
day of the week.

58

Lines 50 - 60 These DATA statements contain the list of the days of the week.
Lowercase letters must be used for the second and third characters to correctly match
DAYS$. which stores the first three characters of each day of the week (an uppercase
and two lowercase letters).

This program uses two string functions, DAY$ and LEFTS. Recall that DAYS$ returns
the first three letters of the day of the week.

The function LEFT$(D$,3) returns the first three characters of the string stored in DS$.
For example, if D$ has Thursday assigned to it, then

PRINT LEFT$(DS$,3)
would display
Thu

The number 3 indicates the number of characters to be returned. Again assuming that
D$ contains Thursday, then

Command Displays as
PRINT LEFT$(D$,1) T

PRINT LEFT$(DS$,2) Th

PRINT LEFT$(D$,5) Thurs

etc.

LEFTS is a string function of two arguments, the string (D$) and the number of
characters to be returned. The first argument need not be a string variable, it can also
be a string constant. For example,

PRINT LEFT4("Model 1@0",3)
would display as:

Mod

When a string constant is used as the argument, it must be enclosed in quotation
marks.

The last character in the name of both functions, LEFT$ and DAYS, is a dollar sign
($) because the quantity returned, in both cases, is a string.

Experiment #2 Centering the Day
Program DAY is to be changed so that the output will consist of the day of the week,
centered in the line with an equal number of asterisks (*) printed on both sides.
Make the following changes:
Retype line 40 as:
49 L = LEN(D%)
and type four new lines:

3 CLEAR 1090

44 A% = STRINGS((40 - L)Y/2, "=")
16 D% = A% + D% + A%

48 PRINT D%

59

Now list the program to confirm that it is:

S CLEAR 100

19 READ D%

20 IF LEFT$(D%$:3) = DAY$ THEN GOTO 4@

30 GOTO 10

40 L = LEN(DS$)

44 A% = STRINGS$((40 - L)/2 "*")

46 D% = A% + D$ + A%

48 PRINT D¢

5S¢ DATA Sundav: Mondav: Tuesday» Wednesday
6@ DATA Thursdavys Friday,» Saturdav

Execute the program by entering the RUN command. If the current day is Thursday,
the following will be output:

e dE B W I H KT LIS S clEng R KRR

A C=2Dm 310 =499 5T = 6T = 7T C— 89D

If the current day is Friday, then the output will appear as:

Ee N KRR N FR R L R ER AR RE R LA

CCtmm 20 £ 379 £D 4T C= 5 C— -3 c— 7/ C— 8/

In each case, the word is centered in the line and an equal number of asterisks are
printed on both sides to fill the line. If the current day is Tuesday, which has 7
characters, then 16 asterisks are printed on both sides so that 39 columns are used.

The function LEN returns the number of characters in a string variable or string
constant. For example if D$ contains Friday, then the function LEN(DS$) returns the
value 6, and LEN(‘‘Friday’’) also returns a 6.

Since the value returned by the function LEN is an integer, there is no dollar sign ($)
attached to the function name. In line 40, the number of characters of the string stored
in D$ is assigned to L. If the current day is Friday, then L has 6 assigned to it.

60

Since each line has 40 print columns, the number of asterisks to be printed on each
side of the day is

(40 — L)2.

For example, if the current day is Friday, 17 asterisks must be printed before and after
the word Friday.

In line 44, the function STRINGS$ is used to construct a string of asterisks of the
correct length and assign it to the variable A$. Again, if L has the value 6, then

(40 — L)y2 = 17

and STRINGS$((40 — L)/2,***’) will be a string of 17 asterisks. If the current day is
Tuesday, then L = 7 and

40 — L)2 = 16.5

This value will be truncated to 16 in the STRINGS$ function so that A$ will have
length 16.

The general form of the STRINGS function is
STRINGS(r, “x”’)
which constructs a string consisting of r repetitions of the character x.

The argument r can be a numeric constant, variable or expression. For example, if
J=3 and M=2

Command Displays as
PRINT STRINGS$(S, ““#°") HHHHH#
PRINT STRINGS$(J, ““X”") XXX
PRINT STRINGS$(J-M,“‘&’") &

Line 46 illustrates the concatenation operator + . The strings A$, D$ and A$ are
joined together to form a new string which is then assigned to the variable D$. The
concatenation operator can be used with string constants or string variables. For
example:

A$ = “RADIO ““+"’SHACK”’
concatenates the two strings
“RADIO ** and ‘‘SHACK"”
together to form a new string
*“RADIO SHACK”’

and assigns it to the string variable AS.

Note that in line 46, D$ appears both on the left and the right side of the equal sign.
Thus the old value which was assigned to D$ is replaced by the new string, which is
printed in line 48.

61

Experiment #3 What time is it? o

Another useful feature of your Model 100 Computer is the string function TIMES,
which returns the time as a string of the form

hh:mm:ss

For example, if the time is exactly 1:05 PM, then the following command:
PRINT TIME$

would print
13:05:00

The first two digits indicate the hour (1 PM), the second two digits the minutes, (5
minutes after 1), and the last two digits the seconds.

The clock is a 24 hour clock, so the hours will range from 00 to 23, with 00
indicating midnight.

Note: The time must be initialized prior to using the TIME$ function. Once set, it will
keep the correct time just like a clock. If you have not already initialized the time,
you may do so by entering the following command:

TIMES$ = “hh:mm:ss’’

where hh is the hour, mm the minute, and ss the seconds. The hour is in 24 hour
format, so that 3 PM is hour 15. For example, if the current time is 3:05 PM, type

TIME$ = "15:05:00" (ENTER o

The following program will convert the string returned by TIMES$, for example
14:18:00, to the customary format, 2:18 PM.

Clear the previous program from memory with the NEW command and then type the
following program:

10 HH% = LEFT$(TIME%:2)
20 HH = VAL(HH%$)

30 IF HH:>= 12 THEN A%
4@ IF HH > 12 THEN HH
S50 HHE% = BTR$ (HH)

B@ MME = MIDS(TIME$:4,2)

70 T$ = HH% + ":" + MM$% + A%
80 PRINT "THE TIME IS"§ T%

" PM" ELSE A% = " AM"
HH - 1Z

After the program has been entered, cxccute it with the RUN command. An example
of the output is

THE TIME IS 1:05 PM

Line 18 The first two characters in TIMES are assigned to the string variable HHS.
These two characters designate the hour. For example, if it is 1:05 PM, then HH$ will
contain the two characters 13. Since LEFTS$ returns a string, these two characters form
a string even though they are numerical digits. Thus they cannot be assigned to a
numeric variable.

62

Line 26 The string assigned to HH$ is converted to a numerical value by the VAL
function. This numerical value is assigned to the numeric variable HH. Using the
previous example, HH would have the number 13 assigned to it. Without the VAL
function, it would not be possible to make this assignment.

Line 3@ This statement determines whether it is AM or PM and assigns an appropriate
string value to AS$. The value stored in HH is compared to the numeric constant 12.
Only a numeric variable can be used in this way. The use of HH$ would have
produced an error and it was for this reason that the string stored in HH$ was changed
to a numeric constant and assigned to the numeric variable HH.

Line 48 The hour value is converted from a 24 hour format to a 12 hour format. For
example, hour 13 would be converted correctly to 1 (PM). In this line, as well in the
previous line, the variable must be a numeric variable. The statement:

HH$ = HH$ — 12
is illegal and would produce an error.

Line 50 This line uses the STR$ function to convert the numeric value stored in HH
back to a string which is then assigned back to the string variable HH$. This will be
concatenated later with another string. In order to do this, a string variable must be
used.

Line 6@ This line uses the MIDS$ function to read the two minutes digits from TIMES$
and stores this two-character string in the string variable MMS$. Note that the minutes
are the 4th and 5th characters in the string:

13:05:00
MID$(TIMES$,4,2) returns two characters starting with the 4th from the left.

Line 7@ In this line, the string to be printed is concatenated together from the
variables HH$ (hour), MM$ (minutes), and A$ (AM or PM). A colon is inserted
between the hour and minutes.

Line 86 The message ‘‘THE TIME IS”’ is displayed followed by the time.

Here are some examples of TIME$ and the resulting output of the program:

TIMES$ - OUTPUT

10:15:12 THE TIME IS 10:15 AM
17:08:55 THE TIME IS 5:08 PM
03:18:43 THE TIME IS 3:18 AM

Note that a leading zero is not printed for the hour. This leading zero is lost when the
VAL function is applied.

The function VAL converts a string constant or variable to a numeric value. The
following examples illustrate this function:

string VAL

123ABBA 123)
2.3CA987 2.3

567.4 567.4

The leftmost characters, up to the first character which cannot be part of a number,
are converted to a number. This function is useful when it is necessary to use a

numeric string constant in a numeric expression. The number in string form must be .
converted to a numeric constant before it can be used in a numeric expression.

The STR$ function is the inverse of the VAL function. It converts a numeric constant
or variable to its string form. This is useful when you want to concatenate the number
with another string as was done in this program.

The MIDS(string, p, n) returns the sub-string of length n starting with the p-th
character. This is illustrated with the following examples:

string p n MIDS$(string,p,n)
ABCDEFGH 5 3 EFG

JUNE 18, 1983 10 2 19

RADIO SHACK 7 5 SHACK

Experiment #4 Printing the Seconds

The program in Experiment 3 did not print the seconds even though they are returned
by TIMES. The program will be changed so that the output will appear as:

THE TIME IS5 1:05 PM AND 28 SECODNDS
Make the following changes to the program:
Type a new line:
B3 55% = RIGHTH(TIMES$:2)
and change line 70 to ‘

70 T$ = HHE + ":" + MM$ + A% + * AND "
85¢ + " SECONDS"

+

List the program to confirm that it is:

19 HH® = LEFTS(TIMES$,Z)

20 HH = UAL (HH%)

30 IF HH »>= 12 THEN A% = " PM" ELSE A%

49 IF HH > 12 THEN HH = HH - 12

50 HHs STR$ (HH)

G@ MM$ MID$(TIMES 4,2)

BS S5E5% RIGHT$(TIME%.,2)

70 T4 = HH$ + ":" + MM$ + A% + " AND " + 5S5%
+ " GECONDS"

88 PRINT "THE TIME IS"§% T%

" AM it

#Hon

Execute this program.

The output will depend on the time. If TIME$ = 17:23:56, then the following will be
displayed:

THE TIME IS 5:23 PM AND SG6 SECONDS

Line 65 The RIGHTS$ function is used to return the two rightmost characters stored in
TIMES. These characters are the seconds and are assigned to the string variable SS$.
The RIGHTS$ function is similar to LEFT$, except that the digits are counted from the

. right instead of the left of the string. Of course, the MID$ function could have been
used instead. Using MID$, line 65 would appear as:

B85 S58% = MIDS(TIME®,7,2)

It is usually easier to use LEFT$ or RIGHTS$ instead of MID#$ if the characters are the
leftmost or rightmost of the string.

Experiment #5 What’s the date?

The string function DATES returns the date in the form
mm/dd/yy

For example, if the present date is October 23, 1983, then the command:
PRINT DATE$

will display
16/23/83

Note: The date must be initialized prior to using the DATE$ function. Once entered,
the date will be automatically updated. If you have not already initialized the date,
you may do so by entering the following command:

DATES = “‘mm/dd/yy”’

‘ where mm is the number of the current month (e.g. 83 for March), dd is the day, and
yy the year. For example, if today is December 25, 1983, enter

DATE$ = "12/25/83"

Delete the previous program from memory with the NEW command. The following
program will print the date in the usual form, (i.e., the name of the month, the day
and the year.) For example:

DECEMBER 25, 1883
Type the following program:

10 MM$ = LEFT$(DATE$, 2)

20 MM = UAL (MM$)

30 READ MM$

49 CT = CT + 1

5@ IF CT < MM THEN GOTO 39

60 DD% = MID$(DATE®., 4+ 2)

78 YY$ = RIGHT#(DATE$,» 2)

80 PRINT MM#%3 " "5 DD$5 " 18"3F YY$%

9¢ DATA JANUARY, FEBRUARY,» MARCH.» APRIL
100 DATA MAY: JUNE. JULY. AUGUSTs SEPTEMBER
110 DATA OCTOBER» NOVEMBER,» DECEMBER

Refer to Figure 5-2 for the flowchart of this program.

Execute the program. The output will be today’s date in the usual format: month, day,
and year.

65

How Program ‘‘What’s the date?”’ Works .

SET MM$
TO MONTH

o Y

CONVERT
MM3$ TO
NUMERIC MM

N W

READ MONTH
FROM DATA
LIST

o Y

10

INCREMENT.
COUNTER

CURRENT
MONTH?

60

SETDD$ TO
DAY

70 Y

SET YY$
TO YEAR

80

PRINT
DATE -

END

Figure 5-2. Flowchart of Program “What’s the date?”

66

Line 10 The left two characters of DATE$ are stored in the string variable MMS$. This
is the month. For example, if the month is OCTOBER, then MM$ will have the string
““10”’ assigned to it. It is important to remember that LEFT$ returns a string, not a
numeric constant.

Line 20 The string stored in MMS$ is converted to a numeric constant by the VAL
function. This must be done because it will be necessary to compare the month
number to another numeric constant in line 50.

Line 30 The next month is read from the DATA statements and placed in MM$. The
first time, JANUARY is assigned to MMS$. Since the string originally stored in MM$
will no longer be needed, the string variable MMS$ is reused in this line.

Line 40 This line increments a counter CT. After the first month is read, CT will have
the value 1 because the computer initializes all numeric variables to zero when the
program is executed.

Line 50 If the counter CT is less than the number of the current month, then the
program will jump back to line 30, where the next month is read from the data list.
Eventually, CT will equal MM. When this happens, MM$ will have the current month
assigned to it and line 60 will be executed next. Thus, the months are read repeatedly
into MM$, until the present month is reached, and then the program jumps out of the
loop (lines 30, 40 and 50).

Line 60 The MID$ function is used to extract the day from DATES. The day is given
by the 4th and 5Sth characters of the string stored in DATES.

Line 70 The RIGHTS function is used to obtain the current year from DATE$. Recall
that the year is given by the last two characters.

Line 80 The date is printed in this line. Note that each item in the print list is
followed by a semicolon which means that no columns are to be skipped. It was
necessary to print a blank space after the month, or otherwise the day would be
printed immediately after the month.

Lines 90 - 110 These DATA statements contain the months of the year which are read
by the READ statement in line 30.

What you have learned:

In this lesson the three special string functions DAY$, TIME$, DATE$ and some of
their uses have been illustrated. Various other string functions have been used to
extract information from string variables and to print out certain string quantities.

67

Lesson #6 Using the Editor

In this lesson you will learn how to use the built-in Editor of the Model 100 so that
changes to a BASIC program can be made quickly and easily.

Until now, you have been able to make changes to your BASIC programs in the
following three ways:

1) An existing line is changed by retyping it.
2) An existing line is deleted by entering just the line number.
3) A new line is added by entering it with the appropriate line number.

While any change to your program can be accomplished using these three procedures,
they can be time consuming. For example, if you only want to change a single
character in a line of your program, the entire line must be retyped. If you want to
move one line to another location in the program, the old line must be deleted and the
line retyped with a new line number.

An easier and more efficient way to make changes of this type is to use the built-in
Editor. The Editor allows changes to be made to a line without retyping the entire
line. It also allows a line number to be changed without retyping the line.

There are other convenient features of the Editor as well. These features will be
examined in detail.

Experiment #1 Inserting a Character

Enter the following program from the keyboard exactly as it is printed here:

1@ INPUT "NAME"§ N$%

20 READ A%, AG

30 IF A% < > N$ THEN GOTO
49 PRINT "AGE I8": A ,
386 DATA DAN., 32, RON, 3By LINDA: 42
B¢ DATA BETTY,» 35, RALPH:. 29, BKIP, 3

This program prompts you for a name. If one of the names in the DATA statements is
entered, (i.e. BETTY), the corresponding age (35) will be displayed. If the name
entered is not found in the DATA statements, an out of data error will result (at least
that is how the program is supposed to work).

-

@

69

Run the program. If you enter the name LINDA, the output will look like this:

MAMET LLINDS
AGE I8

CCo 1T 20 =303 490 = bHID e/ =)D t— 8-

Obviously, the program is not working correctly. The correct age is 42, not 0. The
problem is in line 40. Variable A at thc cnd of this linc should be changed to AG.
Line 40 should appear as

40 PRINT "AGE IS"» AG

This error could be corrected by retyping the line as shown above. But instead, we’ll
use the Editor to change the variable name to AG by inserting the single character G
after A. Type the command

EDIT (ENTER
You will see the following displayed:

INFUT "NAMEY 5§ N$ <

READ &%, AG4

IF ASCEN$ THEN GOTO ZR4
PRINT "aGE IsY, a4

DaTa Do, & ROMs 38, LINDS, 474
DATA RETTY, 35, RaALPH,

CT1l/m =20/, D3T3 CC4TH = 5TD £ 6T o= 7TD - 8T

The Compdter enters the editor mode and the program is displayed. The cursor is on
the first character of the program. The symbol

<

at the end of each line is used to display the carriage return character that is generated
when is pressed. The + displayed after line 60 is an end-of-file marker.

To insert the *“‘G’’ after the variable A in line 40, the cursor must be moved so that it
is directly over the < in line 40.

The cursor is moved using the four Cursor Movement Keys in the upper right corner
of the keyboard. The arrows indicate which way the cursor will be moved when the
key is pressed.

70

. Press the down arrow key three times. This should place the cursor on the 4 in line
40. The display should appear as:

5\'} ,’) [Nl ;

LINDA, 404

Biib, G

1D 2D €235 4D =500 o6/ =790 =87

The cursor must now be moved to the right until it is over the last character (the
triangle) in line 40. If the right arrow key is pressed and held down, the cursor will
move to the right until the key is released. Using the right arrow key in this fashion,
move the cursor to the desired position. If you go too far, use the back arrow key to
back up to the correct position.

Once the cursor is correctly positioned, you are ready to insert the letter G. This is
done simply by pressing (G). Do NOT press after (@) is pressed. You will
notice that the letter G is displayed in the cortrect place and the carriage return
character moves one column to the right. At this point, the display should appear as:

’ 18 INPUT "NAME" ;5 N34

READ A,y
TF A% -NE THEM G0TO Zp@
PRINT "AGE 18", aGdE

DATA DANM, 3F, RON. 38, LIND&. 424

aTA BETTY, 35, RALPH, 29, 8KIP, 34
4 3 ? 4 7

Co 1D 2/ C=37]m EZ 4T =5 = 6/ c— 7= o= 8~/

When the Editor is used, the system is always in the “‘insert’” mode. This means that
if a keyboard character is typed, this character will be inserted in the line where the

~ cursor was placed. Characters to the right of the cursor move over to make room for
the inserted character.

You must remember to use the arrow keys to move about on the display, and not the

space bar or (ENTER).

Now that ‘“‘G’” has been inserted, you must exit from the Editor before you can
execute the program. To exit from the Editor:

PRESS THE ESCAPE KEY (ESC) TWICE or
PRESS once

71

After this is done, you will be back in BASIC with the updated program. List it to
verify that it is:

186 INPUT "NAME" 3§ N%

280 READ A%, AG

3@ IF A% < > N$ THEN GOTO 20

4@ PRINT "AGE IS", AG

3@ DATA DAN, 32, RON, 38, LINDA, 42
6@ DATA BETTY. 35, RALPH, 29, SKIP, 3

Note that line 40 contains the correct variable AG. Execute the program. Here is an
example of the output:

NAME? LINDA
AGE IS8
Ok

R I T R T = e e S R N = =]

Run the program several times entering different names to verify that it is executing
correctly.

Experiment #2 Inserting a Word

Lines 10 and 49 of the previous program will be changed to

19 INPUT "YOUR NAME" 3 N%$
49 PRINT "YOUR AGE IS"3§ AG

The word YOUR must be inserted in both lines as shown above. This will be done
using the Editor.

Type the command

EDIT (ENTER
to enter the Edit Mode.

72

The following will be displayed:

B2 INPUT "NAME"; N$<
2@ READ A%, AGH
3@ IF A$<FN$ THEN GOTO 2@«

4@ PRINT "AGE I8", AG<

DATA DAN, 32, RON, 38, LINDA, 424 ‘
&@ DATA BETTY, 35, RALPH, 2%, SBKIP, 34 |

-

c= 1T o= 2 /™ = 3D = 4 =2 c—= 5 =» = 6 — — 7 = = 8 =3

The cursor is placed over the 1 in line 10. Move the cursor to the nght so that the
cursor is directly over the letter N in the word NAME.

Line 10 should appear as
1@ INPUT "HAME"; N$4

Type in the word YOUR followed by a space. Line 10 should now appear as:
18 INPUT "YOUR NAME" i N$%

Line 10 is now in the desircd form. Next, the cursor must be positioned on the letter
A of the word AGE in line 40. This can be done using the Cursor Movement keys. Be
careful not to press any other keys while you are moving the cursor. When you have
the cursor positioned correctly, line 40 should appear as:

AAAAA

4@ PRINT "AGE I5"; AGH

The cursor is positioned correctly for the insertion, so type the word:
YOUR

followed by a space. Line 40 should now appear as:
4@ PRINT "YOUR AGE IS"» AG

At this point editing is finished, so you can exit from the Editor. Press (ESC) twice to
go back to BASIC or simply press (F8).

List the program to confirm that it is:

19 INPUT "YOUR NAME"3§ N$

20 READ A%+ AG

30 IF A% < > N% THEN GOTO 2¢

49 PRINT "YOUR AGE IB" s AG

5@ DATA DAN, 32, RON, 38, LINDA, 42

B¢ DATA BETTY,» 35, RALPH, 28, SKIP, 3 *

Note that lines 10 and 40 contain the desired changes.

73

Execute the program. You will have to enter one of the names listed in the Data
statements, or an Out of Data error will occur. Here is an example of the output:

NAMET RON
YOUR aGE IS
f.:’ 15

C— | —0 L— 2Z2Z3 €= 370 =4 ©= 5= C= 6= =7 =23 C= 83

Execute the program several times, entering different names.

Experiment #3 Deleting a Character

In addition to inserting a character, the Editor can be used to delete a character. This
is easily done and will be illustrated in this experiment. The variable AG in lines 20
and 40 of the previous program will be changed to the single letter G.

Type the command

EDIT (ENTER
to invoke the Editor. The following should be displayed:

FRIMT

T DATA DAaN,
A DATA BETTY.

rE—1Tm 290 €373 /a5 |/ D9 =7/ — 8

The A in the variable AG in line 20 will be deleted first. Position the cursor with the
arrow keys so that it is over the letter G. Line 20 should appear as

o READ A%, A4

Note that the cursor is positioned to the right of the character to be deleted. Now press
BKSP). Line 20 will now appear as

R READ A%, @

Notice that the letter A has been deleted as desired and that the characters which were
10 the right of the deleted letter A have been moved (o the left one position. Also note
that the cursor is still positioned over the letter G.

74

Using the arrow keys, position the cursor over the letter G of the variable AG in line
40, When you have done this, line 40 should appear as:

4 PRINT "YOUR AGE 15", &g <

Press to delete the letter A. Line 40 now should appear as

40 PRINT "YOUR AGE 18", B«

*

At this point, the editing is finished. Press (ESC) twice to exit from the Editor. List the
program to confirm it is:

18 INPUT "YOUR NAME" 3 N%$

2@ READ A%, G

3¢ IF A% { > N% THEN GOTO 2@

4@ PRINT "YOUR AGE IS"s G

30 DATA DAN: 32, RON, 38, LINDA, 42
B@ DATA BETTY» 35s RALPH» 29, SKIP, 3

Execute the program to confirm that it is working correctly.

It should be clcar that characters can be casily deleted with the use of the Editor. You
need only remember to position the cursor one character to the right of the character to
be deleted.

Another very similar way to delete characters consists of entering the Editor,
positioning the cursor right over the character you wish to delete and then pressing

(SHIFDEKSP).

As with BKSP), characters to the right of the deletion will shift to the left to fill the
vacant space.

Experiment #4 Changing a Character

Here is the previous program again as it currently exists in memory:

i@ INPUT "YOUR NAME"3 N%

20 READ A%, G

30 IF A% ¢ » N$ THEN GOTO Z@

49 PRINT "YOUR AGE IS": G

5¢ DATA DAN, 32, RON, 38, LINDA.: 42
6@ DATA BETTY., 35, RALPH, 29, SKIP, 3

The comma in line 40 will be changed to a semicolon so that the age will be printed
closer to the phrase ‘“YOUR AGE IS."* The comma specifies that the age will be
printed in the next field. The use of a semicolon, however, will eliminate all but one
space before the age. The change will be made with the Editor.

Enter the Editor with the command

EDIT (ENTER)

75

Again you will see displayed:

TNPUT "NoME"; Ne -«

READ &k, G4

IF ASC NS THENM GOTO 2004
FRINT "YOUR AGE I8, &G4

DATA Dab, JZ, RON, 38, LINDA, 424
Data BETYY, 35, RalLPH, 29, DNIP, 34

F—lTe T 273 CS31TA CC 4TS o 5T CC 6T /=774 N8

Position the cursor so that it is on the space preceding the variable G in line 40. When
this is done, line 40 should appear as

4@ PRINT "YOUR AGE Ig”

Press on the keyboard. This will delete the character just to the left of the
cursor. After this is done line 40 will appear as

40 PRINT “YOUR AGE 18" G4

Note that the cursor 1s still on the space which precedes G, thus it is in the correct
position to insert the semicolon. Type a semicolon. Line 4@ should now appear as:

4@ PRINT "YOUR AGE I8"3 G

This is the desired form of line 40. You must remember that when is used, the
character deleted will be the one just to the left of the cursor. If the deletion is done
first, then the cursor will be positioned correctly for the insertion of the new character.
The operation can be carried out in the reverse order, but after the insertion, the cursor
must be moved one position to the right before the deletion is done.

Exit from the Editor by pressing the Escape key twice, or just hit (F8).

Execute the program several times to confirm that it is working correctly.

Experiment #5 Changing a Word |

List the previous program. You should see:

16 INPUT "YOUR NAME".3 N%

20 READ As$: G

30 IF A% { > N% THEN GOTO 2@

40 PRINT "YOUR AGE IS"5 G

30 DATA DAN, 32+ RONs 38+ LINDA, 42
6@ DATA BETTY, 35, RALPH: 29, SKIPy» 3

76

In this experiment, the name RALPH in line 60 will be changed to MORT, with the
use of the Editor. Enter the command

EDIT (ENTER
to actiilate the Editor.

Position the cursor in line 60 so that it is on the comma after the name RALPH. Line
60 should appear as:

4@ DATS BETTY, 35, RALPHE 7?9, SKIP, 3«

ol

Press (BKSP) five times to delete the name RALPH. After this is done, line 60 will
appear as:

&0 DATA EBETTY, 35,8, 29, SKIP, 34

The cursor is correctly positioned for the insertion of the new name. Type in the name
MORT. Line 60 should appear as

&2 DATA RBETTY, 35, MORT, 29, SKIP, 34

-

Line 60 is in its desired form; RALPH has been replaced by the name MORT. Exit
from the Editor.

List the program to confirm that it is:

18 INPUT "YOUR NAME"» N&

20 READ A%» G

3@ IF A% < > N$ THEN GOTO Z@

49 PRINT "YOUR AGE IS"3 G

38 DATA DAN, 32, RON, 38, LINDA, 42
6@ DATA BETTY: 35, MORT, Z8, BKIP, 3

Execute the program. Here is an example of the output:

NAME? MORT
YOUR AGE I8 29

ok
e

CTY T e 2Zn L3I 49D =573 L6 =7 C= 8/

These experiments have illustrated how the Editor allows a character or characters to
be inserted, deleted or changed in a program without retyping any lines. With a little
practice you will become quite adept at using the Editor to make necessary changes to
your program.

77

Experiment #6 Changing Line Numbers

Delete the previous program from working memory with the NEW command.

The following program allows an arbitrary list of numbers to be entered from the
keyboard. When a zero in entered, the average of the non-zero numbers is computed
and displayed. (At least that is what the program should do.)

Type the program exactly as it is listed:

1¢ INPUT "NUMBER"3 N

20 CT = CT + 1

30 AY = ALY + N

48 IF N=@ THEN GDTO G@

5¢ GOTO 1@

6@ PRINT "AUVERAGE IE"3§ AV/CT

The program accumulates the sum of the numbers in the variable AV. The variable
CT is a counter that records the number of values entered. If the number entered is 0,
then the average is printed in line 60.

Here is an example of the execution of the program:

MUMBER?
NUMBER? Z
NUMPER?
AVERAGE

O

CC 1™ =23 =330 =S40 Cc=bHTI CC 6T =73 =8

Obviously, the program is not working correctly. The average of the two numbers is
3, not 2. The reason for the inaccuracy is that the number @ was counted by the
variable CT.

The program can be corrected by interchanging lines 20 and 40. In this way, the
check for a zero value for N is done before the number N is counted. One way of
changing the order of the statements is to retype the two lines. However, an easier
method is to use the Editor to change the line numbers.

Use the command
EDIT (ENTER
to enter the Edit Mode.

78

The following will be displayed:

INPUT "NUMBERY§ N«
T = OT + 14
AV AN o N ;ﬂg

- @ THEN GOTO &0«
GOTO 1@«
PRINT "AVERAGE

o1t TS €= 293 = 3T = 4TS = S5Tm £ 6= o= 7 —a t— 8 —

The line number 20 must be changed to 40 and the old line number 40 must be
changed to 20. Move the cursor to the @ in line 20. When this is done, line 20 should

appear as:

The cursor is positioned correctly to change the 2 to a 4. Delete the 2 by pressing
(BKSP). Then insert the 4 by pressing (&) on the keyboard. Now the program should
appear as:

1@ INPUT "MUMBER? S N«
4 CT = OT 4+ 14

3@ AV =AY o+ N

G TF N o= @ THEN GOTO &

S8 GOTO 104
&S PRINT "AVERAGE

Next, move the cursor down two lines so that it is over the zero of line 49. The line
should then appear as

E 3

‘e e e o e e s e ey o ;o
4 TF N o= B OTHEN G0TO &R

79

Delete the 4 by pressing (BKSP), then insert a 2 by typing (2). The program will
appear as:

1% INPUT "NUMBER"; N
48 CT = CT + 14
20 OIF N = @ THEN GOTO &b«

3@ GOTO (G-
L@ PHINT "AVERAGE I5Y; aAV/(Tae

*

& 1= i/ 3.3 =493 C=H»TD CoFpT™ =70 C= 8o

Although the lines are not listed in the correct order, they do have the correct line
numbers.

Exit from the Editor.

List the program. You will see:

19 INPUT "NUMBER"3 N

20 IF N=@ THEN GOTO 6@

30 AY = AV + N

49 CT = CT + 1

50 GOTO 1@

60 PRINT "AVERAGE IS5"3§ AU/CT

The program is listed in the correct order, because BASIC always lists the lines in
your program according to their line numbers.

Here is an example of the execution of the program:

MUMBER?
SUMBERT 2

NUMBERTY

ANERAGE

Ol

o1 L) 2/a £= 3T LT 49 L. b C= bT4a C= T3 C= 8T

The program seems to be working correctly. Execute the program several times to
verify that it will work correctly in every case.

You will find that the ability to move a line in your program to a different position by
changing the line number is very useful and convenient.

80

Experiment #7 Changing a Phrase

It is possible to move a word or even a phrase from one place in your program to
another with the Editor. This can be very useful when you want to add a line, or a
portion of a line to another line.

List the last program to confirm that it is:

19 INPUT "NUMBER"3 N

20 IF N=@¢ THEN GOTO G@

30 AY = AY + N

49 CT = CT + 1

50 GOTO 1@

6@ PRINT "AVERAGE IS"i AV/CT

The statement in line 40 will be placed in line 20, and line 40 eliminated. The revised
program will be as follows:

1@ INPUT "NUMBER"3J N

20 IF N=@ THEN GOTO 60 ELSE CT = CT + 1
32 AV = AV + N

50 GOTO 1@

62 PRINT "AVERAGE IS"i AV/CT

Enter the EDIT command.
The program will be displayed as:

INPUT "NUMBER”; N4

IF N o= @ THEN 6070 624
AV = AV + M4

PO, - - :! ‘

GOTD 1ad

PRINT "AVERAGE I5"5 AV/OTS

o1t/ cCm2Sm =350 0= 4SS o= bTD =6/ C— 7T/ — 83

First the word ELSE will be added to line 20. Position the cursor in line 20 over the
carriage return character. Line 20 should appear as:

2B OIF N = 0 THEN GOTO &2«

The cursor is now positioned for the insertion of the word ELSE. Type a space and
then the word ELSE. Line 20 should appear as

Ed

AOOIF N = @OTHEN SOTO 68 ELD

Next, the statement in line 40 must be inserted after the word ELSE in line 20. This is
accomplished as follows: Position the cursor in line 40 as follows

4PECT = 0T + 1§

81

The cursor is placed on the first character (a space) to be moved. Press the SELECT
Function Key (7)) on the top row of the keyboard. Move the cursor to the right
by pressing (=) until it is over the carriage return character at the end of line 40. As
the cursor moves, you will note that the characters are printed in reverse video (light
on dark). This indicates which characters are going to be moved. Line 4@ should
appear as

4

w%;%

o
e

o

Press the CUT Function Key ((F6)). When you do this, the characters marked will
disappear from the screen. Line 40 should now appear as:

The characters to be moved to line 20
CT = CT + 1

which no longer appear on the display have been moved to a temporary storage area in
the computer called the ‘‘PASTE buffer.”” The operation of deleting characters, as
done above, is called a ‘‘cut.”’

The remaining characters in line 40, namely the number 40 and the carriage return,
will now be deleted. Position the cursor so that it is to the right of the carriage return
character.

dod

Press three times. This deletes what was left of line 40. Since was used,
instead of using a ‘*‘SELECT’’ and ‘‘CUT’’ operation, these characters are not saved
in the “‘PASTE buffer.”’

Your program should appear as:

IMPUT YMUMBER"; N«
: TF N o= @ THEN SOTO & FLS
EEOAN =AY & N4

GOTO 104

PRINT "AVERAGE ISvy oaV/CTH . =,

The only remaining operation is to insert the characters saved in the PASTE buffer
into line 20. Position the cursor in line 20 over the carriage return character. When
this is done, line 20 will appear as

2@ OIF N o= @ THEN G0TO 68 ELS

82

To insert the characters in the paste buffer, press the PASTE Command key on the
keyboard. When this is done, the characters will be inserted as desired. Line 20 will
now appear as:

2OIF N = B OTHEN GOTO AR BLEBE CT o= (7T +

The movement of the characters from one part of the program to another requires a
SELECT, a CUT, and a PASTE.

After the cut operation, the characters remain in the paste buffer and can be inserted in
another part of the program if desired.

Exit from the Editor. List your program to confirm that it is correct:

1@ INPUT "NUMBER"3 N

20 IF N=@¢ THEN GOTO 6¢ ELSE CT = CT + 1
30 AV = AV + N

50 GOTO 19

60 PRINT "AVERAGE IS8"3§ AV/CT

Execute the program to confirm that it works as it did before.

Experiment #8
Copying a Phrase (without deleting it)

The previous program will be modified so that the sum of the numbers entered will be
printed before the average value is printed. The revised program will be as follows:

1 INPUT "NUMBER"3 N

20 IF N=@ THEN GOTO 60 ELSE CT = CT + 1
49 AY = AV + N

5@ GOTO 1@

60 PRINT "SUM IS"3 AV

7@ PRINT “AYERAGE I5"3: AV/CT

Note that the previous line 6@ is now line 70 and a new line 60 has been added. These
changes will be made with the Editor.

Enter the command

EOIT

83

The program will be displayed as usual:

INPUT "NUMBER" S N4
IF N =@ THEN GOTO &8 ELSE CT = (T «+

AV = AV + N

CT = CT + 14

GOTO 1@«

PRINT "AVERAGE IS"; aV/CTe

[Faes | c= 2?3 c— 35 C— 4T3 o= 5T = 6 =3 = —)

Since the new lines 60 and 70 are very similar, the easiest way to revise the program
is to create a copy of linc 60 and then make the necessary revisions.

Put the cursor on the 6 of line 60. Line 60 should appear as:

& PRINT "AVERAGE 185 AV/0TH

L

Line 60 is to be transfered to the paste buffer. Press the SELECT Function Key (F?).
After this is done, move the cursor down one line, so that it is on the end of file
marker. Line 60 will now appear as:

&0 PRINT "AVERAGE 1873 AV/CT4

*

Note that the entire line is in reverse video, indicating that it is ready to be transfered
to the PASTE buffer. This line should not be delcted when it is transfered to the
buffer, so press the COPY Function Key ((F5). Remember that (F6) transfers and
deletes. Now line 6@ appears as

&H&@ PRINT "AVERAGE 18" AV/(LTe

ol

The cursor is already in the correct place for the insertion, so press the paste key. You
should see:

&8 PRINT "AVERAGE I&"3 AV/CTHA
&8 PRINT "AVERAGE 18%3 AV/OTH

-

The second line number 60 will now be changed to a 70. Position the cursor over the
0 in the second line number 60.

H£@ PRINT "AVERAGE I8"; AV/CT
A8 PRINT "AVERAGE I8"§ AV/CT

ks

‘ Press and then (7)), to change the 6 to a 7. These two lines will now appear as:

&0 PRINT "AVERAGE I8"§ AV/0T€

T@ORPRINT "AVERAGE 15"y aV/0T4

-
Line 70 is in the desired form. Move the cursor to line 60 so that it is on the space
after AVERAGE. Line 60 will appear as:

H@ PRINT *AVERAG

Lo

LAVFRRE

Press until the word AVERAGE is erased. Then type in the word SUM. Line
60 will be:

&A@ PRINT "SUM I8"1 AV/IT4

The last step is to delete the characters ‘/CT’’ at the end of the line. Move the cursor
to the end of the line so that it is over the carriage return character.

6B PRINT "SUM IS"; AV/CTH
Press three times to erase the characters. Line 60 will be in the desired form
HEOPRINT *"8UM I8 5 avd

. Exit from the Editor. List the program to confirm that it is:

12 INPUT "NUMBER"§ N

20 IF N=¢ THEN GOTO 60 ELSE CT = CT + 1
4@ AV = AV + N

50 GOTO 1@

6@ PRINT "SUM IS"3 AV

7@ PRINT "AUVERAGE IS"i AV/CT

Execute the program. Here is an example of the output:

NUMBERT

TPy =20 3D CC47-3 C= 5F3 S 63 t=m 7T t 8 —/

Recall that if a BASIC program is SAVEd in RAM but changes are made to it when
the program is LOADed in working memory, the program SAVEd in RAM will
reflect those changes.

This is true also of the Editor. If the Editor is used to modify a program which was
previously SAVEd in RAM, then these changes also appear in the SAVEd program.

You should practice using the Editor to modify your programs. You will find that it is
a very convenient and quick way of making changes.

What you have learned:

You have learned how to use the Editor to modify your BASIC programs. In most
cases, it is easier and quicker to make changes with the Editor, than to make them by
retyping entire lines.

86

FOR/NEXT

Lesson #7 Sales Trend

In this Lesson, you will learn how to create a program loop with a predetermined
number of repetitions. This is a useful technique when combined with subscripted
variables, which will also be introduced in this lesson.

Experiment #1 Sales Trend

ubscriprted
The program below is a ‘‘Sales Trend’’ program. Its purpose is to help predict future Yariables
sales based upon the trend of previous sales. The concept underlining this program is B o
to find a straight line which best fits the historical data and then to project this line Mi 1 ‘
into the future. aain s
Statements
Clear working memory with the NEW command and enter the following program: e

1@ CLS

2@ INPUT "NUMBER OF PERIODOS"S§ N

3@ FOR X = 1 TO N

49 PRINT “SALES FOR PERIOO™ X3

5@ INPUT Y

B0 SX = BX + X1 XX

70 8Y = BY + YiXY

B0 NEXT X

90 B = (N=XY - SX*8Y) / (NxXX - SX%*5X)

100 A = (8Y - B#*SX) / N

110 PRINT "FORECAST FOR PERIODO X IS"

120 PRINT A#" + "iBi" = X"

XX+ KX
XY + X#Y

Execute this program.

The program begins by asking you to enter the number of periods of historical sales
data. Type 6 and press (ENTER).

The program then prompts you for the sales data for each of the six time periods.
Enter the following sales data:

SALES FOR PERIOO 17 103
SALES FOR PERIOD 27 110
SALES FOR PERIOO 37 108
SALES FOR PERIOO 47 120
SALES FOR PERIOD 57 119
SALES FOR PERIDD 67 133

The formula for a straight line is:
Y =A+ B«X

where Y stands for Sales and X for the time period number. A is called the
“‘intercept’” and B the ‘‘slope’” of the line. The program uses the sales data which

87

you have just entered to compute the values of A and B. If you entered the data .
exactly as shown above, the program will print:

FORECAST FOR PERIOO X IS
896.86666666666 + 5.37142857142B6#%#X

You can now use this formula to predict any future period sales by plugging an

appropriate vatue for X. For example, to predict period 7 sales, enter the following
from the keyboard:

PRINT 96.8667 + 5.37143 * 7
The resulting number, 134.467, represents the trend line forecast of period 7 sales.

You can use the program to calculate the trend line formula for any number of time

periods and any sales data. Try running the program again with your own data. You
can use any convenient time period you wish, such as day, week, month, quarter, or
year.

How the Sales Trend Program Works

Look at the listing of the Sales Trend program and compare it to the flowchart in
Figure 7-1.

Line 10 The CLS statement clears the display.

Line 20 The INPUT statement displays the prompt message ‘‘NUMBER OF .
PERIODS?”’ and then waits for data to be entered. The question mark is automatically

added by the INPUT statement and should not be inserted within the quotes of the

prompt message. When is pressed, the number which has been typed will be

assigned to the numeric variable N,

Line 30 The FOR statement defines the beginning of a loop which is to be repeated
with successive values for the index variable X. You can think of this statement as
saying:

Perform the following statements with X equal to 1. Then repeat the same
statements with X equal to 2. Continue repeating these same statements with
successively incremented values of X (1, 2, 3, etc.). Stop repeating this loop of
statements when X becomes equal to the upper limit N.

Since the variable N is INPUT during execution, this program can be used to compute
a trend line for any number of sales periods.

The end of the loop is determined by a matching NEXT statement (see Line 80).
When the NEXT X statement is encountered, the loop is repeated with the next value
of X. If the upper limit N has been reached, execution continues with the statement
following the NEXT statement.

In general, the FOR statement has an index variable, a start value and a stop value.
The index variable must be a numeric variable. The start and stop values may be
constants, variables or expressions. Another example of a FOR statement would be:

30 FOR A = UTO Z/(Y-2)

88

Clear
Display

20

I

30
Loop
X
40 l
Print o
X
50

‘ Keyboard }—— _ \ INI:’(UT ;

60-70

add X to SX
add X=X to XX

add Y to SY
add X-Y 1o XY

80

Yes

90

More ?

No

_ NeXY — SX:SY

N+XX — SX*8X

100

A

SY — B+SX
N

110-120

Print
A B

NUMBER OF

PERIODS?

SALES FOR
PERIOD X?

FORECAST FOR
PERIOD X IS

A + B*X

Figure 7-1. Sales Trend Program Flowchart

89

In this case, the loop of statements would be executed first with the index variable A
equal to the start value stored in the variable U. The loop would then be repeated with
the index variable A incremented by 1, i.e. A = U+ 1. The loop would be repeated
with increasing values for the variable A until the upper limit, determined by
computing the value of the expression Z/(Y —2), is reached.

There would have to be a NEXT A statement located in the program after the FOR
statement to determine the end of the loop. After the last cycle through the loop with
A having the value Z/(Y — 2), execution continues with the statement immediately
after the NEXT A statement.

Lines 40 - 50 The PRINT statement prints the prompt message
SALES FOR PERIOD X

where the value of X is determined by the previous FOR statement (Line 30). The
first time through the loop, X has the value 1, so the prompt message prints as:

SALES FOR PERIOD 1
The second time through the loop, X has the value 2, so the prompt message prints as:
SALES FOR PERIOD 2

Each time through the loop, the prompt message requests the appropriate period
number because the variable X is being incremented in the FOR statement.

Note the use of semicolons in this statement. The first semicolon ensures that the
period number (X) will print immediately after the word ‘‘PERIOD.”” The second
semicolon tells the Computer not to move the cursor after printing the period number.
This means that the question mark (?), automatically printed by the following INPUT
statement, will appear immediately after the period number.

The INPUT statement waits until a number is entered from the keyboard and stores
this number in the variable Y. The variable Y acts as a temporary storage location for
the current period’s sales amount.

Lines 60 - 70 These lines actually include two statements each. Line 60, for instance,
includes two assignment statements separated by a colon(:). Line 60 could have been
written in an equivalent manner with two separate line numbers as:

60 SX = SX + X
65 XX = XX + X*X

The two statements were put on the same line strictly as a matter of convenience and
to illustrate that Multiple Statements (two or more statements) can share the same line
number if they are separated with a colon.

The formula for a straight line requires the summation of several quantities:
@ the variable SX is used to store the sum of the X values,
® the variable XX is used to store the sum of the squared X values, (i.e. sum of
X*X)
® the variable SY is used to store the sum of the Y values, and
® the variable XY is used to store the sum of X times Y (i.e., the sum of Xx*Y.)

All variables in a program are initially set to zero by the RUN command. Each time
through the loop, the variable X is incremented to the next period number, and Y is
read in as that period’s sales.

90

The first time through the loop, therefore, SX will be replaced with the sum of zero,
the initial value stored in the variable SX, and one (the first period number).
Similarly, XX will be replaced with the sum of zero and one times one. The variable
XX now has the value one. The variable SY is replaced with the sum of zero and the
first period’s sales (103 in the example above), and the variable XY is replaced with
the sum of zero and one times the first period’s sales (again, 103 in the example).

Table 7-1 below illustrates how the four variables SX, XX, SY and XY sum up the
appropriate quantities on each repetition of the loop:

Loop cycle X Y X=X XY SX XX SY XY
0 0 0 0 0 0 0 0 0
1 1 103 1 103 1 1 103 103
2 2 110 4 220 3 5 213 323
3 3 109 9 327 6 14 322 650
4 4 120 16 480 10 30 442 1130
5 5 119 25 595 15 55 561 1725
6 6 133 36 798 21 91 694 2523

Table 7-1. Sales Trend Line Calculations

Line 80 The NEXT X statement determines the end of the loop of statements which
are to be repeated with successive values for the index variable X. So long as the
value of X is less than the upper limit specified in the matching FOR X statement, the
loop will start over again with the next value for X.

When X reaches its upper limit (N in this case), execution transfers to the statement
immediately following the NEXT X statement (line 90 in this case).

There must be a NEXT statement to match every FOR statement in a program; without
a NEXT statement, there would be no way to determine the end of the FOR loop, and
therefore no way to know when to repeat the loop.

Lines 90 - 100 The assignment statements compute the slope, B, and intercept, A,
which define the straight line which best fits the sales data. The use of parentheses
was necessary in the expression to properly compute the ratios:

B = N+XY — SX=*SY
N+XX - S8SX=*S8X
and
A = SY - B=xSX
N

Using the sample data entered above, A and B are computed as:

B o 6%2523 — 214694 _ .0

6 * 91 - 21 %21

and

91

694 — 5.37143 % 21

A= = 96.8667 .

6

Lines 110 - 120 The PRINT statements display the resulting trend line equation:

FORECAST FOR PERIOD X IS
96.86666666666 + 5.3714285714286 = X

Line 110 prints the text contained within the quotes:
*“‘FORECAST FOR PERIOD X IS”’

Line 120 then prints the equation for the predicted sales in period X. Note the use of
the semicolons to keep everything printed immediately adjacent to one another. Note
also that the A and B in this statement are not enclosed in quotes, so that the values
stored in the variables A and B are printed. All other items in this statement are
enclosed in quotes and are therefore string constants, which print out exactly as
specified within the quotes.

Since Line 120 is the last statement in the program, execution terminates after the
print.

The FOR / NEXT statement pair introduced in this lesson is very useful when you
need to repeat the same set of procedures a predetermined number of times. Since this
situation comes up regularly in computer programming, you will no doubt want to use
the FOR / NEXT pair quite often in your own programs.

The following experiments will give you a few more ideas for its application and show
you that the FOR statement offers even more flexibility. ‘

Experiment #2 Arrays

This experiment will store the sales data as part of the Sales Trend program, rather
than ask you to input it during execution. :

This will make it easier to try several experiments on the data without having to retype
it each time the program is run.

Change the Sales Trend program by entering the following lines:

20 N = 24
23 DImM Y(24)
49

38 READ Y (X)

78 SY = BY + Y(X):XY = HY + H*¥Y(X)

209 DATA 160, 175, 14¢, 230

21¢ DATA 155, 215, 1553, 225

22@ DATA 215, 265, 220, 325

23@ DATA 225, 270 2B5, 29¢ .
24¢ DATA 273 350+ 253, 345

Z25¢ DATA 300, 330 313, 38¢

92

f‘ LIST the program; you should now have:

1¢ CLS

28 N = 24

23 DIM Y(24)

3¢ FOR X = 1 TO N

58 READ Y (X)

BB 8X = 8X + HiXX = KX + K¥X

78 SY = 8Y + Y(X):XY = XY + X¥¥Y(X)
B@ NEXT X

8¢ B = (N®XY - SX*BY) / (N#XX - BX*HX)
168 A = (SY - B*5X) / N

11¢ PRINT "FORECAST FOR PERIOD X IG"
128 PRINT A" + "iBi" * X*

200 DATA 1B®, 173, 140, 230

21@ DATA 155, 215, 155, 220

220 DATA 215, 2B5y 228, 320

23@ DATA 225, 279, 265, 290

242 DATA 273 350y 255 345

250 DATA 3@0, 330, 315, 38¢

Suppose the data in lines 200 through 250 represent quarterly sales figures for six
consecutive years. RUN the program to compute the trend line on the 24 quarters of
data. You will not have to enter any data during execution, since the program reads
the data from the DATA satements. If you have entered the program changes and data
correctly, you will see the trend line equation:

. FORECAST FOR PERIOD X IS
148.22463768116 + 8.4086956521739 + X

Of course, the time period assumed here is a quarter, so that the equation will predict
the sales for a specified quarter in the future. For example, to predict the first quarter
of year seven (period 25), enter:

PRINT 14B8.225 + B.40887 * I35

(The numbers are rounded off to three or four decimal places.) The result, 358.4425
which is displayed represents the trend line projection of sales to the next period in the
future.

A new type of variable, the subscripted variable, has been introduced in this
experiment. While this experiment could have been performed without the use of a
subscripted variable, including it now will make the next experiment much easier.

The DIM Y(24) statement in line 25 defines the variable Y as a subscripted variable
having a maximum of 24 storage locations allocated to it. These 24 storage locations
can be thought of as 24 separate variables:

YD), Y2, Y(3), Y(24)

The number within the parentheses is called the subscript, and refers to the relative
position of the variable within the block of storage locations set aside by the
corresponding DIM (for ‘‘DIMension’’) statement. The block of storage locations is
called the Y array. Thus, the variable Y(X), used in lines 50 and 70, refers to
position X within the Y array.

93

Line 50 will read the next data item from the DATA statements and store it in position
X of the Y array. Since the FOR statement repeats line 50 with X assuming values
from 1 to 24, the data items will be stored in positions 1 through 24 in the Y array.

Each time through the loop, the assignment statements in line 70 will use the value
stored in the next location in the Y array to compute the sums SY and XY.

Note that the Y array will contain all 24 data values when the program terminates.
The next experiment will make use of this feature.

Experiment #3 Seasonal Data

Frequently, sales data exhibit seasonal characteristics. For example, the first quarter
might traditionally be slow compared to the rest of the year. If this is the case, it
might be useful to modify the trend line forecast by the amount that the quarter is
typically above or below the trend.

The amount above or below the trend is called the ‘‘ratio to trend’’ and is determined
by comparing the historical (actual) sales for the quarter to the amount which the trend
line would have predicted for that period.

Since there are six years of data, we compute the ratio for each of the first quarters
and take the average (sum the ratios and divide by six). This is called the average
ratio to trend and is the amount that sales in the first quarter differ, on the average,
from the trend line.

Figure 7-3 illustrates the ratio to trend for quarter 1 using the example data introduced
in Experiment 2 above.
Legend
* Y, Actual Sales

® Y, Computed Trend Sales P“,ji‘ oy

+ Seasonally Adjusted Forecast

Y R Ratio to Trend ﬁ
$Sales A t
R Average Ratio to Trend

400 |

300

L
1 5
YEAR 1 YEA

A " ! 1 i 4 ! 1 1 1 l 1 i 1 l e L

13 17 T2 25

X
9 Period
R2 YEAR 3 YEAR 4 YEAR 5 YEAR 6 Number

Figure 7-3. lllustration of Ratio to Trend

9

‘ Table 7-2 below summarizes the average ratio to trend calculations.

Yt
n Ya 148.2 + 8.41%n Ya/ Yt
Year Period Actual Sales Trend Value Ratio to Trend

1 1 160 156.6 1.02
2 5 155 190.3 0.81
3 9 215 223.9 0.96
4 13 225 257.5 0.87
5 17 275 291.2 0.94
6 21 300 324.8 0.92

Sum of the ratios 5.52

Average ratio to Trend 0.92

Table 7-2. How the Average Ratio to Trend is Calculated

To predict sales for the first quarter into the future, you would compute the trend line
forecast and then multiply by the average ratio to trend for the first quarter to adjust
for the season. The program can be easily modified to compute the average ratio to
trend for the first period. Enter the following changes:

1486 FOR X = 1 TO N S5TEP 4
158 R = Y(X) / (A + B*X) + R

1680 NEXT X
. 170 PRINT "QUARTER 1 RATID IS":i R/B
If you LIST the complete Sales Trend program, you should now have:
i@ CLS
20 N = 24

23 DIM Y(24)

38 FOR X = 1 TO N

5@ READ Y (X)

B2 85X = BK + HikX = KR + HK#X

78 8Y = 8Y + Y(X):XY = RY + X#Y(X)

B@ NEXT X
98 B = (N%XY - SX*8Y) / (N*XX - Bx*BX)
100 A = (BY - B*5X) / N

118 PRINT "FORECAST FOR PERIOD X IS"
120 PRINT A3" + "iB3" * X"

14@¢ FOR X = 1 TO N GTEP 4

150 R = Y(X) / (A + B*X) + R

169 NEXT X%

170 PRINT "QUARTER 1 RATIO IGS"3 R/B
2¢¢ DATA 160, 175 140, 230

21@ DATA 135, 215, 155, 220

220 DATA 215, 265, 220, 325

230 DATA 225, 2784+ 265, 280

240 DATA 273 350 255 340

250 DATA 300, 330+ 315, 389

95

RUN the new program to confirm that the trend line equation and the first quarter
average ratio to trend are printed as:

FORECAST FOR PERIOD X IS

148, 22463768116 + B, 4086936521739 *
X

QUARTER 1 RATIO I8 .923818720461999

Ok

CZ 122 =2/ €= 3.3 C=- 47 €= 57 [C=6D C=7=0 C=§=

To predict sales into the future for quarter 1 of year 7, first compute the trend line
forecast for period 25 (you can reduce the above figures to 3 or 4 decimal places):

PRINT 148,225 + B8.4087 +* 25 (ENTER
the result will be 358.4425

Then multiply by the first quarter average ratio to trend to take seasonal fluctuation
into account:

PRINT 9,92 * 358.443
the answer will be 329.76756

Thus, 329.76756 would represent a prediction of quarter 1 sales in year 7, taking into
account both long term trend and typical first quarter seasonal variation.

This experiment required the program to use every fourth number in the sales array
Y(X). This was easily accomplished with a slight change to the FOR statement in line
140:

140 FOR X = 1 TO N STEP 4

This change in the FOR statement tells the computer to increment the index variable X
in steps of 4 starting with the value 1 until X reaches the upper limit N. Thus, X will
assume the values 1, 5, 9, 13, 17 and 21, which corresponds to the first quarter period
number in years 1, 2, 3, 4, 5 and 6 respectively.

Line 156 computes the ratio to trend for period X and then adds this to the sum of the
previous periods ratios.

Line 160 tests the value of the FOR statement index variable X to see if it has reached
the upper limit N. If it has not, the loop consisting of lines 140 to 160 is repeated. If
the index variable X has reached its upper limit, execution continues with line 170.

Line 170 prints the average ratio to trend for quarter 1. Note that the numerical
expression R/6 within the PRINT list computes the average ratio by dividing the sum
of the ratios R by the number of ratios 6.

This experiment took into consideration the seasonality of quarter 1. The next
experiment extends this concept to each of the four quarters.

9%

Experiment #4 Four Seasons

To compute the average ratio to trend for the second quarter, you could simply change
the start value of X to 2 in line 140:

140 FOR X = 2 TO N STEP 4

A start value of 3 would compute the third quarter ratio and a start value of 4 would
compute the fourth quarter ratio. The message ““QUARTER 1 RATIO IS’ would still
appear for every quarter since nothing has been done to line 170. Rather than
manually change line 140 for each quarter, however, you could modify the program to
do this for you. Enter the following changes to the program:

138 FOR Q 1 TO 4

133 R = @

148 FOR X = @ TO N S5TEP 4

178 PRINT "QUARTER" Q3" RATIO IS"iR/B
180 NEXT @

Run this program to confirm that it now prints the average ratio to trend for all four
quarters:

FORECAST FOR PEHlUD X IS
148. 224863768116 2. 4086956521739

QUARTER 1 RATIO 1&» FEIBLIBTR61999
QUARTER RATIO IS 1 B761822635641

-
QUARTER 3 RATIO I8 .86424468709917
4

QUARTER
e

i - «IZ 2 =3 o= 3 = o= 4D = 5T/ = &6 /3 e ;—=3 Cc—= 8 T/

RATIO IS 1.1358281261444

Lines 136 and 190 define a program loop which repeats for each of the four quarters.
Notice that this loop contains within it another loop from line 140 to line 160. This is
an example of a programming concept known as ‘“nested loops.”’ It simply means
that there is a loop of statements within a loop of statements.

The inner FOR / NEXT loop must be completely contained within the outside loop, no
overlap is allowed. In this experiment, the inner loop, lines 140 to 160, compute the
average ratio to trend for a specified quarter Q, and the outer loop, lines 130 to 190,
which repeats for each quarter with the index variable Q = 1, 2, 3 and 4.

Line 135 resets the ratio sum variable R to zero before starting the calculation for
each quarter. This is now necessary to avoid starting with the sum remaining from the
previous quarter.

Line 176 was changed to print the quarter Q along with the average ratio to trend R/6.

97

Experiment #5 Save the Data ®

The sales data from the previous experiment will be used again in later lessons. To
save yourself the time required to retype the data, you can simply save it as a RAM
file and merge it later.

Delete lines 10 through 190 from the Sales Trend program using the CUT function of
the Editor. Also, change the first digit of each of the remaining line numbers from 2
to 9.

List the remaining part of the program to confirm that it is:

900 DATA 1680, 175, 140, 230
9i® DATA 135, 215, 155, 225
92¢ DATA 212, 285, 220, 325
930 DATA 225, 270, 265, 2990
94@ DATA 2735, 356, 2535, 345
952 DATA 300, 330, 315, 380

Since this data will be merged later, it must be saved as an ASCII file. Therefore,
enter the command:

SAVE "SALES" +A

Go to the Menu by pressing (F8) and confirm that file SALES.DO is listed. This file
will be used in the next Lesson.

What you have learned:

You should now be able to use the FOR / NEXT statements in your own programs to
repeat a group of statements. Using the STEP option with the FOR statement will
allow you to control the increment for the index variable in the FOR / NEXT loop.

You also learned that subscripted variables facilitate manipulation of data by storing it
in a block of locations called an array. You can put two or more statements on one
program line using the colon (:) delimiter to save time and perhaps conserve display
space. You saw how the CLS statement was used to clear the display before printing.

These new statements and concepts should prove very useful to you in writing your
own BASIC programs.

98

PRINTE

Lesson #8 Plot Your Data

In this Lesson you will learn how to create graphs on the Liquid Crystal Display
(LCD).

PREGET

Experiment #1 Graphics

The purpose of the Plot Your Data program, which will be presented shortly, is to
read a list of quarterly sales figures and display them on the LCD. To do this requires
the ability to display both graphics and text characters.

The LCD display on your Model 100 consists of 240 X 64 individual cells which can
be used to display both graphics and text characters. The following series of simple
keyboard commands will serve to illustrate this.

Clear the screen by entering the following command:
CLS

then turn on the cell in the center of the display with the command:
PSET (120,32)

Turn on the cells in each of the four corners of the display with:

CLS (ENTER)
PSET (0,0) : PSET (0,63)
PSET (239,0) : PSET (239,63)

The cells are quite small, so you will have to look carefully to see the illuminated
*‘dots.”” You have probably figured out that the first number in the parentheses
determines the horizontal (X) axis position on the display, and the second number
determines the vertical (Y) axis position.

Since the corners are the extreme points of the LCD display, the range of X values is
0 (left side) to 239 (right side), and the range of Y values is @ (top) to 63 (bottom).
You should experiment a little with the PSET command by turning on various cells on
the LCD display.

You can erase graphic cells in a similar way. To see this more clearly, clear the LCD
and turn on a few cells in the middle of the display:

CLS (ENTER)
PSET(120,32):PSET(121,33):PSET(119,33)

Now turn off a cell using the PRESET command:
PRESET(120,32)

Try turning off the remaining two cells. Experiment with turning cells on and off until
you feel comfortable addressing cells in any position on the display.

99

You can draw lines very easily on your Model 100. For example, to draw a line from
the upper left comer to the lower right corner of the display, enter:

CLS
LINE (0,0) — (239,63)

Similarly,
LINE (0,63) — (239,0)

will draw a line from the lower left to the upper right corner. As with the PSET
instruction, the first number in the parentheses is the horizontal (X) axis position and
the second number is the vertical (Y) axis position. The first set of coordinates is the
starting cell and the second set of coordinates is the ending cell.

To erase a line, simply add a zero after the second coordinate:
LINE(0,63) — (239,0),0
A simple extension of the LINE instruction makes it easy to draw a box:

CLS
LINE (30,8) — (210,56),1,B (ENTER)

Graphic data, such as lines and boxes, can appear on the LCD display at the same

time as text. The number 1 after the second set of coordinates says to draw the line
with dark cells. The letter B at the end of the instruction says to draw a box whose
opposite corners are defined by the two coordinates.

To erase a box, simply change the 1 to a 0:
LINE (30,8) — (210,56),0,B
It is just as easy to draw a filled in box:

CLS
LINE (210,27) — (230,37),1,BF

To erase a rectangular area on the display, change the 1 to a 0:
LINE (213,30) — (227,34),0,BF

100

Experiment #2
Printing Text Anywhere On The LCD

The PRINT @ (PRINT AT) statement allows printing of text in any of 320 positions
on the display. These positions correspond to eight 40 character lines as illustrated in

the table below:

Columns
1 2 3 4... ... 39 40
Line 1 0 1 2 3.... ... 38 39
Line 2 40 41 42 43 18 79
Line 3 80 81 82 83 118 119
Line 8 280 281 282 283318 319

Table 8-1. of PRINT @ positions

Clear the display and print the name ‘‘RADIO SHACK”’ in the center of the display
by entering:

CLS
PRINT @ 135, ‘RADIO SHACK”

You should see:

Ok
PRINT & 135, "RADIO SHACKY

RADIO SHACK
Qs

IO = 4F) C= 593 C— 6= C=1— =8 43

Note that the name ‘‘RADIO SHACK”’ begins printing in the 15th column of line 4.
The PRINT@ position would be computed as:

404 — 1) + 15 = 135.
In general, to print in line L and column C, use PRINT@ position

40+«L-1)+C

101

You can print text in any order as well as any position using the PRINT@ statement,
as illustrated in the following example. Enter the commands:

CLS:FORX =280TO35STEP-35:PRINT@X,‘~’;:NEXTX

You should see the asterisks (*) spaced diagonally on the display as shown below:

U1 =20/ =3T3 6T = LT3 =T33 C—7T3 C— 8

Notice that the printing started at the bottom and proceeded to the top.

You should experiment with printing text at various locations on the display until you
feel comfortable with the PRINT@ numbering scheme.

Experiment #3 Drawing Coordinate Axes

This experiment will show you how to draw standard X-Y type axes which will allow
sales data to be plotted in graph form. Enter the following program:

5¢ CLS
1606 LINE(238,54)-(33,54)
156 LINE -(33.:0)

Execute this program. You should see a pair of axes displayed:

Ok

Line 50 This statement clears the display.
Line 180 The horizontal axis is drawn from right to left.

Line 150 The vertical axis is drawn from bottom to top. Note that the LINE statement
contains only one coordinate, — (33,0). This illustrates another form of the LINE
statement which assumes that the first coordinate is the same as the last cell referenced
in a LINE, PSET or PRESET statement. In this case, the last cell referenced was
(33,54) and is used as the beginning cell for the vertical line.

102

Experiment #4 Axis Scale

You can add ‘‘tick’” marks to your axes to indicate a relative scale. Clear the display
and list your program to confirm that it is:

58 CLS
1606 LINE(Z239,54)-(33:54)
156 LINE -(33:0)

Enter the following new lines to your program:

208 FOR X=33 TO 239 STEP 24
360 PSET (X:33) : NEXT X
5@@ FOR Y=21 TO @ STEP -8
BB® PSET (34,Y) : NEXT Y

List the entire program to confirm that it is now:

56 CLS

16¢ LINE (239.,%4) - (33.,54)
158 LINE -(33.:@)

2e@ FOR X = 33 TO 2389 STEP 24
308 PSET (X,53) : NEXT X

5860 FOR Y = 51 70 @ STEP -B
BGG® PSET (34,Y) = NEXT ¥

Execute this program to confirm that it now displays:

Ok

[P
i
Ee r

Lines 200 - 360 This FOR/NEXT loop displays the tick marks on the horizontal axis.
The first tick mark is displayed at coordinate (33,53), the second at (57,53), and so
on. The last tick mark will be at (225,53).

Lines 500 - 660 This FOR/NEXT loop displays the tick marks on the vertical axis.
The first tick mark is displayed at coordinate (34,51), the second at (34,43), and so
on. The last tick mark will be at (34,3).

103

Experiment #35 Label the Axes ®

It is usually a good idea to label the scale of your graph. This experiment will show
you how to print both the horizontal and vertical labels. Add the following lines to
your program:

700 FOR X=0 TO 28 STEP 4

712 PRINTE 284+X, Xi : NEXT X
728 FOR ¥=1 TO 7

730 PRINTE Z80-Y*d®, 100+Y*50
74@ NEXT Y

20006 GOTO 2000

List the program to confirm that it is now:

Se CLS

120 LINE (239,54) - (33.54)
158 LINE -(33,0)

2006 FOR X = 33 TO 239 STEP 24
300 PSET (X53) ¢ NEXT X

566 FOR Y = 51 TO & STEP -8
686 PSET (34,Y) : NEXT Y

706 FOR X=0 TO 28 STEP 4

716 PRINT@ 284+X, X§i : NEXT X
72¢ FOR Y=1 T0 7

736 PRINTE 280-Y*40, 100+Y*50
740 NEXT ¥

2000 GOTO 2000 .

Execute the program to confirm that it displays

450

400 |
350 |
300
250 L
200 |
150 ¢ N

Note: You will have to press to terminate this program.

Lines 50 - 660 The first part of the program remains unchanged and generates the
axes and the tick marks.

Lines 760 - 710 This FOR/NEXT loop prints the labels along the horizontal axis. The
horizontal (X) axis will be used to represent time in quarters for seven years, so the X
variable ranges from 0 to 28. It is incremented in steps of 4 quarters, so that each year
has a label. The first label () is printed under the origin at PRINT@ position 284,
and each subsequent label is printed four columns to the right.

104

Lines 720 - 748 This FOR/NEXT loop prints the labels along the vertical axis. The
vertical (Y) axis will be used to represent dollar sales ranging from a minimum of 140
to a maximum of 380. For simplicity, labels are started at 150 and incremented in
steps of 50 up to a maximum of 450. The first label (150) is printed in PRINT@
position 240 which is computed as:

280 — 1 = 40.

The second label (200) is printed in PRINT@ position 200 which is computed as:
280 — 2 * 40,

and so on.

Line 2089 This statement creates an infinite loop. The purpose of this is to prevent the
““Ok’’ and cursor from interfering with the display. This would occur if the program
terminated execution.

Experiment #6 Plot Sales Data

The sales data you saved in Lesson 7 will be plotted on the graph created in the
previous experiment. Enter the following new statements to your program:

750 FOR X = 1 TO 24 : READ Y
760 PSET (33+X*B6, 54-(Y-13B)/6+25)
778 NEXT X

If you saved the Data statements under the file name SALES.DO as requested in
Lesson 7, merge it with your program with the command:

MERGE “SALES.DO”

If you did not save file SALES.DO, simply type the data statements so that your
program becomes:

5¢ CLS
i¢e LINE (239.54) - (33.,54)
1586 LINE - (33:0)

208 FOR X = 33 TO 239 BTEP 24
300 PSET (X153) : NEXKT ¥

500 FOR Y = 51 TO @ STEP -8
B@@ PSET (3d,Y) 3 NEXT Y

700 FOR X = @8 TO 28 STEP 4
710 PRINTE® Z2B4+X X5 @ NEXT X
720 FOR Y = 1 T0O 7

730 PRINTE 280-Y*40G, 100+Y*50
740 NEXT Y

75@ FOR X = 1 TO 24 : READ Y
760 PSET (33+X*B, S4-(Y-138)/6.23)
778 NEXT ¥

862 DATA 1G9+ 175, 1408, 230
910 DATA 155, 215+ 135+ 225
92¢ DATA 215, 265, 2206, 325
93¢ DATA 225y 270 ZB5,» 290
94@ DATA 275 350+ 255 345

105

Kl

95¢ DATA 300, 330, 315, 380 o
2000 GOTO 2000

Run this program.

You should see the following display:

450 |
400 |
350 | .

300 | . . .t
250 | . . .t .

200 |
150 p =" =

You will have to press (BREAK) to terminate execution of this program.

This graph depicts sales as a function of time, with the horizontal (X) axis
representing time in quarters of a year and the vertical (Y) axis representing sales
volume.

One advantage of displaying the data in graph form is that the pattern of sales is easier
to discern. In this case, for example, it is apparent that a long term upward trend in
sales exists. This was not so apparent from a tabular listing of the sales data.

Lines 50 - 740 The first part of the program remains unchanged which draws and .
labels the axes.

Line 756 This begins a FOR/NEXT loop which reads the sales data from the Data
statements. There are six years of four quarters, so the total number of points will be
24.

Line 760 The PSET statement is used to turn on cells corresponding to each sales
point. The axes of the graph (where X=0 and Y = 136) is at graphic cell (33,54).
Horizontally, the quarters are spaced six cells apart. The X coordinate of quarter one
is therefore computed as:

33 + 1x6. = 39,

the second quarter as:
33 + 2x6 = 45,

and, in general, quarter X as:
33 + Xx6.

The computation of the vertical coordinate is a little more complicated. One reason for
this is that graphic cell vertical coordinates increase from the top to the bottom of the
display, whereas the graph itself assumes that values increase from bottom to top. The
horizontal axis corresponds to a value of 136, which was carefully chosen so that the
labels line up with reasonable values (150, 200, ctc.).

106

The expression:
Y — 136

computes the numerical deviation above the horizontal axis. The vertical tick marks
are spaced eight graphic cells apart and represent a sales increase of 5@. This means
that each graphic cell is an increase of:

50/8 = 6.25
sales units. Thus the expression:

(Y — 136) / 6.25

is the number of graphic cells above the horizontal axis. Finally, the Y cell coordinate
is measured relative to the position of the horizontal axis at vertical coordinate 54, so
the expression:

54 — (Y — 136)/ 6.25

is the vertical cell coordinate. For example, the first quarter sales is Y = 160. The
vertical coordinate is:

54 — (160 — 136) / 6.25 = 54 — 3.84 = 50.16

which rounds to 50. The first quarter sales point is therefore graphic cell
(39,50).

Line 776 This NEXT statement terminates the FOR loop begun in Line 750.

Lines 968 — 950 These Data statements contain the six years of sales values in
chronological order.

Line 2000 This endless loop prevents termination of execution so that the cursor does
not interfere with the graph.

Experiment #7 Connect the Points

The readability of the graph created in the last experiment can be improved by
connecting the data points with straight lines. This is rather easy on the Model 100
using the LINE statement.

Add the new line:
745 PSET (39,50)
and change line 760 (this is easy with the Editor) to
760 LINE —(33+ X+6,54 — (Y —136)/6.25)
List the program to confirm that it is:

30 CLS

18¢ LINE (239,54) - (33,54)
158 LINE - (33.:9)

200 FOR X = 33 TO 239 STEP 24
3808 PBET (X»53) @ NEXT X

586 FOR ¥ = 51 TO @ STEP -8

107

BO® PSET (34,Y) : NEXT v ‘
700 FOR X = @ TD 28 STEFP 4

718 PRINT® 2B4+X X5 : NEXT X

720 FOR Y = 1 TO 7

730 PRINTE 2ZBO-Y*4@, 100+Y*50

740 NEXT Y

745 PSET (39,50)

750 FOR X = 1 TO 24 : READ Y

762 LINE -(33+X*B, 54-(Y-13B)/6,25)
77@ NEXT X

900 DATA 160, 175, 140, 230

910 DATA 155, 215, 155, 225

920 DATA 215, 265, 228, 325

930 DATA 225, 270, 265, 290

94@ DATA 275, 350, 255, 345

95¢ DATA 300, 330, 315, 380

2000 GOTO 2000

Execute the program and you should see the display

450
400 |
350 | 4 rd
300 L ‘{'-': . .‘..’.‘ '..:.- ‘t‘v' .y
250 | . o ’_...___3 Faet ¥
200 | L N S
-, j he'ows ‘

150 p = f VYT

0 4 8 12 16 20 24 28

You will have to press to terminate execution of this program.

Line 745 The PSET statement turns on the graphic cell for the first quarter sales
point.

Line 768 The LINE statement draws a line from the last cell referenced to the next
sales point. Recall that the first coordinate in the LINE statement is optional, and if
omitted, draws a line from the last referenced cell. In this case, the second coordinate
of the LINE statement becomes the first coordinate for the next line. LINE 745 is
required so that the graph starts with the first data point.

Experiment #8 Draw the Trend Line

Recall from Lesson 7 that the trend line for the sales data we have been plotting is
given by the equation

Y = 148.225 + 8.4087 + X

108

This line may be drawn on your graph along with the data to better illustrate the long
term trend of sales. The line may be drawn by specifying the two end points, that is,
computing the Y value for X = 0 and X = 28. The computations are performed as:

Y0 = 148.225 + 8.4087 * 0 = 148.225
Y1 = 148.225 + 8.4087 » 28 = 383.669

These values must then be converted to graphic cell coordinates as:

(33+0+6, 54 — (148 — 136)/6.25) = (33, 52)
(33+28+6, 54 — (384 — 136)/6.25) = (201,14)

Add a new line to your program:
800 LINE (33, 52) — (201, 14)

and execute it to see the new display

450 L

400 |
350
300 |
250 |
200
150

You will have to press (BREAK) to terminate execution of this program.

One of the benefits of graphing the trend line is that it illustrates how next years’ sales
might be forecast.

What you have learned:

In this lesson you have learned how to plot graphic data using the PSET, PRESET and
LINE statements. Also you learned how to use the PRINT@ statement, which allows
printing text anywhere on the display. Finally, scaling was used in assigning labels to
the coordinate axes. ‘

109

Functions

® ;,
Lesson #9 Functions S

In this Lesson you will learn how to use certain functions to reduce the number of

program lines that would be required to carry out frequently encountered tasks. CHRS: , |
TAN
Experiment #1 Calculating Square Root o
This experiment will show you how to compute the square root of a number using the e
built-in function capabilities of your Computer. INKEY$

To obtain the square root of a number, simply type: —
PRINT SQR(n) (ENTER Logical

Operators
where n can be any positive number. For example to find the square root of 4, type: e

PRINT SOR(4) AND
foo 8
which will print the correct result:
2

, Now print the square root of 2 by entering
. PRINT SQR(2)
. and observe the correct result
1.,414213562373
Finally, try to print the square root of the negative number —4 by entering
PRINT SQR(-4)
and obtain the error message:
?FC Error

The error message indicates a ‘‘Function Call’’ error which occured because the
Computer cannot find the square root of negative numbers.

The square root function SQR(x) returns a numerical value for a specified numerical
“‘argument’’ X enclosed within the parentheses. The argument must be non-negative,
but can be a constant, variable or expression. For example, enter the following

A =3 : B =4 : PRINT SQR(A*A + B#+B)

to compute the length of the diagonal of a rectangle whose sides are of length 3 and 4.
The correct length is printed as

3

as seen in the illustration below:

111

Experiment #2 Guy Wire Length

In this experiment, you will write a program to calculate the length of each guy wire
required to hold up a TV mast on your roof.

Suppose you are trying to install a TV mast on your roof and would like to precut the
guy wires to the top of the pole so that you can attach them easily when the pole is
stood up vertically. This is illustrated in the drawing below:

N\ L-length of

H = Vertical \. each guy wire
Height AN
AN
AN
N

N

D =distance from mast
to guy anchor

Enter the following program:

1@ INPUT "HEIGHT: DISTANCE"3§ H,D
Z0 L = SOQR(H*¥H + D#*D)
30 PRINT "GUY WIRE LENGTH IS"3§ L

112

Execute this program and enter a height of 20 and a distance of 15. You should see:

HEIGHT. DISTANCE? 2804 15
GUY WIRE LENGTH I5 25
Dk

CoOYT™ 2T =30 T afiD o= LT3 T b Ta o=) T93 = 8 T3

Rerun the program using a height and distance of your own choosing. You might
recall from geometry that this program calculates the hypotenuse of a right triangle
using the Pythagorean Theorem.

Experiment #3 Calculate the height of a tree

A problem similar to the guy wire length calculation is the determination of the height
of a structure, such as a tree. The problem is illustrated below:

lllustration 3

H = Height?

\ A=angle in degrees

D =distance to base

Using Trigonometry, the height may be found if the distance to the base and the angle
to the top are known. The formula is:

H=Dtan 0

where the angle @ (theta) is measured in radians.

113

Clear memory with the NEW command and enter the following program:

18 INPUT "DISTANCE. DEGREES"3 D:A
20 PI = 4 % ATN(1)

38 R = A % PI / 180

40 H = D * TAN(R)

5@ PRINT "HEIGHT IS"3i H

Execute the program and enter a distance of 50 and an angle of 45 degrees.

The display will appear as:

DISTANCE, DEGREES? 5@, 45
HEIGHT I8 49,99999999228%
Qk

Ul /M 2/ £= 30 £ 4TS = 5Tm = 6 TH /=73 O 8T

Execute the program several times with different values for the distance and angle in
degrees.

Line 10 The INPUT statement allows the distance and angle in degrees to be entered
from the keyboard.

Line 20 The value of the constant Pl is required to convert the angle in degrees to
radians. While the constant could have been written out in decimal form, this
assignment statement eliminates the need to look it up in a table or to try to remember
it.

It also serves to illustrate another function which is available in BASIC, the
arctangent (ATN). You might like to confirm that this expression calculates the
constant correctly. Type:

PRINT 4%ATN(1)
to display the constant
3.1415928531932
Line 308 The angle is converted from degrees to radians in this assignment statement,

Line 40 The height is computed using the tangent function. The built-in function TAN
requires the argument to be in radians.

Line 50 The PRINT statement displays the height.

114

Experiment #4 Available Memory

The Model 100 has many other useful functions built into it besides square root,
tangent and arctangent. While some of these are mathematical in nature, others are
more general. For example, the FRE function lets you determine the amount of
available memory and, indirectly, the amount of memory used by your BASIC
program.

- To see how much memory you currently have available, type:
PRINT FRE(®)

The number which is displayed, such as
29285

will depend upon several factors, including how much RAM is installed in your
Computer, how many files you have saved, and how large the current BASIC program
is. The argument (within the parentheses) used with the FRE function can be a
numeric constant, variable or expression. The FRE function will always return the
amount of available memory regardless of the value of the argument. To verify this,
type:

PRINT FRE(10)

and you should see the same value displayed as before.

To determine the amount of memory used by a BASIC program, type:
PRINT FRE(®)

before you begin typing your program. Then, after having typed it, type:
PRINT FRE(®2)

again. This will print the amount of memory left or unused by your program. Finally,
subtract the amount you obtained initially from the amount of memory after the
program was typed. The number obtained is the number of bytes used by the program.

Experiment #5 String Space

The FRE function may also be used to determine the amount of memory available to
store strings. Type:

PRINT FRE("")
and you should see:
256

which indicates that 256 bytes of memory have been allocated for the storage of
strings. The FRE function will return available string space if the argument is any
string constant (such as the null string *“’*), string variable, or string expression.
Verify this by typing:

PRINT FRE("ABC")

115

You can change the amount of space allocated for strings with the CLEAR statement. .
For example, type:

CLEAR 10@@ : PRINT FRE("")
and you should see:
1000

which indicates that 1000 bytes have now been allocated for string space. This
allocation, however, reduces the amount of available memory for your program. You
can verify this by typing:

PRINT FRE(®)

The number displayed should be less than the previous amount available by (1000 —
256) = 744 bytes.

Experiment #6 Printing Quotation Marks

Suppose you would like to display quotation marks. This presents a problem because
the quotation marks are recognized by BASIC as the delimiters of text strmgs To see
this, try to display the following phrase, including the quotation marks using the
conventional PRINT statement:

PRINT ""GO WEST YOUNG MAN""
The unusual result:
¢

is due to the fact that the first pair of quotation marks define a string consisting of a
single space.

The phrase *‘GO WEST YOUNG MAN"’ is interpreted as a numeric variable
(initialized to zero). The second pair of quotation marks also print a single space after
the zero. This example should make it apparent that You cannot print quotation marks
in this way. However, it is possible to print them using a special string function.

Type:

PRINT CHR$(34)"GO WEST YOUNG MAN"CHR$(34)
to display:

"GO WEST YOUNG MAN"

The function CHR$(34) returns the quotation mark character as a string constant. The
argument value 34 is the ASCII character code for the quotation mark. Therefore, to
display a quotation mark, use CHR$(34) in the PRINT statement.

Confirm this by typing:
PRINT CHR$(34)

116

o Experiment #7 Displaying ASCII Characters

Type the following program:

16 FOR I = B3 TO 90
20 PRINT CHR$(I)3
38 NEXT 1

and execute the program. You will see the alphabet displayed:

APCDEFGHI JRKLMNOPORSTUVKWAYZ
O

Ly TS L. 23 =3T3 0= 4TS o= 5= = §

This program defines a loop which displays the CHR$ function with values for the
argument ranging from 65 to 90. The character returned by the CHRS function for
these arguments is illustrated in the table below:

Argument Character Argument Character
. Value Returned Value Returned

65 A 78 N

66 B 79 0]

67 C 80 P

68 D 81 Q

69 E 82 R

70 F 83 S

71 G 84 T

72 H 85 U

73 1 86 A"

74] 87 w

75 K 88 X

76 L 89 Y

77 M 90 Z

The number assigned to each letter in the table above is called its ASCII value. The
range of possible ASCII values is O to 255 and includes all characters which your
computer can store in its memory.

In addition to the upper case alphabet, there are ASCII values assigned to the lower
case alphabet as well. These can be printed by changing line 10 in your program to:

16 FOR I = 97 70 122 (ENTER

117

Execute the program and it will display the alphabet in lower case:

apcdefghiibklimnoparstuvwxygs
Qb

COl sy 209 Co 3T CS4TDOCC KD 6T E= 7 TS o= B

There are quite a few other characters which can be displayed in a similar manner.
Change line 10 to

12 FOR I = @ TO 255 (ENIER

and execute it. You should hear a beep, see the display clear and finally see several
lines of characters displayed. Notice that the upper and lower case letters, the digits
(0-9) and all the punctuation (comma, period, etc.) are displayed along with many

other special characters (copyright symbol, graphics, and other language characters).

Not all of the ASCII values correspond to characters which can be displayed. Some of
them are control codes which perform different functions, such as line feed, carriage
return, sound, clear the screen and so on. For a complete list of ASCII values, refer to
the Appendix in your Model 100 Owner’s Manual.

Delete the current program from memory with the NEW command and type the
following program:

1@ INPUT "ASCII VALUE"3A
20 PRINT CHR%(A)
30 GOTO 1@

Execute the program and enter an ASCII value of 7 when prompted to do so. You
should hear a beep. This is because the program prints CHR$(7), and the ASCII value
of 7 corresponds to the sound function. The program contains a loop back to line 10,
so you will be prompted to enter another ASCII value. Enter a value of 12 and the
display will clear. Enter a value of 132 and the graphics character:

]

for a racing car will display. Enter a value of 172 and the fraction:
1/4

will be displayed. Experiment on your own with other ASCII values. You will have to
press to terminate execution of the program.

118

Experiment #8 Keyboard Control of the Display

This experiment will teach you how to input keyboard characters without pressing
(ENTER). This is useful when you want the Computer to respond immediately when a
key is depressed.

Clear memory with the NEW command and then enter the following program:
160 CLS: A = 1060 : AT = : PRINT B A, "#"

o]

209 A% = INKEY$: IF A% = "" THEN 200
212 IF A% = "D" THEN AT = AT + 1
220 IF A% = "8" THEN AT = AT - 1

360 PRINT B Ay " "5 3 PRINT B AT, "#*"j
318 A = AT : GOTO Z00

Execute this program.

You will see an asterisk (*) appear in the center of the display (approximately). Press
(D). The asterisk should move to the right. Press (§8) and the asterisk should move to
the left. You should be able to move the asterisk back and forth on the display by

pressing (D) to move it to the right and (§) to move it to the left. Press (BREAK) to
terminate execution of the program.

Note that this program has muitiple statements on some lines to conserve display
space.

Line 100 The display is cleared and the variables A and AT are initialized to 100. The
PRINT@ statement displays an asterisk in position 100, which is approximately in the
center of the display.

Line 260 The statement
A% = INKEY%

causes the Computer to look at the keyboard to see if any key is being depressed. If a
key is being depressed when the statement is executed, the INKEY$ function will
return a one character string for that key. For example, if (D) is being depressed when
Line 200 is executed, INKEY$ will return the one character string ‘“D’’ and store it in
the string variable A$. If no key is being depressed when Line 200 is executed,
INKEY$ will return a null string (‘**’), and A$ will be null (“***).

The second statement in Line 200:
IF 4% = """ THEN 269

causes a loop which continuously looks at the keyboard to see if a key has been
depressed. If no key is depressed, A$ is null and execution of Line 200 is repeated.
When a key is depressed, A$ will no longer be null and the condition in the IF
statement will be False, causing execution to resume with the next Line, 210.

Line 210 If (D) is depressed, the PRINT@ position (AT) is increased by one which
will move the asterisk to the right.

Line 220 If (8) is depressed, the PRINT@ position (AT) is decreased by one, which
will move the asterisk to the left.

119

Line 300 The statement .
PRINTE A" "3

erases the old asterisk by printing a space over it. The second statement
PRINTE AT, "#"3

prints the asterisk at the new position. The semicolons at the end of these PRINT@
statements are required to prevent scrolling when printing in the bottom row.

Line 310 The variable A stores the ‘“old’’ asterisk position, and AT stores the ‘‘new’’
asterisk position. This assignment statement updates the ‘‘old’’ asterisk position.
Execution is returned to Line 200 to allow repeated movement of the asterisk.

Experiment #9 Move in Four Directions

Execute the previous program and hold down (§). The asterisk should move
continuously to the left. When the asterisk reaches the left margin, it jumps over to
the right and up one line. Continue to hold down (§) until the asterisk reaches the
upper left corner of the display. If you try to move past the upper left corer, the
program will terminate execution with an error message

?FC Error in 3060

This ‘‘Function Call’’ error occurs because the PRINT@ position goes negative if (§)
is pressed with the asterisk in the upper left corner (PRINT@ position 0). .

The program can be modified to prevent this error from occurring. At the same time,
it is relatively easy to allow the asterisk to be moved vertically. Enter the following
changes into the program:

238 IF A$="E" THEN AT=AT-40

240 IF A$="X" THEN AT=AT+40

25@ IF AT>=0@ AND AT{=318 GOTO 300
260 PRINT CHR$(7)3 : AT=A : GOTO 200

List the program to confirm that it is now:
160 CLS = A = 180 : AT = A : PRINT € A "*"

200 A% = INKEY$: IF A% = "" THEN 200
21@ IF A% = "D" THEN AT = AT + 1
220 IF A% = "g" THEN AT = AT - 1

230 IF As="E" THEN AT=AT-40

249 IF A%="X" THEN AT=AT+40

258 IF AT»>=0 AND AT>»=318B GOTO 300

260 PRINT CHR#%(7)5 : AT=A : GOTO Zeo
300 PRINT B A, " "§ : PRINT @ AT, "%"3j
31¢ A = AT : GOTO 200

Execute this program.

The asterisk should appear in the center of the display. Press (E) and the asterisk
should move up. Press the (XD and the asterisk should move down.

120

As before, (8) should move the asterisk left and (D should move the asterisk right.
Hold down (E) until the asterisk reaches the top line of the display. If you attempt to
move the asterisk higher, a ‘‘warning beeper’’ sounds and the asterisk stays on the top
line.

Similarty if you try to move beyond any display boundary, the beep will sound and
the asterisk will stop moving. Try this by moving the asterisk to the four corners with
the appropriate keys.

Line 230 If (E) is pressed, the PRINT@ position is decreased by 40 to move up one
line.

Line 240 If (X is pressed, the PRINT@ position is increased by 40 to move down
one line.

Line 256 If the new PRINT@ position (AT) will be valid, that is, between @ and 318,
the condition

AT>=0 AND AT<=318

will be true, and execution jumps to Line 30@. The condition uses the logical operator
‘““AND’’ to combine the two logical expressions

AT>=0 AND AT<=318

into a third logical expression. A logical expression is either true or false. For
example, the expression:

AT>=0

is True if AT is greater than or equal to zero. It will be False if AT is less than zero.
Similarly, the combined expression

AT>=0 AND AT<=318

will be True if AT is greater than or equal to zero and also less than or equal to 318.
In general, if L1 and L2 are two logical expressions, then the logical expression:

L1 AND L2

is True if both L1 and L2 are True, and False otherwise. Logical expressions may also
be combined with the OR logical operator. The expression

L1 OR L2
is True if either L1 or L2 is True, and False only if they are both False.

You may have wondered why the upper limit on the PRINT@ position was 318
instead of 319, which is the extreme lower right corner of the display. This was done
to prevent scrolling which would occur if the asterisk was printed in the corner.

Even the use of a semicolon after the PRINT@ will not prevent the scrolling, which
occurs automatically when a character is printed in position 319. You can verify this
for yourself by changing Line 250 to:

250 IF AT>=0 AND AT<=318 GOTO 300

and moving the asterisk into the lower right corner.

121

Line 268 This line is executed if the new PRINT@ position (AT) is outside the
display limits. The statement:

PRINT CHR$(7)3

causes a beep to sound. The semicolon is required to prevent scrolling off the display
if the asterisk is on the bottom row.

The statement:
AT = A

sets the new PRINT@ position back to the old to keep the asterisk in the same spot
on the display.

Execution is then transferred back to line 200 to continue looking at the keyboard.

What you have learned:

In this lesson you have learned that BASIC has many useful built-in functions in
addition to the mathematical operations. These include the square root, tangent and
arctangent. BASIC also has general purpose functions such as FRE, CHR$ and
INKEYS. These can be used in many other types of applications.

You also learned that BASIC allows the use of logical operators, such as AND and
OR to simplify your programs. They are commonly used in IF statements.

122

Lesson #10 Data Files

In this Lesson you will learn how to read and write data files to cassette and RAM.

Data files allow you to store information for future reference. Some common examples
include:

® A list of customer names and addresses

® A list of items in inventory

® Sales data

® A list of students and their grades

® A list of hourly data readings such as temperature, pressure, humidity, wind
velocity, wind direction and pollution index, etc.

You can save data files in either RAM or on cassette. The easiest and most convenient
way to save a data file is in RAM. A RAM data file has the advantage of quick access
and docs not require attaching an external device. The disadvantage of a RAM data
file, however, is that it uses up available memory space.

Cassette files are external to the Computer and do not use up valuable RAM space.
When storing a large data file, it is more practical to use cassette tape. For example, a
mailing list of 1000 names and addresses would require around 80K bytes of memory.
This exceeds the maximum memory capacity of your Computer, so a RAM data file is
out of the question. However, a list of this size could fit easily on a cassette file.

Experiment #1 Writing a data file to RAM

The program below allows you to create a RAM file where various names may be
kept.

Clear memory using the NEW command and enter the following program:

1¢¢ CLS
110 OPEN "RAM:NAMES" FOR OUTPUT AS 1
120 INPUT "NAME" 3§ N$%

130 IF N = "" GDTO 200
149 PRINT #1, N%

196 N$ = "" : GOTOD 120
209 STOP

Execute this program and type the name John Smith when prompted, as shown below:
NAME? John Smith

The program will prompt you again to enter another name, and repeatedly do so until
is pressed with no name preceding it. Enter the names as shown below:

NAME? Peter Wolf

NAME™? Alovsius T. Cornpone
NAME? Jim Shoe

NAME? Steele Magnet

NAME? Rav D. 0’Shack

NAME®?

123

B "

PRINT®

weure |
eor
MAXFILES

To terminate the program, simply press when prompted for a name.

To confirm that a data file has been created in RAM, press (FD) for a list of files. You
should see the filename:

NAMES . DO
in the list of files.

Since none was specificd, the extension ‘. DO’’ was automatically added to the
filename and indicating this is a ‘‘DOcument’’ file.

Line 160 This statement clears the display.

Line 118 The data file must be defined in an OPEN statement before data can be
written to it. The statement:

OPEN “RAM:NAMES” FOR OUTPUT AS 1

defines a RAM file with the filename ‘““NAMES.DO’’ which can be_ used for output
with file number 1. Note that the extension to the filename will default to **.DO”’ if
an extension is not specified.

Line 120 The INPUT statement prompts you to enter a name from the keyboard. It is
stored in the string variable NS.

Line 136 The IF statement checks for a null entry to determine the end of the list.
Line 140 If a file number is added to the PRINT statement, as in
PRINT #1, N$

the itcms in the print list will be output to the file corresponding to the file number.
The file number must have been previously defined in an OPEN statement. In this
case, file number 1 is a RAM file.

Line 156 The string variable N$ must be reset to a null string ““** in order to detect a
null input in line 130. If this were not done, N$ would retain its last input value, and
a null input could not be detected.

The program loops back to Line 120 to allow another name to be input.

Line 206 The CLOSE statement terminates access to the data file and marks the end
of the file.

Since this program will be used again later in this lesson, you should save the program
by entering:

BAVE "EXP1"

124

Experiment #2 Reading a RAM File

Now that you have a data file stored in RAM, you can write a program to read and
display it. Clear memory using the NEW command and then enter the following
program from the keyboard:

500 CLS:0PEN"RAM:NAMES" FDOR INPUT AS 1
510 INPUT #1, N% : PRINT N&

52¢ IF NDT EOF{1) GOTO 510

530 CLOSE

Execute this program.

You should see the display clear and then the list of names saved previously will
appear as:

John Smith

Peter Holf

Alorsius T. Cornpone
Jim Shoe

Steele Madgnet

Rary D. O0‘Shack

0k

Line 500 The CLS statement clears the display. The OPEN statement defines the
RAM file “NAMES.DO’’ which will be used for input and is referenced with file
number 1. Since no extension is given in the OPEN statement, the .DO extension is
assumed.

Line 510 The INPUT #1 statement reads the next name in the data file and assigns it
to the variable N$. Note that file number 1 refers to the RAM file ““NAMES.DO’’ as
defined in the preceding OPEN statement.

The PRINT statement displays the name read from the data file.

Line 520 The IF statement tests for the end of the data file. If it is not the-end of file
number 1, execution jumps back to line 510 to read another name. If the end of file
number 1 is reached, execution continues with line 53@. Two new features of BASIC
are used in this statement.

First, the function EQF(1), returns a value of TRUE if the end of filé number 1 has
been reached, or a value of FALSE if the end has not been reached.

Next, the logical operator NOT is used to change the logical value of EOF(1).

IF EOF(1) is TRUE, then NOT EOF(1) will be FALSE.
IF EOF(1) is FALSE, then NOT EOF(1) will be TRUE.

Line 536 The CLOSE statement terminates access to the file.

Since this program will be used later in this lesson, you should save it using the
command:

SAVE""EXP2"

125

Experiment #3 Saving to a Cassette File ()

While it is quite convenient to save data in RAM, this can use up valuable memory
rather quickly. An alternative is to save the data file to cassette. Since the cassette
recorder uses removable cassette tapes, you have an essentially unlimited storage
capacity for your files. The disadvantage of using cassette data files is that you have
to be sure the recorder is properly attached and the tape is correctly positioned for
both writing and reading.

Attach your cassette recorder to the computer (consult the Owner’s Manual if you
have any questions). Insert a blank tape in the recorder and rewind it. Advance the
tape past any leader using the fast forward key.

Load program EXP! using the command:

LOAD"EXP1" (ENTER
Change Line 110 to;

119 OPEN “"CAS:NAMES" FOR OUTPUT AS 1
List the program to confirm that it is:

180 CLS
112 OPEN "CAS:NAMES" FOR DOUTPUT AS 1
12¢ INPUT "NAME"3§ N$%

1380 IF N$ = "" GOTO 2090
1490 PRINT #1s N$
150 N$ = "" : GDTO 120 ‘

This is the same program used in Experiment 1 to write a RAM file, except that the
device in the OPEN statement in LINE 110 has been changed to ““CAS:”’.

Press the RECORD and PLAY keys on the cassette recorder together. Execute the
program and enter the following names when prompted to do so:

NAME? Joan Smith

NAME? Patty HWolf

NAME? Allison T. CornPone
NAME? Jill Shoe

NAME? Sallv Madnet

NAME? Roxanne 0‘Shack
NAME?

Note that the cassette recorder will run for a few seconds and then stop before you are
able to enter any names. Press’ without entering any name to terminate
execution. After the last name is entered, the cassette recorder will run for a few
seconds and then stop.

At this point, the data file ‘“‘NAMES’’ has been written on the cassette tape. To verify
this, you will have to proceed to the next experiment.

126

Experiment #4 Reading a Cassette File

In this experiment, the cassette data file which you created in Experiment 3 will be
read and displayed. Load program ‘‘EXP2’’ from RAM using the command

LOAD"EXP2Z"
and change line 500 to

50® CLS:0PEN"CAS:NAMES" FOR INPUT AS 1
List the program to verify that it is

502 CLS : DOPEN"CAS : NAMES" FOR INPUT AS 1
21@ INPUT #1 N$ i PRINT N

529 IF NOT EDF(1) GOTO 510

538 CLOSE

Rewind the tape, press PLAY and execute the program. The cassette recorder will
start and you will hear some sound coming from computer speaker. When the last
name is read from the tape, the recorder and the sound will stop and the names will be
displayed.

Joan Smith

Patty Wolf

Allison T+ CornpPone
Jill Shoe

Sally Madnet
Roxanne D‘Shack

0K

The only change required to change from a RAM file to a cassette file was to change
the device specifier to ‘‘CAS:” in the OPEN statement in line 500.

Experiment #5 Transfer Data from RAM
to Cassette

Suppose that you have created a data file in RAM and would like to transfer it to
cassette. You might like to do this to make a backup copy or perhaps to allow you to
kill the RAM file to increase available memory.

The following program will allow you to transfer the file “NAMES.DO’’ that you
created before, to cassette storage:

Clear memory with the NEW command and enter this program from the keyboard.

100 MAXFILES=2 : CLS

1190 OPEN "RAM:NAMES" FOR INPUT AS 1
120 OPEN "CAS:NAMES" FOR OUTPUT AS 2
130 INPUT #1 ,N$:PRINT #2,N$:PRINT N$
14¢ IF NOT EOF(1) GOTO 13@

150 CLOSE

127

After the program has been entered, insert a blank cassette, rewind it, and advance it
past any leader. Press the PLAY and RECORD keys on the recorder and then execute
the program.

The recorder will run for a few seconds and then stop; when it does, the names stored
in RAM “NAMES.DO’’ will be displayed as:

John Smith

Peter Wolf

Alorysius T+ CornpPone
Jim Shoe

Steele Madnet

Ravy D. D‘’Shack

Finally, the recorder will run for a few more seconds as the program writes the names
to the cassette file. The data file has now been transfered to cassette.

Line 160 The MAXFILES statement limits the maximum file number which may be
used, in this case, two. If you want to open more than one file at a time, you must
first declare the maximum number of files with the MAXFILES statement.

As usual, the CLS statement clears the display.

Line 110 This OPEN statement assigns the file number 1 to the RAM file
NAMES.DO. Since this file will be read, it is declared an INPUT file.

Line 120 This OPEN statement assigns the file number 2 to the cassette file NAMES.
Since this file will be written to cassette, it is declared an QUTPUT file.

Line 130 The statement INPUT #1,N$ reads the name from the RAM file and stores
it in the string variable N§. The PRINT #2,N$ statement writes the name to the
cassette file. The statement PRINT N$ displays the name.

Line 140 If the end of the RAM file has not been reached, the program jumps back to
line 130, where the next name will be read.

Line 150 When the end of file is reached, both open files are closed. A CLOSE
statement closes all open files. If you wish to close a specific file, add the file number
to the CLOSE statement as in

CLDBE 1

You can verify that the file has been transfered properly to cassette by loading in
program ‘‘EXP2,”’ rewinding the cassette, pressing the PLAY key and running the
program. If you have done everything correctly, the names will display as soon as the
file has been read in.

Experiment #6 Writing a numerical data file

In this experiment, a data file containing 30 numbers representing sales data will be
created. The table below gives daily sales data for six weeks which will be saved in a
RAM file for later use.

WeeK Mon Tue Wed Thu Fri
1 280 275 346 280 250
2 300 26¢ 320 300 242

128

292 278 350 310 £55
310 250 310 290 Z6¢
280 289 290 28¢ 270
283 298 33¢ 275 258

mu bW

Clear memory with the NEW command and enter the following program:

12 DPEN "RAM:SBALEDA"™ FOR OUTPUT AS 1
20 FOR I = 1 TO 3@

38 READ S : PRINT #1, 8§ : NEXT I

4@ DATA 2B® 275,346,280 .:250

5S¢ DATA 300,200.:320,300.,242

6@ DATA 292,270,350,31¢0,250

7¢ DATA 310.,250,310,290,26¢

8¢ DATA 280.280,290.,280,27¢

9¢ DATA 285,290,330,275,258

Execute this program.
The only thing which appears to happen is that the BASIC prompt
Ok

displays after a second or two. What took place almost instantly, was that the sales
data contained in the DATA statements was written to a RAM file.

List the files by pressing (FD to confirm that file ‘“‘SALEDA.DO’’ has been created.

Line 10 The OPEN statement defines a RAM file with the filename ‘‘SALEDA.DO’’

and assigns it a file number of 1. Since the file is written to, it is declared an output
file.

Lines 20 - 30 The FOR/NEXT loop repeats 30 times, corresponding to the 30 data
values. Each time through the loop, the next sales value is read from the DATA
statements and then output to file number 1.

Lines 40 - 90 The DATA statements contain the 30 sales values in chronological
order.

Once the RAM file has been created, it can be used repeatedly with a variety of
analysis and reporting programs. For example, you could use a statistics program to
read the data file and compute the mean and median. In fact, the SALEDA.DO file
will be used in the next lesson in just this way.

What you have learned:

You should now be able to read and write data files to either RAM or cassette. Recall
that RAM files are more convenient but use valuable memory. On the other hand,
cassette files require an external device, but allow essentially unlimited data storage.

You also learned how the logical operator NOT may be used to simplify the condition
in an IF statement.

129

Arravs
! e AR

Lesson #11 Average Sales

In this lesson you will learn how to compute the average daily sales using the data you @ = |
stored in RAM in the last Lesson under the name SALEDA .DO. N
Arrays with two dimensions will be used so that the data can be examined ona daily .. = =
or weekly basis. You will learn how to sort an array so that the median can be ’GDS?JB
calculated. Subroutines will be used to avoid repetitive blocks of code in your -
programs. The TAB statement will be used to space the output neatly. iiRETUR’N

A,

v

END

Experiment #1 Display the File

The following program will read 6 weeks of daily sales values from file SALEDA.DO
in RAM and display the values.

Clear working memory and enter the following program:

ol OPEN "RAM:SALEDA.DD" FOR INPUT AS 1
1¢ FOR W =1 TO B : FOR D = 1 TO §

20 INPUT # 1, S(W.,D)

30 NEXT D : NEXT W

48 PRINT "WEEK MON TUE MWED THU FRI™
5S¢ FOR W = 1 TO B : PRINT Wi

B¢ FOR D=1 7O 5

7¢ PRINT TAB(D#5) S(WD) 3

80 NEXT D : PRINT

20 NEXT W

Execute this program.
The program will read the file SALEDA.DO containing sales data.
The following table will then be output to the LCD:

WEEK MON TUE WED THU FRI
280 275 346 2B@¢ 250
300 260 3Z2¢ 380 242
292 279 35¢ 319 255
316 250 310 20¢ 26
280 280 29¢ 28@ Z27¢@
285 280 33¢ 275 258

Line 5 The OPEN statement opens the RAM data file ““SALEDA.DO”’ for input and
assigns the file number 1 to it.

Line 10 The first FOR statement,
FOR W =1 TD B

DA WN -

sets up an outer loop to index through the six weeks. The second FOR statement
FOR D = 1 T0 S

sets up an inner loop to index through the five days of the week.

131

Line 20 The daily sales are read from the RAM file SALEDA.DO and stored in the ‘
array S. The array S, which will contain the sales values, is a two dimensional array

and can be thought of as a table rather than a list. This array will have six rows and

five columns. The rows correspond to the weeks and the columns the days. This may

be illustrated as follows

day

week MON TUE WED THU FRI

S(1,1) 5(1,2) 5(1,3) S(1,4) S(1,5)
S(2.1) 5(2,2) 5(2,3) S5(2,4) 5(2,5)
S(@3,1) 5(3,2) S@3.3) S(3.4) 5@.,5)
S(4.1) S5(4,2) S4.,3) S(4,4) S4,5)
S(5,1) S(5.,2) S(5.3) S(5.4) S(5.5)
S(6,1) 5(6,2) S(6,3) S(6,4) S(6,5)

The sales data will be read into the array S so that the first row will contain the five
sales values for the first week, the second row the sales values for the second week,
etc.

AN W -

Line 30 The first NEXT statement defines the end of the inner loop and the second
NEXT statement defines the end of the outer loop.

Line 40 This line prints the ‘‘heading’’ for the output.

Line 50 The first statement in the line begins another FOR / NEXT loop. This loop

will display the daily sales for each week, starting with week 1, then week 2, etc.,

and ending with week 6. The sales were stored in chronological order, so that the first

five values are the sales for the first week, the next five values are for the second .
week, and so on.

The second statement

PRINT W3

displays the week number. The first time through the loop, a 1 is displayed, the
second time a 2, and the last time a 6 is displayed. Since a semicolon (;) follows the
variable W in the print statement, the carriage return is suppressed.

Line 68 The FOR statement defines an inner loop which increments through all five
days for each week. This loop will display the five daily sales for each week.

Line 70 The daily sales for each week are displayed on one line. The TAB statement
is used to neatly space the sales values along the line. The general form of the TAB
statement is

TAB(x)

and specifies that printing is to begin in column x + 1. x may be a numeric constant,
variable or expression. The values of D, the expression

D+5

and the corresponding print positions are given below:

132

Day value of print position

D D %5 is column
1 5 6

2 10 11

3 15 16

4 20 21

5 25 26

Examine the output closely by adjusting the Display Control dial until the column
lines become clearly visible. Notice that the first digits of the sales are actually printed
one column to the right of the print position specified by the TAB statement. When a
number is printed, the first position is reserved for a sign. If the number is positive,
then the plus sign (+) is not printed, but the space is still printed. If the number is
negative, then the minus sign (—) is displayed.

Note that the variable S(W,D) is followed by a semicolon. This suppresses the
carriage return so that the next sales amount printed for the week will be in the same
line. Since the carriage return was suppressed in the print statement in line 50, the
week number and daily sales for that week are all displayed on the same line.

Line 88 The NEXT statement defines the end of inner loop which displays the sales
for each day.

The PRINT statement in this line generates a carriage return, which causes the next
week’s sales to be displayed on the next line.

Line 99 The NEXT W statement defines the end of the outer loop which causes the
sales for each week to be displayed.

Experiment #2 Compute and Display
the Weekly Average
The previous program will be changed so that the weekly average sales can be
computed and displayed along with the daily sales.
Change line 40 to:
49 PRINT "WEEK MON TUE WED THU FRI AuUGH
- and line 80
B@ NEXT O : PRINT WA / O
Also enter two new lines:

55 WA @
B5 WA WA + S(W.0)

List the program to confirm that it is:

S OPEN "RAM:SALEOA.DD" FOR INPUT AS 1

i¢ FOR W = 1 TO B ¢« FOR O = 1 TO S

20 INPUT # 14 S(K:0)

3¢ NEXT D ¢ NEXT W

49 PRINT "WEEK MON TUE WED THU FRI AUG"

o

133

5S¢ FOR W = 1 TO 6 * PRINT Wj
53 WA = @

66 FOR 0O = 1 T0 5 :

65 HA = WA + B(W:0)

7¢ PRINT TAB(D * 5) S(W,0)3
8¢ NEXT O : PRINT WA / 5

99 NEXT W

Execute the program.
Here is what the output should look like:

WEEK MON TUE WEO THU FRI AVUG
280 275 346 28¢ 250 Z86.2
300 269 320 300 242 284.4
2892 27¢ 35¢ 310 255 285.4
31e¢ 25¢ 31¢ 230 26@ 284
280 ZBe 2890 2ZBe¢ 27¢ Z8¢
285 28¢ 330 275 258 2B7.6

@ U Bk

An additional column containing the weekly averages has been printed.

The average (or mean) was calculated by adding up the five values for the week and
dividing the sum by five. Line 65 calculates the weekly sum and stores it in the
numeric variable WA. The variable WA is initialized to zero outside the loop (lines 60
— 80) where the sum is computed. The weekly sum is divided by five to obtain the
average and displayed in line 80.

Experiment #3 Computing the Average
for Each Weekday

The previous program will be changed so that the average sales for each weekday can
be calculated. There are six sales figures for each day, so to calculate the average,
these six values must be added and the sum divided by six. This must be done for
each of the five days.

Add the following lines to the program:

85 PRINT "AYG"]
162 FOR D=1 TD 5 : DA=0 : FOR W=1 TD 6

1190 DA = DA + S(W,0) : NEXT W
120 PRINT TAB(D%*5) INT(OA/B)]
13@ NEXT O

List the program to confirm it is:

) OPEN "RAM:SALEOA.D0" FOR INPUT AS 1

16 FOR W =1 TO B : FOR O = 1 TOD 5

20 INPUT = 1, S5(W:D)

30 NEXT 0O ¢ NEXT MW

40 PRINT"WEEK MON TUE WEOD THU FRI AVG®
5S¢ FOR W = 1 TO B8 : PRINT M3

55 WA = 0

66 FOR O =1 7O 5

134

65 WA = WA + S(W:0)

78 PRINT TAB(O*3) S5(W:D)3

B@ NEXT D : PRINT WA/S

9¢ NEXT W

85 PRINT "AUG"]

10¢ FOR O0=1 TD 5 : 0A=0 : FDR W=1 TD G
11¢ 0A = 0OA + S(W:0) : NEXT W

12¢ PRINT TAB(Dx%5) INT{(DA/B);

13@ NEXT O

Execute this program. The output should appear as

WEEK MON TUE WED THU FRI AVG
280 270 3468 28¢ Z0¢ 286.2
3¢ 26@ 320 300 242 284.4
292 27@¢ 350 31¢ 2585 285.4
310 25¢ 319 280 260 284
ZBG 28B¢ 280 280 270 280
285 28¢ 330 275 258 Z8B7.6
AVG 291 27¢ 324 288 255

Qe k-

Lines 5 - 99 The first part of the program remains unchanged.

Line 95 The row label ““AVG”’ is displayed. The semicolon (;) suppresses the
carriage return so the averages will be displayed on the same line.

Line 100 The first FOR statement
FOR D=1 TO 5

defines an outer loop which increments through each day. The assignment statement
04a=0

initializes the daily sum to zero. The second FOR statement
FOR W=1 TO 6

defines an inner loop which sums the six week’s sales for a given day.

Line 110 The sales for a given day are added and stored in the numeric variable DA.
The NEXT statement defines the end of the inner loop.

Line 126 The daily average is displayed. The TAB function is used to neatly space
the output. The INT function is used to drop any decimal part for neater appearance of
the output. The semicolon (;) suppresses the carriage return so that the next average
will be printed on the same line.

Line 130 The outer loop which increments through each day of the week is
terminated.

By using a two dimensional array S for the sales values, it was very easy to process
the data either weckly (row by row) or daily (column by column). The program could
have been written using a singly dimensioned array and FOR / NEXT loops with the
STEP options. However, it was easier to write the program using the two dimension
array.

135

Experiment #4 Sorting

The thirty sales values in file SALEDA.DO are to be sorted and printed out in
ascending order. Sorting can be easily accomplished if the sales are stored in a one
dimensional array.

The sorting routine which will be used is called a ‘‘bubble sort.”’ This is a simple
algorithm that is easy to understand and to program.

The bubble sort works as follows:

Starting at the beginning of the array, the first two values are compared. If the
first is larger than the second, they are interchanged; otherwise nothing is done.

The second and third values are then compared. If the second is larger than the
third, they are interchanged, and so forth through the entire array. When the end
of the array is reached, the largest value will be stored there. The process then
begins over at the beginning of the array. This time, however, it will only be
necessary to go up through the next to the last clement. In this fashion, the
largest element goes to the end, the next largest goes to the next to the end
position, etc.

The name ‘‘bubble sort’’ is descriptive of this process because of the way the large
values pop up, one at a time, into their correct positions at the end of the array.

The following program will read in the thirty sales values, sort them and display them
in ascending order. Delete the previous program from memory with the NEW
command and enter the following

program:

3 DPEN "RAM:5ALEDA.D0" FOR INPUT AS 1
1¢ 0OIM 5(3a&)

20 N = 30

30 FOR I = 1 TO 30

48 INPUT =1, S5(I)

50 NEXT I

560 FOR I = 1 TO N - 1

518 FOR 4 = 1 TO N - 1

520 IF S(J) < 8(J + 1) GOTO 54¢

530 S5=5(4) : S{J)=50J+1) G(J+1)=5
540 NEXT J @ NEXT I

G0¢ PRINT TARB(10) "BORTED SALES"

610 FOR R = 1 TO 6

62¢ FOR C = 1 TD 5

630 I = (R - 1) # 53 + C

640 PRINT TAB((C - 1) * 7) S(I)3

650 NEXT C = PRINT

660 NEXT R

Execute the program.

136

There will be a pause while the program sorts the data. Then the output should
appears as follows:

SORTED VALUES
242 259 250 255 258
260 2606 270 270 275
275 28¢ 28¢ 280 2890
280 285 28¢ 299 290
282 309 30¢ J3ig¢ 3le
31¢ 320 33¢ 348 35¢

Reading the table row by row, the values are printed in ascending order, the smallest
value is 242, which is listed first and the largest value is 350 which is listed last.

Line 5 The OPEN statement again allows input from RAM.

Line 10 The one dimensional array S is dimensioned in this line. Remember that there
are thirty sales values.

Line 20, The numeric variable N is given the value 30. It will be convenient to use N
instead of 30 in the program. If the number of sales values read in from the file is
changed, only this line will have to be changed.

Lines 30 - 50 These lines read in the data and store the values sequentially in the
array S.

Line 580 This line starts the ‘‘bubble sort’* portion of the program. It is necessary to
go through the array 29 times to get all the values in their correct positions. The first
time through the loop (I = 1) the largest sales value will be placed in S(30), the
second time through the loop (I = 2), the next largest will be placed in S(29), etc.
The last time through the loop (I = 29) the next to the smallest value will be placed
in $(2). At that point S(1) must contain the smallest value, so the array is sorted.

Line 510 This line starts the FOR / NEXT loop in which the comparisons and possible
interchanges will be made, When I = 1, J will range from 1 toN — 1, when I = 2,
J will range from 1 to N — 2, and so on. When I = 29, J will only have the value 1.
Thus as more and more values are stored in their correct positions at the end of the
array S, fewer and fewer comparisons and interchanges need to be made.

Line 520 This line does the comparison. If the values stored in adjacent locations,
S(J) and S(J + 1), are already in order, then execution jumps to the bottom of the
inside loop. However, if they are out of order, then line 530 is executed next.

Line 530 These three statements swap the values stored in S(J) and S(J + 1). Note
that the value stored in S(J) is stored temporarily in the variable S. This is necessary
when swapping two adjacent elements in an array, to prevent erasing one of them. It
is permissible to have an array S and an ordinary numeric variable S as well.

Line 540 The two NEXT statements terminate the FOR / NEXT loops. The NEXT J
statement terminates the inner loop and the NEXT I statement terminates the outer
loop.

Line 600 When the sorting is finished, this line displays a heading for the table.

Line 610 The sorted values are displayed in six rows so that they will all fit on the
display at one time. The FOR / NEXT loop which begins in this line increments once
for each of the six rows.

137

Line 620 The loop which begins in this line displays the five values in row R of the
table.

Line 630 The value of the subscript I in the S array is computed for the element
displayed in row R and column C. For example, if R = 3and C = 2, then I = 12,
This is necessary because the data is stored in a one dimensional array but displayed
in a two dimensional table.

Line 646 The value in row R and column C is displayed. The TAB statement is used
to space the output. Note that the semicolon after S(I) suppresses the carriage return.

Line 656 The first statement in this line terminates the inner loop which displayed the
entries in row R. The PRINT statement generates a carriage return, so that the next
five values will be displayed on the next line.

Line 668 The outer loop, which displays each of the six rows, is terminated.

Sorting data is frequently required in computer programming. The bubble sort
technique introduced in this experiment is a straightforward approach to this common
problem, and is well worth learning. Once the sales data has been sorted, it is quite
easy to compute another measure of central tendency — the median.

Experiment #5 Computing the Median

Now that you know how to sort the sales data, you can easily change your program to
compute the median. The median is similar to the average in that they both measure
central tendency. The median is a number such that half of the data values are larger
than the median, and half of the data values are less than the median. If the data
values are sorted, the median is defined as follows

i) if there are an odd number of values, the median is the middle value

ii) if there are an even number of values, the median is the average of the two
middle values.

In the sales data example, there are 30 data values, (an even number) and the two
middle values are the 15th and 16th values. The median is the average of these two
values.

Delete lines 600 through 660 and add the following two lines to the program:

568 MO = (5(15) + S5(16)) / 2
97¢ PRINT "MEDIAN SALES"ji MO

Execute the program. The values will be sorted as before, but not displayed. The
following will be displayed

MEDIAN SALES 280

The median is another type of ‘‘average’’ which in many cases is a better measure of
central tendency than the mean. For example, the median is less affected by extreme
values than the mean. The median is the central value in the sense that there are just
as many values above it as below it.

138

Experiment #6 Computing the Median
of the First N Values

The previous program will be changed so that only the first N values will be read in
from the RAM file, instead of all 30. The median of these N values will then be
computed and displayed.

You will be able to input the value for N when the program is executed. The main
purpose of this experiment is to generalize the median calculation, and show you how
to determine whether there are an even or an odd number of values.

Make the following changes to the program:

20 INPUT "NMUMBER OF DAYS (2 - 3@8)"3i N
30 FOR I = 1 TO N

550 NI=INTO(N+1)/2) : N2=INTL{(N+2)/2)
568 MD = (S5(N1) + S(N2)) / 2

570 PRINT "MEOIAN IS"§ MD

List the program to verify that it is:

5 OPEN "RAM:SALEDA.DD0" FOR INPUT AS 1
1¢ OIM S(30)

2¢ INPUT "NUMBER OF DAYS (2 - 3@)"3i N
3¢ FOR I = 1 TOD 30

4¢ INPUT # 1, S(I)

5@ NEXT I
o8¢ FOR I = 1 TO N - 1
510 FOR J = 1 TO N - 1

oZ@ IF S5(4) < 5(d4 + 1) GOTD 540

530 5=5(J) @ 5(J)=8(Jd+1) : S(J+1)=8
5S40 NEXT J : NEXT I

550 NI=INT((N+1)/2) = NZ=INT((N+2)/2)
560 MO = (S(N1) + S(N2)) / 2

57@ PRINT "MEDIAN IS"3 MD

Execute the program.

This time you will be prompted for the number of days of sales to be read. After you
enter a value, the program will read the first N values from the RAM file and display
the median.

Here is an example of the execution and output of the program:

NUMBER OF DAYS (2 - 38)7 20
MEOIAN IS 285

Thus the median of the first 20 sales is 285.

Execute the program several times. Try entering both even and odd values for N. You
will find that the program will correctly calculate the median in every case.

Line 20 An INPUT statement has been added which prompts you to enter the value
for N.

139

Line 550 The numeric function INT is used in this line. This function drops any
fractional part of a number and thus returns the greatest integer less than or equal to
the argument. Consider the following examples

Argument x Value of INT(x)
1.234 1
239.899 239
4 4

The values that are computed and assigned to the variables N1 and N2 are the middle
values for the subscripts of the array S(1) through S(N).

For example, if N has the value 16, then
(N+1)/2 =285
(N+2)/2=9

and
INT(N + 1)/2) =8
INT(N +2)/2) =9

so that N1 and N2 will correctly contain the middle subscript values. Additional
examples are given in the table below:

N N1 N2

30 (even) 15 16

20 (even) 10 11 .
13 (odd) 7 7

27 (odd) 14 14

Note that when N is even, N1 and N2 are the two middle values and when N is odd,
N1 and N2 are both equal to the single middle value. Thus, the use of the INT
function avoids any testing to determine whether N is even or odd.

Line 560 The median is calculated in this line. If N is even, then the average of the
two middle values is computed. If N is odd, then the values stored in N1 and N2 are
the same and so the median is correctly calculated as the middle value.

Line 576 The median is displayed.

Now that you have a program which will sort an array of arbitrary length and compute
the median, you can use it as a subprogram in larger programs. The next experiment
shows you how to do this.

Experiment #7 Calculating the Median
for Each Weekday

In this experiment, the median sales will be calculated for each day of the week. This
means that the program should compute the median value of the six Monday sales, the
median value of the six Tuesday sales, and so on for each day of the week.

To accomplish this, the six values for each day must be sorted before the median can ‘
be computed. The following program illustrates an efficient method of doing this.

140

. Modify the program from experiment 6 by changing lines 10 through 50 to:

1¢ N = 6

20 FOR W=1 TO 68 : FOR O0=1 710 5
38 INPUT #1, R(W:0)

4¢ NEXT 0O @ NEXT W

5¢ FOR D=1 TO 5 : FOR W=1 70 &

and enter the new lines 60 through 150

B¢ S(W) = R(K,D)

78 NEXT W

806 GOS5UB 500

g M(D) = MO

198 NEXT O

11@ PRINT TAB(1@) "MEODIAN SALESB"

1280 PRINT " MON TUE WED THU FRI®
130 FOR O=1 TO S:PRINTTAB((D-1)*7)M(D) 3

140 NEXT O

158 ENO

and change line 570 to
57@ RETURN
List the program to confirm that it is now:

5 OPEN "RAM:SALEDA.00" FOR INPUT AS 1

16 N = B
. 26 FOR W=1TD6 : FORD =1 TO 5
30 INPUT £ 1, R(W.0)
46 NEXT D : NEXT W
56 FOR O =17T05 : FOR W = 1 TD B
B8 S(W) = R(W,D)
786 NEXT W
860 GOSUB 500
96 M(D) = MD
10¢ NEXT O
11¢ PRINT TAB(1@) "MEODIAN SALES"
12¢ PRINT " MON TUE WED THU FRI®
130 FOR 0O=1 TO S5:PRINTTAB((D-1)%7)M(D)j
148 NEXT O
150 END
560 FOR I = 1 TO N - 1
510 FOR J = 1 TO N - I

528 IF S(J) < S(J+1) GOTD 540

53¢ S§=8(J) : S5(J)=S(J+1) : S(J+1)=8

540 NEXT J : NEXT I

550 NI=INT{(N+1)/2) : NZ2=INT((N+2)/2)

560 MD = (S5(N1) + B(NZ)) / 2

570 RETURN ,)

141

After the program is entered, execute it. The output should appear as:

MEDIAN SBALES

The median for each day of the week is printed below the name of the day. For each
day, the six sales values are sorted and the median computed by averaging the two
middle values.

Line 5 The OPEN statement allows the data to be read from a RAM file.

Line 10 The numeric variable N is assigned the value 6, indicating six weeks of data
for each day of the week.

Lines 20 - 40 The data is read from RAM and stored in the two dimensional array R.
Note that a dimension (DIM) statement was not required in this case since no subscript
value will exceed 9.

Line 56 The first FOR statement in this line begins a loop that calculates the median
for each day of the week. Since there are five days, the index variable D runs from 1
to 5.

The second FOR statement in this line begins a loop that transfers the six weeks of
data for day into a single dimension array S.

Line 60 For a given week W and day of the week D, the data value is transferred
from the two dimensional array R into the one dimensional array S. The data for the
first week will be transferred to S(1), the second week to S(2) and so on.

Line 78 The inner loop which transfers the six data values from the two dimensional
array to the one dimensional array is terminated.

Line 80 This line contains a new statement: GOSUB. When this statement is
executed, the program jumps to line 500. Lines 500 through 570 sort and compute the
median of the one dimensional arrays S. The median is stored in the variable MD (line
560). When line 570 is executed, the program jumps back to the statement following
the GOSUB statement. The block of statements in lines 500 through 570 are called a
subroutine. This particular subroutine computes the median of the one dimensional
array

S(1), S(2), ... S(N).

The value of the median is stored in the variable MD. It was necessary, in lines 50 -
7@ , to store column D of the two dimensional array R in the one dimensional array S
because the subroutine computes the median of this specific one dimensional array.

Line 90 The value of the median for day D, which was placed in the variable MD in
the subroutine, is stored in the array M(D). This is done because the next median
calculated will be placed in MD, replacing the previous value of MD, before the
program displays the result.

Line 100 This line terminates the FOR / NEXT loop which began in the first FOR
statement in line 50.

Line 110 The heading MEDIAN SALES is displayed. The TAB function is used to
center the heading.

142

Line 120 The names of the five days of the week are displayed in column heading
form.

Lines 130 - 140 The values of the five medians stored in the array M are printed.
M(1) contains the median for Monday, M(2) the median for Tuesday, etc.

Line 150 The END statement terminates execution of the program. Without the END
statement, execution would continue with lines 500 - 570. If that were to happen, the
RETURN statement in line 570 would generate an error message because there was no
corresponding GOSUB statement. The STOP statement could have been used instead
of the END statement.

Lines 580 - 570 This is the subroutine which sorts the array S and computes the
median. Before this subroutine can be used (or ‘‘called’’), the variable S must have
the appropriate values assigned to it. Upon returning from the subroutine, the median
is stored in the variable MD.

The subroutine can be called as many times as necessary in a program as long as the
input variables (N and S) are initialized before it is called. When the RETURN
statement is executed, control jumps to the statement immediately following the
GOSUB statement.

Here are some rules governing the use of subroutines.

1) Every subroutine must contain a RETURN statement. It may contain more
than one RETURN statement, if there are several places in the subroutine
from which you want to return.

2) A program may contain several subroutines.
3) A subroutine may call another subroutine.

4) A subroutine may be placed anywhere in a program, as long as it is executed
only from a GOSUB call.

Subroutines are very useful in programming. They allow you to avoid repetitive blocks
of code. They also allow you to write your program in modules or blocks so that it is
easier to write and to understand. The program in this experiment was simplified by
putting the sorting and median calculation in a subroutine.

What you have learned:

In this lesson you have seen how arrays, both one and two dimensional, can be used
to store data, so that certain information can be extracted. The TAB statement was
used with the PRINT statement to space the output. Two types of averages were
calculated, the mean and the median. To calculate the median it was necessary to sort
the data. The INT function was useful in simplifying the calculation of the median.
Finally, subroutines can often be used to make your program easier to write and more
readily understandable.

143

Lesson #12 Sound & Simulation

In this lesson you will learn how to create a wide variety of sounds, simulate events
using the built-in random number function, and cause apparent movement (animation)
on the display.

Experiment #1 Beep your Beeper!

You can use the built-in speaker to create sounds of many types: beeps, sirens,
whistles, clicks, and so on.

Sound can be used in a BASIC program to draw attention to some event — the
occurrence of an error, for example. It might also be used to liven-up a program by
adding noises to indicate movement. You might also want to use your Computer to
create music. All these uses of sound are fairly easy on the Model 100 as you’ll find
in the following experiments.

You have already seen that printing CHR$(7) will sound the ‘‘bell’” character. Try it
now to recall the sound:

PRINT CHR%(7)

Another way to make the same sound is to use the BEEP statement. Type:
BEEP

and you will hear the same sound. To verify that the sounds are identical, enter
PRINT CHR%$(7) : BEEP

and you will hear two beeps in succession.

You might want to use sound as a sort of warning. Try this:
FOR I=1 TO 1@ : BEEP : NEXT 1 (ENTER

You can also vary the tone and duration of the sound using another statement as
shown in the next experiment.

Experiment #2 Sound Off!

Create a tone by entering the following command:
SOUND 5586100

You should have heard a tone lasting approximately two seconds and having a
frequency of 440 hertz. Increase the frequency of the tone by entering:

SOUND 415,100
or lower the tone by entering:

SOUND 15800 ,100

145

As you can see, the first number in the SOUND statement controls the frequency of .

the tone and is inversely related to the frequency (the higher the number, the lower the
tone).

Increase the duration of the 440 hertz tone by entering:
SOUND 5586 255

and decrease the duration by entering:
SOUND 55861

The length of the tone is controlled by the second number in the SOUND statement
and ranges from a minimum of @ (no sound at all) to a maximum of 255. The duration
of the tone is approximately 20 milliseconds times the number entered. For example,
the command

SOUND S558BG.100
turns on a 440 hertz tone for approximately
20 * 100 = 2000 milliseconds = 2 seconds

The first number in the SOUND statement determines the frequency of the tone and
must be an integer in the range of @ to 16383. You can hear the full range of tones by
entering the following program:

1¢ FOR I = @ TO 18383 BTEP 100 "
20 SOUND I.2
3¢ NEXT I

Execute the program.

The sounds you hear are tones of approximately 40 milliseconds duration, ranging
from the highest frequency (0) to the lowest frequency (16383) in increments of 100.

The frequency specifier is related to the musical scale, as seen in the table below:

OCTAVE
Note 1 2 3 4 5 6
C 9394 4697 2348 1171 587
C# 8866 4433 2216 1103 554
D 8368 4184 2092 1045 523

D# 15800 7900 3950 1975 987 493
E 14912 7457 3728 1864 932 466

F 14064 7032 3516 1758 873 439

F# 13284 6642 3321 1660 830 415

G 12538 6269 3134 1567 783

G# 11836 5918 2954 1479 739

A 11172 5586 2793 1396 693

A# 10544 5272 2636 1318 659

B 9952 4968 2484 1244 622 .

146

You can play the middle C scale by entering the following program:

i1¢ FOR I = 1 70O 8B

2¢ READ N : SOUND N, 30

3¢ NEXT I

4@ DATA 4697,4184+3728+3016
5¢ DATA 3134,2793+2484,2348

Execute the program to hear the familiar scale. This program reads eight notes from
the data statements and plays them for approximately .6 seconds each. The numbers in
the data statements correspond to C, D, E, F, G, A, B and C respectively and were
taken from the preceding table.

Experiment #3 Play a Melody

Referring to the table above, it is rather easy to write a BASIC program to play
melodies.

Clear memory using the NEW command and enter the following program:

18 READ N.:L

20 IF N=@ THEN END

3¢ SOUND N LxZ20

4a¢ GOTO 1¢

1¢¢ DATA 4897 4+1+4897+1 4697162691
11¢ DATA 5586:1.,5586+1 +8269+,2:,3728:1
128 DATA 37281418441 +4184+1 4697 +4
138 DATA @40

Execute the program and you will hear the familiar Old MacDonald’s Farm melody.

Line 10 The note N and the length L are read from the DATA statements. N is the
frequency specifier for the note, and L is the number of beats.

Line 20 A test for the end of the music is made. If the frequency specifier N is zero,
the program ends. Otherwise, the note is played in the next statement.

Line 30 The SOUND statement plays the note for the desired number of beats. The
beat length is approximately

20 * 30 = 600 milliseconds = .6 seconds.
Line 49 Execution jumps back to Line 10 to read the next note.

Lines 160 - 126 Each note is defined by two numbers: N and L. The frequency
specifier N is taken from the table above for the desired musical notes.

147

L4

el]
6

-

o

The number of beats L is determined by the type of note:

quarter note =1 beat
half note = 2 beats
whole note =4 beats

You might like to experiment a little by replacing the DATA statements with your
own music. Just remember to terminate the music with a 0,0.

Experiment #4 Animated Character

Adding sound is not the only way to liven up a program. A display which shows
action is often more interesting than a static display. While there are no specific
animation statements, you can easily create movement using the PRINT@ statement.
The following program illustrates the technique.

Clear memory using the NEW command and enter:

1@ CLS

20 FOR I=120 TO 158

30 PRINTE I, CHR$(147)3
4@ FOR J=1 TO 6@ : NEXT J
S0 NEXT I

Execute this program and watch the stick figure race across the display. While this
program added action, it does not adequately simulate movement. You can erase the
trail behind the runner by printing a space in his previous position and simulate
movement more realistically.

Change line 30 to:
3¢ PRINTE® I, " ™3 CHR$(147)3%

and execute the program to see a more realistic simulation of movement. This is
typical of animation on a computer display; you have to erase the last image and
create the new image for each frame in the sequence.

Line 10 As usual, the program begins by clearing the display.

Line 26 A FOR/NEXT loop varies the print position from 120 to 158. This
corresponds to the fourth line, from the left to the right borders.

148

Line 3@ Two characters are printed side by side: a space followed by a stick figure.
You may wish to confirm that CHR$(147) is the stick figure by entering

PRINT CHR$(147)

The space is required to erase the stick figure which was printed on the last cycle of
the loop.

Line 4@ A delay loop of a fraction of a second is used to control the speed at which
the figure ‘‘runs’’ across the display. You might experiment a little by changing the
upper limit in the FOR statement to a smaller value, say 30, and then execute the
program. Try the same thing with a larger value, say 200. The upper limit of 60 was
determined by trial and error to give a speed which ‘looked good.”

Line 50 The NEXT I statement determines the end of the FOR / NEXT loop begun in
line 20. Note that this program uses nested FOR/NEXT loops.

Experiment #6 Generating Random Numbers

Computers can be used to simulate random events. This leads to many interesting and
useful applications. For example, you can use simulation to create such seemingly
diverse applications as interactive games and business decision-making models.

What makes simulation possible on a computer is the ability to generate random
numbers. The RND function can be used to return a number between 0 and 1 which
can be thought of as ‘‘random’’ in that the numbers appear to occur with equal
likelihood and unpredictability.

Clear memory using the NEW command and enter
PRINT RND(1)

to obtain the random number
+39521943994623

If you again enter
PRINT RND(1)

you will get another random number
+10658628050158

If you continue to print RND(1), you will generate a stream of random numbers.

Enter the program:
18 PRINT RNDC(1) : GOTO 1@

and execute it.

If you watch the numbers scrolling by on the display, you will notice that they keep
changing and that they are all in the range from zero to one.

149

Press (BREAK) to terminate execution of the program. You can change the range of the .
random numbers quite easily. For example, to generate numbers in the range from
zero to 100, simply multiply the RND function by 100. Change the program to

10 PRINT l@@*RND(1) : GOTO 1@

and execute it. You should see decimal numbers between zero and 100 scroll by. If
you would prefer to have the integers from zero to 100 generated, use the INT
function. Change the program to:

1¢ PRINT INT(1@@#RND(1)) : GOTO 1@

and execute it. You should see integers between zero and 100 scroll by. Using these
techniques, you can generate random numbers in any desired range. The next
experiment illustrates an application of random numbers.

Experiment #7 Simulating a Coin Toss

This experiment will use random numbers to create a simulation of tossing a coin.
A ‘“‘head” or “‘tail’’ can be generated randomly with the use of RND according to the
following scheme:

RND(1) Outcome
between 0 and .5 Head
between .5 and 1 Tail
Since the probability of generating a number in the range @ to 0.5 is equal to the .

probability of generating a number in the range 0.5 to 1, this scheme will generate
heads and tails with equal probability.

Use the NEW command to clear memory and enter the following program:

1@ CLS

28 A = RND(1)

32 IF A £ .3 THEN A$="HEAD" ELSE A$="TAIL"
4@ PRINT A%$,"PRESS ENTER"

S2@ AS=INKEY% : IF A$=""THEN 5@

¢ GOTO 2@

Execute the program.

If you press (ENTER), you can generate another coin toss. Continue pressing (ENTER) a
few times to see that the coin tosses give the appearance of a random sequence.

Press (BREAK) to terminate execution.
Line 10 The display is cleared.
Line 20 A random number is generated and stored in the variable A.

Line 30 If the value assigned to A is less than .5, then the string ‘“‘HEAD"’ is stored
in the string variable A$. Otherwise, the string ‘‘“TAIL’’ is stored in A$.

Line 48 The outcome is displayed along with a reminder to press to continue.

Line 58 This loop continuously scans the keyboard. When any key is pressed, A$ will .
no longer be null and execution resumes on line 60.

150

Line 60 Execution jumps back to line 20 to create another coin toss.

Execute and use to terminate the program several times. Notice that the
program generates exactly the same outcome every time. This is a characteristic of
RND(1). Every time a program is run, the same sequence of random numbers will be
generated. While this is convenient when you are debugging your program, it does not
provide the unpredictability characteristic of true randomness. What is required is a
way of starting the sequence of random numbers at an arbitrary point.

Add the following line to the program:
15 A=RND(-VAL(RIGHT$(TIME$.:2)))
List the program to verify that it is:

18 CLS

15 A RND(-VAL(RIGHT$(TIMES2)))

20 A RND (1)

30 IF A<.5 THEN A$="HEAD" ELSE A$="TAIL"
49 PRINT A%, "PRESSE ENTER"

3¢ A% = INKEY$: IF A% = "" GOTO S@

5@ GOTO =9

Execute the program several times to verify that different sequences of outcomes are
being generated each time.

Remember to use to terminate execution.

The RND function can be used with three types of arguments:

X RND(x)
greater than 0 generates next random number
equal to 0 generates same random number
less than @ generates a new sequence of

random numbers dependent
upon the value of x

In this program, the time is used to determine the sequence of random numbers by
negating the seconds of the current time. This will provide 60 different sequences of
random numbers. Recall that the time is stored as a string in TIMES$ and must be
converted to a numeric value using the VAL function.

Experiment #8 Slot machine

This experiment will combine sound, animation and random numbers in one program
to simulate a slot machine.

Enter the following program:

10 A=RND(-VAL(RIGHT$(TIME®:2)))
20 CLS

36 LINE (85+12) - (138,33):1,B
49 LINE (99,22) - (118:33)1.4B
50 LINE -(122.,22).14B

60 LINE -(134,33).1.B

151

78 FOR T = 1 TO 3¢ ‘
8¢ GOUND 70006.1

98¢ As=CHR$(145+3*RND(1))

1¢¢ B9$=CHR$(145+3*RND(1))

11¢ C$=CHR$(145+3*RND(1))

120 PRINTE 137 .:A%;

132 PRINTE® 1394B%3

14@ PRINTE 141.4C%3

153@ NEXT T

16@ IF A$=B% AND B¢$=C¢ GOTO Zzo0

17@ PRINTE 240,"Press ENTER"

18¢ A$=INKEY$: IF A4=""GOTO i8¢

19¢ PRINTE 240, " ¢ GOTO 2@
2e¢ FOR J=1 T0O 4

21¢ PRINTE 217+ "W I N"3

22¢ FOR I=18¢¢ TO B8@¢@ STEP -5¢

23¢@ SOUND I+2 : NEXT I

24@ PRINTE 217, ")

258 FOR K=1 TO 1@@ : NEXT K

ZGB@ NEXT J @ GOTO 17

Execute the program.

A slot machine will appear on the display with three characters appearing at random in

the windows. After a few seconds the characters will stop changing. A win occurs if

all three characters are the same. The beeping sound is used to help simulate motion

in the slot machine. If you don’t win, you can press (ENTER to play again. When a ‘
win occurs a siren will sound and ““W 1 N** will flash on the slot machine.

Line 10 The time is used to initialize the sequence of random numbers.
 Line 26 This statement clears the display.)
Line 36 The outline of the slot machine is drawn as a box using the LINE statement.
Llnes 40-60 The three windows are drawn as boxes using the LINE statement.

Line 70 A FOR / NEXT loop is used to control the duration of the spinning of the
slot machine wheels. The upper limit of 3@ was determined by trial and error. A larger
value would increase the duration and a smaller value decrease it.

Line 80 A brief tone is generated to suggest rotation of the wheel. Again the
parameters were chosen by trial and error to create a reasonable sound.

Lines 96-110 The characters with ASCII values, 145, 146 and 147 were chosen to be
the display characters because they have contiguous ASCII values and they look
interesting. These three characters are generated at random with the CHR$ function

CHR$(145 + 3 % RND(1))

Since the argument of the CHRS is truncated to an integer value, this function will
return one of the three characters

A ¢ &

152

The string variables A$, B$ and C$ will contain the characters for the first, second
and third windows respectively.

Lines 120-140 The characters are printed in the windows.

Line 150 The NEXT T statement defines the end of the wheel spinning loop begun in
line 70.

Line 166 If all three characters are the same, execution jumps to line 200, otherwise
execution continues with line 170.

Line 176 The prompt ‘‘PRESS ENTER”’ is displayed in the lower left comer of the
LCD.

Line 188 The keyhoard is scanned until a key is pressed.

Line 190 When a key is pressed, the prompt ‘‘PRESS ENTER”’ is erased and
execution transfers to line 20 to repeat the game.

Line 260 A <“W I N’ message and a siren are repeated four times.
Line 210 The word ‘“W I N’ is printed on the bottom of the slot machine.

Lines 220-230 This loop produces the siren sound by increasing the frequency in steps
of 50.

Line 240 The “W I N’’ message is erased so that it will appear to flash.
Line 256 A FOR / NEXT loop is used to create a short delay.

Line 260 The NEXT J statement defines the end of the ““W I N*’ loop. At the end of
the loop, execution will transfer to line 170 which will print the prompt and wait for a
key to be pressed.

What you have learned:

You have learned that BASIC programs may be enhanced through the addition of
sound, animation and simulation. The SOUND statement allows you to create a tone
with a specific pitch and duration. This can be used to generate many different
sounds. Motion on the display can be created in a variety of ways, including use of
the PRINT@ statement. The RND function lets you simulate events by generating a
sequence of random numbers.

153

Lesson #13 Function Keys

In this lesson you will learn to use the Function Keys to interrupt execution of a
program or to return any desired string of characters.

Experiment #1 Programming the Function Keys

The keys on the top row of the Model 100 keyboard, labeled F1 through F8, are
called Function Keys. You have already used some of these in previous lessons. For
example, (ED) displays the files saved in RAM, RUNs a BASIC program, and (5
LISTs a BASIC program.

These functions were built into the Function Keys to facilitate the use of frequently
used operations. However, you can program any Function Key to perform any other
operation or to input a string of characters.

Enter the following command:

KEYLIST

to display the strings programmed into each of the eight function keys. You should see

v

WEVLIST
Files Load "
HSave Hun

odmt

Merru
L

(515

— 1 2 -2/ .3/ @EN4—S C= HITD S b= === =8I

which indicates that the Function Keys are programmed in the following order:

Key String Key String
D Files 2 - Load”
()] Save ” Run
B List —
(74) — (D) Menu

Notice that and are not programmed and contain null strings.
Enter the command:
KEY B "PRINT TIMES$"
and press the function key (F6). You will see:
PRINT TIME$
displayed, with the cursor positioned after the word TIMES. Press to obtain a

155

KEviist

Ké?ff %

ONKEY

KEY ON/OFF/
:gTOPlf"’ﬁ’

display of the current time.

You can eliminate the need to press if you also program it as part of the
string. You can use CHR$(13) to do this.

Enter:
KEY Bs "PRINT TIME$"+CHR$(13)

and press function to obtain the current time. Notice that it is not necessary to
press this time since it is programmed as part of the string.

You might wish to program Function Key with the EDIT command, since it is so
frequently used in BASIC programming.

Enter:
KEY 7 "EDIT" + CHR${(13)

and press function key whenever you wish to enter the Edit mode. If there is no
program currently in working memory, this command will have no effect.

Use the KEYLIST command to confirm that you have programmed and D). If
you enter:

KEYLIST

you should see

KEYLIST
Files LLoad ¢
Save Fun

List PRINT TIME%

EDRDIT Menu
Ok

-

You can change any of the Function Keys, including the factory programmed keys.
For example, enter:

KEY 3+ "PRINT DATE$®" + CHR®(13)

and press Function Key to obtain a display of the current date. Use the KEYLIST
command to verify that (F3) contains the string

PRINT DATE$%
To program back to the original string
Save "

you will have to use the CHR$(34) form of the quotation marks when you enter the
string:

KEY 3 "Save " + CHR$(34)

156

Use the KEYLIST command to confirm that you have restored (F3) to its original
form. You can restore and to their original null string if you wish by entering

KE\{' B’ imnnu
KEY 7, "

You can reprogram any function key with any string up to 15 characters. Just
remember to use CHR$(13) for (ENTER) and CHR$(34) for the quotation mark.

Experiment #2 Interrupting Execution

You can also use the function keys to control execution of a program. The ON KEY
GOSUB statement lets you immediately interrupt a program by pressing a function
key. Depending upon the Function Key that is pressed, the program will jump to one

of several subroutines.

This interrupt capability allows direct keyboard control of a program during execution.
The action is similar to pressing (BREAK), except that execution is not terminated, only
redirected.

The program below illustrates how Function Key interrupts work. Clear memory with
the NEW command and enter the following program:

10 KEY ON

20 ON KEY GOSUB 100,200,300

30 PRINT I : I=I+1 : GOTO 30

100 PRINT "SUBROUTINE 1" : RETURN
209 PRINT "SUBRDUTINE 2" : RETURN
300 PRINT "SUBROUTINE 3" : RETURN

Execute this program and watch the display.

You should see a series of numbers, starting from zero and increasing by one,
scrolling on the display.

Press (FD. You should see the message:
SUBROUTINE 1

displayed and then the numbers will continue scrolling. Press (F2) to display the
message:

SUBROUTINE 2
or press (F3) to display the message:
SUBROUTINE 3

You can interrupt the printing of numbers at any time using any of the first three
Function Keys. Execution jumps to the appropriate subroutine depending upon which
Function Key is pressed.

Use (BREAK) to terminate execution of the program.

Line 10 The KEY ON statement enables the Function Key interrupt capability. In
effect, it tells the computer to keep looking for a function key to be pressed. This
statement is used in conjunction with the ON KEY GOSUB.

157

Line 26 If a function key is pressed, execution will be directed according to the
subroutine line numbers in the ON KEY GOSUB statement. For example, if Function
Key (F1 is pressed, execution goes to the subroutine in line number 100. If the
second Function Key, (F2), is pressed, execution goes to the subroutine in line number
200. If the third Function Key, (F3), is pressed, execution goes to the subroutine in
line number 300.

If any other function key is pressed, nothing happens, since there are no more line
numbers in the ON KEY GOSUB statement.

The general form of the statement is:
ON KEY GOSUB <List of line numbers>

where the list of line numbers corresponds to subroutines. The first line number in the
list corresponds to Function Key (FD, the second line number, if present, corresponds
to Function Key (F2), and so on.

The ON KEY GOSUB statement must be placed in the program so that it will be
executed before the Function Key is pressed. Otherwise, the Function Keys will be
ignored during program execution.

Line 38 A continuous loop prints the integers starting at zero and incrementing in
steps of one. These statements keep right on printing, so long as a Function Key is not
pressed. ‘

Line 160 This two statement interrupt subroutine is executed if the Function Key 1)
is pressed. The statement which is being executed when the Function Key is pressed is
allowed to finish before execution is transferred to the subroutine. This subroutine
simply prints the message

SUBROUTINE 1

and returns execution to the statement after the one which was interrupted. For
example, if the interrupt occurs while the statement

PRINT I
is being executed, then execution returns to the next statement
I=1+1.
Line 2600 This interrupt subroutine is executed if Function Key is pressed.

Line 300 This interrupt subroutine is executed if Function Key (E3) is pressed.

Experiment #3 Interrupting an Interrupt

It is possible to interrupt an interrupt subroutine by pressing a Function Key while the
interrupt subroutine is executing. You can modify the current program to illustrate
this.

Change line 200 to:
200 FDR J = 1 TO 2@

158

and enter the new lines:

210 PRINT "SUBROUTINE 2"
220 NEXT J : RETURN

List the program to confirm that it is:

10 KEY ON

20 ON KEY GOSUB 100,200,300

30 PRINT I ¢ I=I+1 : GOTO 30

109 PRINT "SUBRODUTINE 1" : RETURN
200 FOR J = 1 TO 2@

218 PRINT "SUBROUTINE 2"

220 NEXT J : RETURN i
300 PRINT "SUBROUTINE 3" : RETURN

Execute this program and press (F2) to interrupt execution and begin execution of the
interrupt subroutine at line 200.

You should see the message:
SUBROUTINE 2
repeat 20 times.

When the subroutine is finished printing 20 times, execution returns to the main
program. You will see the numbers printing again when this happens.

Again press (F2) to interrupt execution of the main program. This time however, press
the F1 function key before the 20

SUBROUTINE 2
messages finish printing. You then should see the message:
SUBROUTINE 1

displayed once and the SUBROUTINE 2 message continue until all 20 repetitions are
complete. Finally, execution returns to the main program where the numbers continue
to be displayed.

Sometimes it is desirable to be able to interrupt an interrupt subroutine and sometimes
it is not desirable. The KEY OFF statement can be used to prevent the interruption of
an interrupt subroutine.

Change the following lines in your program:

200 KEY DOFF:FOR J = 1 TO 20
220 NEXT J : KEY DN : RETURN

List the program to confirm that it is:

10 KEY ON

29 ON KEY GOSUB 100, 200, 300
3@ PRINT I = I=I+1 : GOTOD 32
100 PRINT "SUBROUTINE 1":RETURN
200 KEY OFF:FOR J = 1 TO 20

210 PRINT "SUBROUTINE 2"

220 NEXT J : KEY ON : RETURN
300 PRINT "SUBROUTINE 3":RETURN

159

Execute the program.
Press the (F2) to interrupt the main program. Again you will see the message:
SUBROUTINE 2

displayed repeatedly on the LCD. While this interrupt subroutine is executing, press
(ED. This time you cannot interrupt the interrupt subroutine. However, after the
subroutine is finished, the main program can be interrupted with any of the Function

Keys D, 2 or F3).

The reason for this is that the KEY OFF statement in line 200 disabled the Function
Key interrupts. The KEY ON, in line 220, restored the Function Key interrupts at the
completion of the subroutine.

Rather than totally ignore an interrupt which occurs during an interrupt subroutine,
you may wish to have it execute at the completion of the current interrupt subroutine.
This can be accomplished with the KEY STOP statement.

Change line 200 to:
299 KEY STOP : FOR 4 = 1 TO 20
Execute the program.

Press (F2) to interrupt the main program. Then press (FD to interrupt the interrupt
subroutine. Notice that nothing appears to happen. However, if you watch the display
carefully, you will see the message:

SUBROUTINE 1
display after the last SUBROUTINE 2 message is displayed.

This is because the KEY STOP statement in line 200 delays execution of the (FD
interrupt until the current interrupt subroutine is finished.

Experiment #4: Checkwriter with Interrupts

In this experiment you will simulate a payroll program which allows interruption from
the keyboard. This could be used to gain access to a data file while the Computer is
engaged in a time consuming process. For example, if a payroll program was printing
a long list of paychecks, it would tie up the Computer until the printing was
completed.

Ordinarily, if you wanted to gain access to the employee data file, you would have to
wait until the printing finished or else break the program and then resume printing
later. You could use Function Key interrupts, however, to allow immediate inquiry
into the file without breaking the program. The printing would simply continue after
the inquiry was completed.

Clear memory with the NEW command and then enter the following program:

1@ CLS : KEY ON : ER$=STRING#(3¢." ")

20 ON KEY GOSUB 144

32 FOR I=1 TO B:READ N#%(I)sR(I)+sH{I):NEXTI
49 FOR I=1 TO B

o8 LINE (12.,0)-(226.,47):14+BF

160

B¢ PRINT 84, "RADIO SHACK"]

780 PRINT @28. DATE®#]

80 LINE (24,15)-(219,31).,0,BF

90 PRINT @84, "PAY TD: "3 N$(I);

100 PRINT 8124, R(I) % H(I);

112 PRINTE148,"DOLLARS"S

128 FOR K=1 TO 1000 : NEXT K

138 NEXT I : END

149 PRINT @240, ER$S

1590 PRINT @ZB@®, ER®3

160 PRINT @240, "NAME"]

178 INPUT N$%

1820 FOR J=1 TO B:IF Ns{:N&(J) GOTO 210

192 PRINTB28@,"RATE"R(J)" HOURS"H(J) 3

200 RETURN

210 NEXT J @ RETURN

30¢ DATA SUE SMITH,7.5,40,TIM LEE,B,35

31¢ DATA RON REED+8.:40sANN JONES:6.5,38
320 DATA JAN ELY7.,40,:S5AM BAKER+13.5,38

Check the program carefully against the listing and then execute it.

You will scc a “‘check’ drawn on the display similar to the one illustrated below:

RADIO SHACK 14/10/83
PAY TO: SUE SMITH
300 DOLLARS

If you let the program run for a few minutes, you will see checks display in
succession for each of the employees listed in the data statements. As you can see, it
takes quile a bit of time to display each check. This was intended to simulate the time
it would take to print a check using a printer instead of the LCD display.

Execute the program again. This time however, press before the second check is
displayed. You should see:

RADID SHACK 16/10/83
PAY TO: SUE SMITH

300 DOLLARS
NAME?

Notice the NAME? prompt just below the check. If you enter the name SAM
BAKER, you should see his pay rate and hours worked this week appear on the
bottom line of the display as:

RATE 15.5 . HOURS 38

As soon as the rate and hours appear, the checks continue printing. You can interrupt
the check printing at any time to find out the pay rate and hours worked of any
employee listed in the data statements.

161

Try interrupting the program and entering several other names. If you should enter a .
name which is not in the data statements, it will be ignored and printing will continue
uninterrupted.

Line 10 The display is cleared and the Function Key interrupts are turned on. A string
of 30 spaces is stored in the string variable ER$. This will be used to clear a portion
of the display.

Line 26 Function Key (FD will cause a jump to an interrupt subroutine beginning in
line 140. The remaining seven Function Keys remain undefined and will therefore
have no effect if they are pressed.

Line 38 The six names in the data statements are read into the string array N$(I), the
rates arc rcad into the numeric array R(I), and the hours are read into the numeric
array H(I). No dimension statement was required in this example since the subscript
does not exceed 10.

Line 40 The FOR/NEXT loop which begins in this line controls the printing of the six
checks.

Line 560 A box is drawn to look something like the outline of a check. The
coordinates (12,0) and (226,47) refer to the upper left and lower right hand corners
respectively. The ,1,BF specifies a box filled with dark cells.

Line 68 The company name RADIO SHACK is printed in the upper left corner of the
check.

Line 7@ The date is printed in the upper right corner of the check.

Line 86 An empty box is drawn in the center of the check to make room for the name .
and amount of the check.

Line 98 The employee name is printed on the check after the message ‘‘PAY TO: ”’.

Line 160 The salary is computed as the pay rate R(I) times the hours worked H(I) and
printed on the check below the name.

Line 110 The word ‘ ‘DOLLARS”’ is printed on the same line as the salary amount.
Line 120 A delay loop is added to allow time to inspect the check before the next one
is printed.

Line 136 The NEXT I statement is the end of the check printing loop. The program
will END after all six checks have been printed.

Line 140 This is the first line of the interrupt subroutine. Execution will jump here if
(F?) is pressed while the main program is executing. The statement in the main
program which was interrupted will finish before the interrupt subroutine begins. This
statement will erase the first 30 spaces of the next to last line on the display. The
purpose of this is to erase any name which may be left here from a previous interrupt.

Line 156 This statement erases the first 30 spaces of the last line for the same reason
given above.

Line 160 The prompt ‘‘NAME’’ is printed on the next to last line.

Line 170 This statement allows a name to be entered and assigns it to the string
variable N$.

162

Line 180 This FOR / NEXT loop compares the name stored in N$ to the name stored
in the array N$(I). If the names are different, execution jumps to line 210. Otherwise,
line 200 will be executed next. It was necessary to use an index variable other than I
in this loop, because I is being used as the index variable in the main program and
must not be altered in the interrupt subroutine.

Line 190 The requested employee’s rate and hours are displayed below the name.

Line 200 This RETURN statement terminates execution of the interrupt subroutine
after a rate and hours is displayed. Execution resumes in the main program with the
statement following the one which was interrupted.

Line 210 The NEXT statements define the end of the FOR loop which checks for the
name in the DATA statements. If no match is found, this RETURN statement
terminates execution of the interrupt subroutine.

Lines 389-316 These DATA statements contain the six names with their respective
pay rate and hours worked.

This simple program suggests how interrupts can be used in a more elaborate payroll
program. Typically, a practical payroll program will use a personnel file containing
hundreds or perhaps thousands of characters of information for each employee.
Conceivably, you could use different Function Keys to inquire about different types of
information, for example address, telephone number, number of deductions, length of
employment, and so on.

Of course the use of Function Key interrupts is not limited to payroll programs. You
may very well find applications in other types of programs including scientific,
mathematical, educational and other areas of business.

What you have learned:

You have learned how to program the Function Keys so that a string will be entered
with a single keystroke. You have also seen that the Function Keys may be used to
control execution of a program through the use of interrupt subroutines.

163

Lesson #14 Using the COM Option

Your Model 100 has an RS-232C Interface which can be used for serial
communications. In this lesson you will learn how to use the serial port (located in the
rear panel of the Computer and labeled RS-232C) to communicate with other devices
such as another computer or a serial printer.

Also, many laboratory instruments send results through a serial port making direct data
acquisition possible. If the instrument allows two way communication, you might even
be able to control the device or the process from the keyboard of the Model 100.

Furthermore, many peripheral devices use serial communications. For example,
printers, plotters, voice recognition and synthesis devices, cash registers, modems and
EPROM programmers often have an RS-232C Interface for serial communications
with a computer. This opens a wide range of possible uses for your Model 100.

To access the serial port, you will need a standard DB25 type connector. Radio Shack
offers RS-232C cables in a variety of lengths (such as the five foot cable, catalog
number 26-4403). Also, whenever connecting the Model 100 to another TRS-80
Computer, it is necessary to use a Null Modem Adapter (26-1496).

Some Terminology...

To use the serial port (the RS-232C Interface) you don’t have to be an expert in serial
communications. However, some familiarity with the terminology and concepts would
help tremendously. The following discussion highlights some important concepts about
serial communications.

Serial communications between a computer and an external device is done one
character at a time. A character can be uniquely represented as a series of data
“‘bits,”” which can be thought of as a list of ones and zeros.

One way of obtaining this bit representation is to express the ‘“‘ASCII”’ value of the
character in binary form. (ASCII refers to American Standard Code for Information
Interchange.) For example, the ASCII value of the uppercase letter ‘A’ is 65 decimal
or 01000001 binary. Typically, the number of bits used to represent the ASCII value
is 6, 7 or 8.

Since a bit has only two “‘states,”” 0 or 1, it can easily be sent over a wire as an
electrical pulse where a plus voltage indicates a “*1°” and a negative voltage a *‘0.”” A
bit can also be sent as an audio signal, where one tone indicates a *“1’” and another
tone a *‘0”’ (as used in a telephone modem).

In parallel communication, all the bits that represent the character are sent
simultaneously over individual channels. By contrast, in serial communication the
bits are sent one after the other over the same channel.

In addition to the data bits that represent the character, there are other special bits that
are sent over the channel. The data bits are preceded by a start bit and may be
followed by a parity bit and one or two stop bits.

165

“COM}?
Gl

“coms”

W com
cosus

caM ON/OFF/
STOP. ~
.
INPUTS

TELCOM

A start bit 15 always used to signal the beginning of a new character to the receiving
device.

A parity bit is sometimes added to provide a means of error detection. If the parity is
specified as odd, the parity bit will equal zero if the sum of the data bits is odd, but
the parity bit will equal one if the sum of the data bits is even. Thus, with odd parity,
the sum of the- data bits plus the parity bit is always odd. Similarly, with even parity,
the sum of the data plus parity bits is always even.

The stop bit(s) follow the parity bit, if any, and indicate the end of a character to the
receiving device. While different systems use various stop bit lengths, the Model 100
allows either one or two stop bits.

Before you can use the RS-232C serial port on the Model 100, you must set the
following parameters:

1. Baud rate, r: The baud rate is the speed at which the characters are sent. The
following values are permitted:

r Baud rate r Baud rate
1 75 6 2400

2 110 7 4800

3 300 8 9600

4 600 9 19200
5 1200

Note: 300 and 1200 baud are common speeds for transmission of data over
telephone lines using audio tones. The Model 100 has a built-in modem which
allows a direct connection to the telephone lines for 300 baud communications.
However, if you use the serial port, rather than audio tones through the modem,
you can communicate with other sertal devices at any of the baud rates listed
above.

2. Word length, w: This is the number of data bits used to represent each ASCII
character. The three values permitted with the Model 100 are six, seven, or eight
data bits.

3. Parity, p: The parity bit, if any, is specified as one of:

p Parity
E Even
O Odd

N None
| Ignore

4. Number of stop bits, b: You can specify either one or two stop bits (s=1 or
s=2).

5. Line Status (XON/XOFF), s: Serial communications devices typically use some
form of ‘‘handshaking’’ to synchronize transmitting and receiving. This is
frequently necessary at the higher baud rates (1200 and above) to prevent
transmitting characters to a device which is not ready to receive them.

The Model 100 uses a handshaking technique known as XON/XOFF. The
receiving device sends an XOFF signal to the transmitting device if it cannot

166

. receive any more characters (if a buffer is filled). The receiving device then
sends an XON signal when it is ready to receive more characters.

In this way, the receiving device can make the transmitting device wait, as
necessary, Lo give it a chance to catch up. You can enable or disable this feature
{the XON/XOFF handshaking) by specifying E, or D respectably.

As an example, the specification
37N1D

would set the B5-232C serial port for 30@ baud, 7 data bits word length, no
parity, 1 stop bit and disable XON/XOFF.

Experiment #1 Transfering a BASIC Program

Suppose you have written 2 BASIC program in the Model 10@ which you plan to use
later in your office system.

The following procedure will allow you to transfer a BASIC program to another
computer.

1. Connect the two computers via an R5-232C cable (26-4403) and a Null Modem
Adapter. See figure below.

/

Plug

2. Set communication parameter in your office system that the Model 10@ can
match (reler to your system’s owner's manual or reference guide).

3. Load the program (in ASCII format) you wish to transfer into the working
memory of the Model 1.

4. Set the serial communication parameters to match those of the office system by

entering:

SAVE “"COM:RWPBS"
where R = baud rate; W = word length; P = parity; B = stop bit; § = line
status.

Note: If a serial printer (rather than another computer) is connected to the serial port,
. you can use the same command to obtain a listing of the program in the printer.

167

Experiment #2 Transferring Files to Another
Computer using TELCOM

You can transfer any ASCII file to another computer using TELCOM, one of the
built-in Application Programs of your Model 100. This includes any BASIC program
as long as it has been saved as a RAM file in ASCII format (SAVE
“FILENAME’’,A).

1.
2.

Link the two computers together as shown in the previous experiment.

Load and execute a communications program that allows data transfer in the host
computer.

Set communication parameters in the host that the Model 100 can match (refer to
your system’s owner’s manual or reference guide).

From the Model 100 Main Menu, position the cursor on the word TELCOM and
press (ENTER). The display then shows:

g-M7I11E, 10 pps
Telcom: i

Find Call Stat Term

— 1= =2/ —— 33 4 = = 5™/ T e /3 = 7/ — 8 />

® The first line reminds you of the current serial communications status.

® The second line is the TELCOM prompt which lets you select one of the
functions displayed on the last line of the screen.

® The last line shows the definitions of the Function Keys in TELCOM.

Change the communication status to match those of the other computer by
pressing the Status Function Key ((F3)) followed by the desired parameters.

Enter the Terminal Mode by pressing the Terminal Function Key (4)). The
bottom line of the display should change to:

Prev Down Up Full

C- 1D 20 C— 353 D403 £ 553 CZ 6T O =7T—3 = 8o

168

The last line indicates the Function Key commands available in the Terminal Mode.

Function Key (F1) now contains a function that allows you to see the ‘‘Previous’’
screen.

Function Key (F2) now contains a feature for Downloading or receiving
information from another computer.

Function Key (F3) now contains a feature for Uploading or sending information
to another computer.

Function Key (F4) has now become a Full/Half duplex toggle switch. In Full
duplex any character that you type on the Model 100’s keyboard is first sent to
the host computer before it appears on the display. In Half duplex, on the other
hand, characters appear on the display just as they are sent to the host.

Function Key (5, which is not displayed along with the other functions, offers
an *“*Echo”’ feature which lets you obtain a *‘hard copy’” of whatever is being
received (assuming there is a printer connected to the Model 109). Once (F5) has

been pressed, it will appear displayed each time you access the Terminal Mode
of TELCOM.

Function Key (F8), Bye, lets you exit the Terminal Mode.

Now that the computers are connected with matching communication parameters,
decide on a file with the extension .DO that you wish to send and press (F3), the
Upload Function Key. The prompt:

File to Urload?

will be displayed.

Enter the name of the file to be transferred. The prompt
Width:

will appear. Enter a number between 10 and 132 to format the file as it is sent
out. If you simply press (ENTER), the file will be sent “‘as is.”

The word Ue on the last line of the display will appear in reverse as the file is being
Uploaded. The word will return to normal display when file transfer is complete. If
the other computer sends an XOFF command, transmission will pause and the word
Wait will appear on the bottom line of the display. If the other computer then sends an

XON command to proceed, the word Wait disappears.

Note: A BASIC program may be transferred if it has been saved in ASCII, but it
cannot be transferred as a .BA file. If you attempt to transfer a .BA file, the error
message

ND FILE
Urpload aborted

will be displayed. If you specify a filename which does not exist, the same error
message appears.

169

Experiment #3 LOADing a BASIC Program [

Suppose you have written a BASIC program on another computer which you want to
execute on your Model 100. The serial port can be used to transfer the BASIC
program to working memory using the following procedure.

1. Connect the computers together as shown in the last two experiments.
2. From the Model 100 Main Menu, enter BASIC.
3. Enter the command

LOAD "COM:RWPBS"

where RUPBS correspond to the baud rate, number of data bits, parity, number
of stop bits and line status (XON/XOFF) of the other computer.

4. Load and execute a communications program on the other computer which will
transfer a BASIC program in ASCII format. This program should send a control
Z (ASCII value 26 decimal) as an end-of-file character. If the other computer’s
program does not terminate the file in this fashion, you can terminate the load
manually from the M100 keyboard by pressing (BREAK).

Note: (BREAK) terminates transfer with an 1/O (input/output) error message.
Ignore this message. The data has been transferred.

5. Since the program does not display as it is loaded, you will probably want to list
it to confirm that it was transferred properly. If a few errors are found, they can
be corrected using the Editor. After the file has been successfully transferred, it
can be saved in RAM in the usual way. .

Experiment #4 Loading a File with TELCOM

You can transfer any ASCII file to the Model 100 from another computer using
TELCOM. This includes a BASIC program so long as it is transferred in ASCII
format. The procedure is:

1. Link the Computers through an RS-232C cable and a Null Modem Adapter.
2. From the Model 100 Main Menu, enter TELCOM.

3. If necessary, change the communication parameters to match those of the host
system.

4. Press to enter the Terminal Mode.
Press (F2) to Download a file. The prompt:
File to Download? @

will be displayed. Enter a valid filename with either no extension or a .DO -
extension. If you enter a filename with the .BA extension, the error message:

Download aborted

will appear, since BASIC programs can only be transferred in the ASCII format.
After the filename is entered, the word Down will appear in reverse video. .

170

6. Load and execute a communications program on the other computer which will
transfer the desired ASCII file.

7. To terminate the file transfer and mark the end of the file, press again.
8. To exit the Terminal Mode, press and then when the prompt

Disconnect?

appears on the screen. If you press (N, you will return to the Terminal Mode.

Experiment #5 Output to the COM: device

You can use a BASIC program to communicate with peripheral devices through the
serial port. If you use the OPEN statement to define a COM: file, you can then direct
output to the serial port with a PRINT statement, or input data from the serial port
with an INPUT statement. This will be illustrated with examples in the following
experiments.

Suppose you want to input a name from the keyboard and then send it out the serial
port. From the Model 100 Menu, go to BASIC and enter the following program from
the keyboard:

1¢ OPEN "COM:3701D" FOR OUTPUT AS 1
20 INPUT "NAME"™S N&

32 PRINT #1, N$%

49 GOTO 20

Note: The peripheral device connected to the RS-232C port should have the same
configuration (3701D).

Before executing this program, you should connect a peripheral device with an
appropriate RS-232C cable to the M 100 serial port and use the correct port status.

Once the peripheral device is connected and ready to receive, execute this program.
You will see the prompt:

NAME?
Enter any name, for example
NAME? JONATHAN SMITH

The name will be sent out the serial port and received by the peripheral device.
Another prompt will appear on the display to allow transferring as many names as
desired. You will have to press (BREAK) to terminate this program.

Line 10 The OPEN statement specifies the COM: device to be used for output as file
number 1. The serial port will use 300 baud, 7 data bits, odd parity, 1 stop bit and
XON/XOFF disabled.

Line 20 The INPUT statement prompts for a name from the keyboard and stores it in
the string variable NS.

Line 36 The name contained in NS is sent to the serial port by printing to file
number 1.

171

Line 48 Execution jumps to line 20 to allow another name to be cntered. Lines 20 ‘
through 40 form an infinite loop.

Experiment #6 Input from the COM: device

The procedure to input from the serial port is quite similar, as illustrated by changing
the previous program as follows:

Enter Edit Mode and change lines 20 and 30 to

2¢ INPUT =1, N%
39 PRINT Ns

Before executing the program, make sure the peripheral device is properly connected
to the senal port and ready to transmit a string of characters. The string should be
terminated with a comma or a carriage return and a line feed.

Execute this program, then have the peripheral device send a string. If everything is
working properly, you will see the string which was sent from the peripheral device
displayed on the Model 100.

Since the program loops back to the INPUT statement, you can have the peripheral
device send as many strings as you wish. You will have to press (BREAK) to terminate
the program.

Experiment #7 Interrupt from the COM: device

You can interrupt execution of a BASIC program from the serial port. This can be
very useful to allow communications with a peripheral device which transmits data at
unpredictable times. For example, a lab instrument might send test results sporadically
as they are completed. Using the interrupt capability, you could use the Model 100 to
run a BASIC program, yet still capture the data from the instrument whenever it is
sent.

If you have another terminal, such as another computer or a CRT terminal, you might
try the following experiment which will serve to illustrate the concept.

Clear memory with the NEW command and enter

1@ DPEN "COM:37@1D" FDR INPUT AS 1
2¢ ON COM GOSUB 100

3¢ COM ON

d¢ PRINT I : I=I+1 : GOTO 49

10¢ PRINT INPUT$% (1,1) : RETURN

Execute this program. You will see numbers starting at zero and incrementing by one
displayed along the left margin. These numbers will continue to print until a character
is received through the serial port. When this happens, the character received will also
be displayed.

If a string of characters is received through the serial port they will all be displayed
before the program continues printing the numbers.

172

Line 16 The OPEN statement defines the serial port for input as file number 1 at 300
baud, 7 data bits, odd parity, 1 stop bit and XON/XOFF disabled.

Note: This configuration should parallel that of the peripheral device. Change the
configuration if it is not the same.

Line 20 An interrupt subroutine beginning at line number 100 will be executed if a
character is received through the serial port.

Line 36 The serial port interrupt capability is turned on. You can prevent the serial
port from interrupting the program with the

cCom OFF
statement. Similarly, if you wish to delay interrupts, you can use the
COM STOP
statement which defers the interrupt until a COM ON statement is executed.

Line 40 This loop prints numbers starting at zero and incrementing by one each time.
Since it is an infinite loop, you must press to terminate the program.

Line 160 When a character is received through the serial port, an interrupt is
generated and execution jumps to this line. No interrupts can occur during an interrupt
subroutine. If a character is received during the interrupt subroutine, it will be
remembered, and another interrupt will occur when the current one is completed.

This line will display the received character and then return to the main program. The
INPUTS (1,1) statement inputs one character from file number 1. In general, the
function

INPUTS (n,f)

will return n characters from file number f. In the case of the COM: device, the
program will wait until all n characters are received before it returns.

Experiment #8 Multiple Character Interrupt

While the procedure in the previous experiment works well with short strings, it will
not work if the peripheral device sends strings longer than around 20 characters at a
time. You can handle this situation by having the interrupt subroutine input all the
characters in the string before returning.

This experiment shows how to modify the program to accommodate longer strings
with interrupts. Change line 100 to

100 N$ = INPUTS (1,1) : PRINT N#%3
and add two new lines

il9 IF N$<>CHR$(13) GOTO 1909 .
120 PRINT : RETURN

173

List the program to confirm that it is:

19 OPEN "COM:3701D" FOR INPUT AS 1
Z0 ON COM GOSUB 199

30 COM ON

49 PRINT I @ I=I+1 : GOTO 490

1008 N$ = INPUTS (1.,1) = PRINT N3
119 IF N$<>CHR%(13) GOTO 100

128 PRINT : RETURN

Execute this program and have the peripheral device send a long string of characters
terminated with a carriage return. You should see the string correctly displayed on the
Model 100.

The program has been modified to keep inputting characters from the serial port while
still in the interrupt subroutine. The interrupt subroutine will be terminated in line 120
if a carriage return (ASCII value 13) is detected in line 110. The PRINT statement in
line 120 is necessary to print a line feed before returning to the main program.

A word of caution: Since the receiving program is written in BASIC, and the serial
port buffer has a limited capacity, you still cannot receive long files without missing
some characters. This is especially true at higher baud rates.

The procedure described above should therefore be used only with applications
requiring relatively short strings to be transmitted at any one time. It is also
recommended that you keep the baud rate at 300 or below, if possible.

What you have learned:

In this lesson you were shown how to use the serial port to communicate with other
serial devices. This allows transferring BASIC programs and data files between
computers and sending and receiving data between various peripheral devices.

174

ADDRESS

Lesson #15 TELCOM Applications

In this lesson you will learn how to use the Terminal Mode of the TELCOM
application program and the built-in modem to communicate with other computers
over the telephone lines. However, before starting any experiments using the Terminal
Mode, it is a good idea to review the overal! capabilities of TELCOM.

TELCOM Overview

As you know from reading the owner’s manual, TELCOM allows your Model 100 to
be used as an automatic telephone dialer (in the Entry Mode), and to communicate
with other computers (‘‘host’’ systems) over the telephone lines (in the Terminal
Mode). The Entry and Terminal modes may also be used together to dial a telephone
number and to ‘‘log-on’’ to a system automatically.

In the Terminal Mode you can access a wide variety of information services, including
bulletin boards, news, weather, data banks, other computers or stock market
information. You can make use of this information in a variety of ways. For example,
you may:

® display it on the LCD

® print it on a printer

® save it in a file

® analyze the data using a BASIC program to graph it, compute statistics, make
comparisons against previous values, and more!

You can also transfer programs or data files to other computers located miles, or even
thousands of miles, away.

Before you start using any of the features of TELCOM, the Model 100 must be
connected to the telephone lines (consult your owner’s manual for detailed
instructions). In this lesson we will assume that your Model 100 is connected 1o
modular telephone lines using the Modem Cable (26-1410).

Also, we make the assumption that you have access to a computer bulletin board, or a
computer information service (such as Dow Jones or CompuServe). Contact your local
Radio Shack Computer Center dealer for assistance in locating a local bulletin board if
you cannot locate one on your own.

175

Accessing TELCOM

To access TELCOM, simply move the Cursor over the word TELCOM at the Main
Menu and press (ENTER). The display then shows:

 M7I1E,18 pps
Telcom: |

e Find Call Stat Term

CT 1D =23 CD3ID CX4D =579 CSC 6D C=71—0 =8

When first accessing TELCOM, the Model 100 enters the Entry Mode immediately.

® The first line indicates the status of the communication parameters. They appear
listed in the order:

® R, baud rate

® W, word length
® P, parity bit

® B, stop bit

® S, line status

The last parameter, 10 pps, indicates the rate for autodialing, ten pulses per
second.

@ The Telcom: prompt in the second line lets you select any of the functions
displayed on the last line of the display.

® The last line displays the definition of the Function Keys (F1) - in
TELCOM’s Entry Mode.

For a complete discussion of the role of the Function Keys in the Entry Mode, see
‘‘Using the Function Keys in Entry Mode’’ in the owner’s manual (p. 79).

(When entering the Terminal Mode the display of the Function Keys will change to
reveal their new uses.)

Experiment #1 The Communication Parameters

Before entering the Terminal Mode and attempting communications, you must know -
the communication parameters used by the host system. These are usually provided
when you subscribe to an information system and are likely to be listed in your user’s
guide.

Once you know the communication parameters used by the host system, you must be
sure that the Model 100’s own parameters match those of the host exactly.

176

. Table 15-1 below, describes the allowable settings for the communication parameters.

Model 100 Communication Parameters

You Type: For:

Baud Rate “modem” (300)*
75 baud

110 baud

300 baud

600 baud

1200 baud
2400 baud
4800 baud
9600 baud
19200 baud

Word Length 6 bits
7 bits

8 bits

Parity ignore parity
Odd parity
Even parity

No parity

Stop Bit 1 stop bit

2 stop bit

Line Status** Enable (XON)

Disable (XOFF)

om(p=a{ZmO—|lo~Noo|jvoNvNonbrwwNn—=Z

Pulse Rate 10pps

20pps

N —
(SRS

Table 15-1

* Note: The Model 100 uses 300 baud when the built-in modem is in use. If you use
a number to set the baud rate, even if that number is 3 (for 300 baud), the modem
becomes disabled and, instead, the RS-232C interface is activated. Therefore, always
select the letter M whenever the built-in modem is to be used.

If the communication parameters of the Model 100 need to be changed to match those
of the host, simply:

1. Access TELCOM.
2. Type STAT, or press (F3), the status Function Key.

3. Type the new communication parameters observing the correct order and press

(ENTER).

To verify that the parameters were changed, simply press (F3) again and then (ENTER).
The new parameters will appear on the display.

177

Experiment #2 Entering the Terminal Mode

There are two ways to enter the Terminal Mode:

® Automatically via auto-dialing
® Manually via the Term Function Key (F4)

Manual Entry

Suppose you wish to contact an information service whose telephone number is
123-4567.

1. Set the ANS/ORIG switch (on the left side of the Computer) to ORIG.

2. Access TELCOM.

3. Lift the receiver and dial the host’s telephone number.

4. When the host answers, you will hear a high-pitched tone. Press Term ((F4).

After pressing Term, the Model 100 will produce a high-pitched tone to indicate it has
entered the Terminal Mode.

Also, the definitions of the Function Keys will change as the display shows:

Prev Down Up Full

= 1 =@ o zDm =390 Cc= 4 o 5T3 &= 6 = == / T3 T g 13

For a detailed discussion of the role of the Function Keys in the Terminal Mode,
consult your owner’s manual.

Automatic Entry

To enter the Terminal Mode automatically, you must first store the host’s telephone
number in the ADRS.DO file followed by the special symbols < ». This phone
number and the symbols < » must also be enclosed within colons.

For example, the telephone number of our hypothetical information service would be
stored as:

IS5 :123-4567 <>:
where I8 is your code for the information service.

(If you require extra information for storing telephone numbers in the ADRS.DO file
consult your owner’s manual.)

178

Then follow these steps:

Set the ANS/ORIG switch to ORIG.

Access TELCOM.

Press Find ((FD) and type the code for the information service (IS in this case).

v o=

Press Call ((F2)) after the number appears. You will not have to lift the receiver
when calling a host system in this way.

The Model 100 will “‘echo’’ a ringing tone or a busy signal (in which case you have
to redial the number).

After dialing, the Model 100 produces a high-pitched tone to indicate that it has
entered the Terminal Mode and the display changes to reveal the new roles for the
Function Keys.

For a detailed discussion of the role of the Function Keys in the Terminal Mode,
consult your owner’s manual.

The Log-On Sequence

Once in the Terminal Mode (whether you entered automatically or manually), you
must comply with the log-on sequence to gain access to the services offered by the
information service.

Most information services will provide you with a User ID and a Password to serve
as confirmation that you are authorized to access a host system.

Detailed instructions for complying with the log-on procedure should be described in
your user’s guide.

Experimelft #2 Automatic Log-On

The Model 100 gives you the option to combine the Entry and Terminal Modes to dial
and log-on to an information service automatically. This is a practical, time-saving
feature, especially if you make regular use of an information service.

In this experiment we will create an automatic log-on sequence for the hypothetical

information service from the previous experiment. This automatic log-on sequence will
serve as a model for creating other log-on sequences for real host systems.

Let’s assume that IS (Information Service) from the previous experiment specializes in
providing information of particular interest to Model 100 owners.

Let’s assume that the log-on sequence for gaining access to this system consists of:

1. Sending two carriage returns.
2. Answering the prompt User ID.
3. Answering the prompt Password.

in that order. Your User ID, for this example is 9768,453 and your Password,
“Two-tone.”” Also, let’s assume that after answering these prompts, IS asks you to

179

select an item of interest, either News or Mailbox. If you so choose, you can also .
include the selection of the item in the log-on sequence.

Briefly, an automatic log-on sequence consists of identifying the host’s log-on prompts
and sending the correct responses.

The Model 100 uses a series of Key Commands to anticipate and answer the log-on
prompts. These commands, listed in Table 15-2 are used as part of any log-on
sequence.

TELCOM Auto Log-On Key Commands
Key Meaning

Wait for a specified character

Pause for 2.0 seconds

Send a specific character

Causes the character after ~ to be sent as
a “control” character (i.e., "M is the same
as (ENTER)

Sl

Table 15-2

To log-on automatically, some of the Key Commands, along with the correct
responses to the prompts, must be inserted between the < » symbols and stored along
with the telephone number in the ADRS.DO file. .

After complying with the required responses, the log-on sequence should look like
this:

I8 :123-4567 <*"M"M?U9768,453"M?PTwo~-tone"M?
SNews “M=;

This is an explanation of how the above log-on sequence was determined:
1. Access the ADRS.DO file and position the cursor over the symbol .

2. Referring back to the log-on sequence, you must first send two carriage returns.
Type "M “M (the symbol " is obtained by pressing ®)).

3. Next, tell the Model 100 to anticipate the first prompt from the host, User ID, by
typing the Key Command ? (wait for a specific character) and then include a
single character from the prompt — we used the letter U.

4. Now, answer the prompt by typing your User ID: 9768,453.

5. Enter your ID number by typing "M. You’ll recall from the table of Key
Commands that "M is the same as (ENTER).

6. Tell the Model 100 to anticipate the next prompt, Password, by typing ?P, and
then type your response (Two-tone). Don’t forget to enter this by typing "M.

7. If you want to include the service you wish to access tell the Computer to wait
for the next prompt, What service?, by typing ?W, then follow this with News.
Again, you must enter this by typing "M.

180

The process for determining other log-on sequences always follows this pattern. For
more specific instructions see ‘‘Creating an Auto Log-On Sequence’” in your owner’s
manual (p. 91).

After this log-on sequence has been stored in the ADRS.DO file, you can access
TELCOM and press FIND (ED) to retrieve IS and then call the telephone number by
pressing CALL ((F2)). After a few seconds, you’ll be logged into the system and have
access to the News service.

This is an example of the kind of information you would get:

GOOD NEWS FOR M1@@ OWNERS:

IT WAS LEARNED THAT SEVERAL NEW VENDORS
HAUE RELEASED SOFTWARE PRODUCTS FOR THE
M12@ PORTABLE COMPUTER. CONTACT THEM
DIRECTLY FOR MORE INFORMATION:

ABC SOFTWARE INC.
1234 ANYSTREET s NEW YORKs NY 0@@1¢@0

DEF MICROWARE
5678 SCENIC DR, COMPUVILLE, CA 14567

MACROSOFT

8876 WONDER WAY» WETSVILLE: WA 898734
To log-oft the system, type

BYE or press (F8).
A log-off message, such as

THANK YOU FOR USING THE M1@@ USERS
BULLETIN BOARD SYSTEM
DISCONNECTING. .

may be displayed. Then TELCOM will display the prompt:
Disconnect?

Enter to disconnect. If you enter (N, you will keep the telephone connected
and return to the Terminal Mode. If you disconnect the telephone, you will return to
~ the TELCOM system as evidenced by the prompt:

Telcom:

Hints and tips...

When you first connect to a computer system, you might notice either of two strange
things happen on the display. You might, for instance, see nothing display as you type
on the keyboard. This would happen if you have the Mode!l 100 set for Full Duplex
and the remote system is set for Half Duplex. If this happens, press 4 to toggle
from Full to Half Duplex.

181

On the other hand, you might see every character you type displayed twice. This
would happen if you have the Model 100 set for Half Duplex and the remote system is
set for Full Duplex. If this happens, press to toggle from Half to Full Duplex.

You can transfer files over the modem using the Upload and Download capabilities of
the terminal. Refer to the previous lesson on serial communications which discusses
how to do this and how to use the other features of the terminal mode. The only
change required is to specify ‘“M’’ for the baud rate, R, so that communication is
through the built-in modem.

Experiment #3 Log-On from a BASIC Program

The built-in modem can be used from BASIC to communicate with other devices. The
procedure, however, is not especially easy, and is therefore recommended only for
advanced or adventuresome programmers. While it is probably easiest to transfer files
and communicate with other systems using TELCOM, there are times when it is
desirable to use BASIC. For example, you can write a BASIC program to call a stock
quotation service on a periodic basis, say every hour, and save the hourly quotes in a
data file for later analysis.

The following program segment will dial and log-on to the hypothetical IS
(Information Service) from the previous two experiments:

109 D = "123-4S567<"M"M?US7G6B 453" M7?PTwo-tone“M?
SNews"M>"

110 M = VARPTR(DS$)

120 D = PEEK(M+1) + PEERK(M+Z)%256

130 CALL 21200 : CALL 217293:04D

Line 100 The telephone number and-log on sequence are stored in the string variable
D§.

Line 110 The VARPTR function returns an address M which helps locate the string
DS$. Location M contains the length of the string variable, location M+ 1 contains the
least significant byte of the two byte starting address of the string, and location M +2
contains the corresponding most significant byte of the address.

Line 120 The address of the string variable D$ is computed and stored in the numeric
variable D. The function PEEK(x) returns the decimal value of the contents of
memory location x.

Line 130 The CALL statement is used to call a machine language subroutine. The
general form is

CALL adr,A,HL

where adr is the starting address of the subroutine, A is an optional eight bit value to
be passed through the A register, and HL is an optional 16 bit value to be passed
through the HL register. The first statement

CALL 21Z00
calls a machine language subroutine in the Model 100 ROM which *‘takes the

182

telephone off the hook.’” The second statement
CALL 21283,0.D

calls a machine language subroutine in the Model 100 ROM which dials the telephone
number and sends the log-on sequence stored in DS.

This program is incomplete in that it only dials and logs-on to a host system. There is
no provision for further communication with the other system. For example, there is
no way to disconnect from the other system or even hang up the telephone.

Experiment #4 BASIC Communications Through
the Modem

The previous experiment showed how to log-on to the hypothetical Information
Service, but no provision was made for receiving the NEWS service.

This program segment will display received text after the log-on sequence, send the
log-oft sequence when an end-of-file character CTRL-Z is received, and hang up the
telephone.

S MAXFILES=2

149 OPEN "MDM:711D® FOR INPUT AS 1
150 I$=INPUT$(1,1): PRINT 1%}

160 IF I${:>CHR$(26) GOTO 15¢@

17¢ ODPEN "MDM:711D" FOR OUTPUT AS Z
180 PRINT #2, "BYE" + CHR$(13)

180 CALL 21179

200 CLOSE

Line 5 Since the program has two files open simultaneously, it is necessary to use the
MAXFILES statement to provide buffer space for them.

Line 140 The modem is opened to accept input using file number 1. Note that the
status is included in the OPEN statement, but the baud rate is not specified, since it is
assumed to be 300 baud through the modem.

Line 150 Received characters are returned one at a time by the INPUTS$(1,1) function
and then stored in the string variable I$. Each character is displayed by the PRINT 1$;
© statement,

Line 160 It is necessary to look for the end-of-file character CTRL-Z to detect the end
of the NEWS bulletin. If the character received is not a CTRL-Z (CHR$(26)),
execution returns to line 150 to receive the next character. If a CTRL-Z is received,
execution resumes with line 170.

Line 170 The modem is simultaneously opened for output as file number 2 to allow
characters to be sent to the bulletin board system.

Line 180 The log-off sequence BYE plus a carriage return is output to file number 1
(the modem).

Line 198 A machine language subroutine in the Model 100 ROM is executed to
“‘hang up”’ the telephone.

183

Line 260 Both the input and the output files are closed. ‘ .

The two program segments can be combined to allow dialing, logging-on, receiving
and displaying the NEWS text, logging off and finally, hanging up the telephone. The
complete listing would be;

) MAXFILES = 2

100 D% = "123-4567<"M"M7UB76B+453"M?PTwo-tone"M?
SNews"M>"

116 M = VARPTR(D%$)

12¢ D = PEEK(M+1) + PEEK(M+2)#*25G

130 CALL 21200 : CALL 21283:0.D

14¢ OPEN "MDM:7I1D" FOR INPUT AS 1

150 I%=INPUT$(1,1): PRINT I%}

160 IF I$<:>CHR$%(Z6) GOTODO 15¢

17¢ OPEN "MDM:7I1D" FOR OUTPUT AS 2

180 PRINT #2, "BYE" + CHR%(13)

180 CALL 21178

200 CLOSE

What you have learned:

You have learned how to use the built-in modem to communicate with other systems

over the telephone lines. You have seen that it is possible to communicate in either

TELCOM or BASIC, however, TELCOM is much more straightforward to use. .
Several machine language-related functions and statements were presented.

184

Applicatidn #1 Calculator

This application program converts your computer into a calculator.

Insert the cassette containing the Calculator program in your cassette recorder.
Rewind the cassette if necessary.

Clear memory with the NEW command and then load the calculator program by
pressing PLAY on the recorder and entering the command:

CLOAD "CALC"

List the program and compare it to Figure 1-1 to verify that it loaded correctly. Save
the program in a RAM file by entering the command:

SAVE "CALC"

For convenience, you may also wish to save the calculator program on a separate
cassette. Use the command

CSAVE "CALC®
to write the program to a blank cassette.

This program allows you to use your Computer as a calculator. This means that
numbers may be added, subtracted, multiplied or divided as they are entered from the
keyboard, without having to include them as an expression in a PRINT statement.

Execute the program. There will be no visual indication that anything has happened.
However, if you type the following sequence:

2+3=
you will see that the result is immediately displayed:
2+43= O

Notice that this is exactly the way you would enter data to be added on a calculator.
Try the following simple calculations:

Press keys in this order Result

9-2= 7

3.25+7 = 22.75

-1/3= —.33333333333333

5*6—-9.3= . 20.7 (30 minus 9.3)

42= 16 (4 to the 2nd power)
2+3*4= 20 (5 times 4)

2+(3*4)= 14 (2 plus 12)
(2+3)/(2.5%4) = 5 (5 divided by 10)
1/((1+(.5°(—2))/(1+.5)) = 3 (1 divided by 3.333 . .)

Notice that exponentiation and parentheses are both supported. Keep in mind that the
calculator computes the result immediately as each of the operators is entered. The
equal sign (=) prints the result.

185

If you make a mistake while entering data in the calculator mode, you can press
to cancel and start over. You cannot back up to correct an error.

You can use parentheses to make the order of computation unambiguous. The program
allows nesting parentheses up to ten deep.

Here is the listing of the Calculator Program:

100
110
120
130

140

150
160
170
180
185
1890

200
205

210
117
S10
SZ20
oS30
600
630
633
640
650
855
BGO
670
675
677
680
690
720
800
B1i0
BZo
B30
B840
8BS0
BGO

R(L)=0 = Ss(L)="+"

GOSUB So0

IF Cs="," THEN GOSUB 6090 : GOSUB 800

IF ASC(C#)>47 AND ASC(C%)<58B THEN GOSUB G@®
GOSUB 800

IF C$=")" THEN NU=R(L) : L=L-1 :

GOSUB 800 : GOTO 110

IF Cé="+" THEN S#(L)=C% : GOTO 110

IF Cs="-" THEN S#%(L)=C% : GOTO 1190

IF C$="%" THEN S$(L)=C% : GOTO 110

IF C$="/" THEN S%(L)=C% : GOTO 110

IF Cé=""" THEN S#%(L)=C% : GOTO 1190

IF Cs="(" THEN L=L+1 : R(L)=0 : S$(L)="+"
GOTO 110

IF Cs="=" THEN PRINT R(L) : L=0 : GOTO 100
IF ASC(C#$)=13 THEN PRINT " CANCELLED" : L=0
GOTO 100

GOTC 110

REM SUBROUTINE GET CHARACTER

C#=INKEY$: IF C$="" GOTO S10

PRINT C%3

RETURN

REM SUBROUTINE GET NUMBER

NU = @

IF C¢="," THEN DF=-1 : GOTO G675

NU = 10 % NU + VAL(CS)

GOSUB S00

IF C$="," THEN DF=-1 : GOTO G675

IF AGC(C#%){48 OR ASC(C$)>57 THEN RETURN
GOTO B35

GOsUB 500

IF ASC(C%)<4B OR ASC(C%$)>57 THEN RETURN

NU = NU + VAL(C%) * 10°DF

DF = DF-1

GOTO 675

REM THIS SUBROUTINE COMPUTES THE

REM RESULT AT THE CURRENT LEVEL

IF S$(L)="+" THEN R(L) R(L) + NU : RETURN
IF Ss(L)="-" THEN R(L) R(L) - NU : RETURN
IF S$(L)="%" THEN R{(L) R(L) * NU : RETURN
IF 8$(L)="/" THEN R(L) R(L)Y / NU : RETURN
IF gs(L)=""" THEN R(L) R(L)Y * NU : RETURN

186

Explanation of the program:

Line 100 The array R contains the result and the array S$ contains the most recent
operator at level L. The program begins at level 0. Levels are analogous to
expressions within parentheses. The level is increased by one as a left parenthesis is
encountered, and decreased by one as a right parenthesis is encountered.

Line 110 A subroutine is used to get a character from the keyboard. The character is
returned in the string variable C$.

Lines 120 - 138 If the character returned is a decimal point (.) or a digit (0 - 9), then
a subroutine (GOSUB 600) is used to build the rest of the number. The value of the
number is returned in the numeric variable NU. Another subroutine (GOSUB 800) is
used to compute the result of applying the operator to the previous result (if any) and
the current value NU. The result is stored in the appropriate level of the array R.

Line 140 If a right parenthesis is typed, the value at the current level is combined
with the value at the previous level. This is why the operator at the previous level was
saved in the S$ array.

Lines 150 - 185 If an arithmetic operator is typed, it is saved in the S$ array.
Execution then returns to line 110 to get the next character.

Line 190 If a left parenthesis is typed, the level is increased by one, the result at the
new level is initialized to zero, and the operator is assumed to be addition. Execution
then returns to line 110 to get the next character.

Line 260 If an equals sign (=) is typed, then the answer, which is the result at the
current level, is displayed. The level is initialized to zero and execution jumps to line
100 to begin a new problem.

Line 205 If (ENTER) is pressed, then the message CANCELED is displayed and a new
problem is begun.

Line 216 If any other key is inadvertently typed, it must be a mistake, and therefore
does nothing to the calculation. Execution jumps back to line 110 to get the next
character.

Lines 500 - 530 A REMark statement is used for documentation in line 500. A REM
statement is ignored by the BASIC language interpreter and is used to insert
explanatory comments for the convenience of the programmer. This subroutine
continually scans the keyboard until a key is pressed. The character is stored in the

string variable C$ and displayed before returning. The INKEY$ function returns a null
string

)

if no key is pressed.

Lines 600 - 726 This subroutine builds a number with or without a decimal point. If
the number has a decimal point, the subroutine first builds the part of the number to
the left of the decimal point, and then builds the part of the number to the right of the
decimal point. Since the characters are originally in string form (C$), the VAL
function is used to convert to numeric form. The number is assumed to be completed
when any character other than a digit or a decimal point is typed.

Lines 806 - 860 This subroutine computes the result at the current level. The
appropriate operator (+, —, *, or ") is applied and the result stored in the R array.

187

Application #2 Memory Master
Game

This challenging game will test your ability to memorize a random sequence of
musical tones.

Insert the cassette containing the Memory Master application program in your
cassette recorder. Rewind the cassette if necessary. If you have loaded the Calculator
application program and have not changed the position of the tape, you can speed up
loading the Memory Master program by not rewinding the cassette.

Clear memory with the NEW command and then load the Memory Master program by
pressing PLAY on the recorder and entering the command

CLOAD "MEMO"
List the program and compare it to the listing below to verify that it loaded correctly.

100 CLS : P=RND(-VAL(RIGHTH(TIME®:2)))

119 PRINT "Want Instructions {(¥=vess N=no)"ji:
GOSUB 1000

120 IF A%="Y" OR A%="v" THEN GOSUBZ0000

125 IF A${>"N" AND A%{>"n" GOTO 100

139 PRINT "Length of sequence L (0-89)"F : GOSUB
1000 : L = VAL (A%)

132 IF L=0 GOTO B00d

134 PRINT "How many notes N (2-9)"35 : GOSUB 1400 :
N = UAL(A%)

136 IF N=0® OR N=1 THEN CLS : GOTC 134

142 NP = @ :+ NC = @ : LAST = §C

145 CLS

158 NP = NP+1

160 FOR I=1 TO L

170 ACI) = INT(N*RND(N)) + 1

180 FOR J=1 TO 150 : NEXT J

190 SOUND GOOO-A(I)*S00,20

200 NEXT I

300 PRINT "Enter sequence"

310 C = @ : FOR I=1 TO L

320 A%$=INKEY$: IF A%="" GOTO 320

322 IF A$<"1" OR A%:>"9" GOTC 320

324 SOUND Co0d-(ASC(A$)-UB)*500 4,20

332 Y{(I) = ASC(A%) - 48

342 IF Y(I)<»A(I) THEN C=1

350 NEXT I

360 IF C=1 GOTO 500

490 PRINT

41@ PRINT "CORRECT ¢

420 NC = NC+1

189

430
S0
510
609

610
620
630
632
633
635
640
650
700
785
710
712
714
720
730
740
BOO
Blo
BZ0O
B30
B33
B4
850
BG@
B70@

GOTO oo

PRINT

PRINT "W R O NG 1"

PRINT "LISTEN AGAIN" : FOR J=1 TO 500 :
NEXT J : FOR I=1 TO L

SOUND GOPO-A(I)*500,20 : PRINTA(I);

FOR J=1 TO 150 : NEXT J

NEXT 1
CLs
SC = LAST + INT(1000%L*N * NC/NP)

PRINTBZ40 " "
PRINTBRZ240,"SCORE="135C

PRINTBO +"" 3

PRINT "Want to rplary adain?"

PRINT "ENTER=zvess D=chande difficulty, S=zstop)"
GOSUB 1000

CLS : PRINTRZ240+"SCORE="3SC

PRINTR®, ""3

IF ASC(A%)=13 GOTO 150

IF A+="D" OR A%="d" GOTO 130

IF A%="8" OR A%="s" THEN STOP ELSE GOTO G50
REM Press number Kevys to hear tones

CLsS

PRINT "Press any number Key (1 - 89) to"
PRINT "hear the tone associated with it."
PRINTRZBO+"Press ESC to bedin game'}
A%=INKEY% : IF A4="" GOTO B4O

IF A¢<{"1" OR Ad¢>v"9" GOTO 100

SOUND GOa0d-(ASC(A$)-4B)*500,20

GOTO 849

1000 A%=INKEY$: IF A$="" GOTO 1000 ELSE PRINT

A% : RETURN

20000 REM s::::: INSTRUCTIONS s::::a:
20019 CLS : PRINT"MEMORY MASTER is a dame which

tests" : PRINT"vour ability to memorize a
sequence” : PRINT"of tones."

20020 GOSUB 30000
20030 PRINT"Two different sKills are being

tested:s" : PRINT : PRINT"1. Your ability to
recosgnize different"

20040 PRINT"tones (pitch)s and"
20050 PRINT"Z2., Your ability to recall a random"

PRINT"sequence of events.” : GOSUB 30000

20060 PRINT"The obdective of the dame is to

maximize"s : PRINT"vour scores which is
comrPuted as:”

20079 PRINT" 1000 * N * L = C / T where"

20080 PRINT"N
20090 PRINT"L
20100 PRINT"C
20110 PRINT"T

number of different tones"

lendth of sequence"

number of correct recalls"”

total number of sequences tried";s
PODO

WU u uu

: GOSUB

190

20120 PRINT"Bedinners should select a sequence" :
PRINT"length L = @"

20130 PRINT"which lets vou press the number Keve" :
PRINT"1 throudh 9 to hear the corresponding®

20149 PRINT"tone." : GOSUB 30000

20150 PRINT"When vou have learned to associate
the" : PRINT"number Kevs with the tones,
enter a "

20160 PRINT"sequence length L = 1 and number of"

t PRINT"tones N = 2,"

20164 PRINT"Press the ‘1’ Key to match the LOW
tone" ¢ PRINT"or the ‘2’ Kevy to match the
HIGHER tone."

20166 GOSUB3@00Q

20170 PRINT"When vou have that mastereds increase"
t PRINT"the lendth of the sequence L to test"

20180 PRINT"vyour ability to memorize a sequences"

20190 PRINT"or increase the number of tones N to
: PRINT"test vour ability to recodnize
tones : GOSUB 30000

20200 RETURN

30009 PRINTBZ2BOs"Press any Kevy to continue"j

30019 PRINTERZ278,""§ : GOSUB 1900

30020 CLS : RETURN

You may wish to save the program in a RAM file by entering the command
SAVE “MEMO"

For convenience, save the program on a separate cassette with the command
CSAYE "MEMO™

Execute the program.

In answer to the prompt
Want Instructions (Y=vess N=no)

press to request instructions on the use of the program. The instructions will be
presented a few lines at a time. Press any key to continue the instructions. After all
the instructions have been displayed you will again see the prompt

Want Instructions (Y=vess N=no)

Press (ND) to proceed with the game. You will be prompted to enter the length of
sequence L. As suggested in the instructions, press (@) (zero) to select the practice
mode.

As indicated by the display, you may press any of the number keys (1 - 9) to hear the
corresponding tone. The larger the number is, the higher the tone will be. The 1 (one)
key will give the lowest tone and the 9 (nine) key will give the highest tone. Confirm
this by pressing the number keys insequence (1, 2, ... 9). The game will require you
to memorize the tone associated with the keys. You should therefore practice with the
keys until you feel comfortable with the association. For beginning levels of play it is
only necessary to remember the two lowest tones (1) and (20 keys.

191

Return to the game by pressing (ESC). In fact, if you press any key other than the
number keys, you will return to the game as indicated by the request for instructions
prompt. When you are ready to play the game, press (N_) to indicate No instructions.

Enter a (1) for the length of sequence L. Enter (2) for the number of notes N. The
display will clear and you will hear a single tone. Press either (1) or (2),
depending on which tone you think it is. A message will indicate whether you were
correct or not and the tone will be repeated with the correct key displayed. Your score
will be displayed.

After each play of the game you have three options:

1. You can play another game at the same level of difficulty by pressing (ENTER).
Your score will reflect the percentage of correct responses at this level of
difficulty.

2. You can change the level of difficulty and continue to play the game by pressing
(D). You can increase the length of the sequence to test your ability to
memorize random events. You can increase the number of different tones to test
your ability to recognize pitch. Your score from any previous levels of play will
be added to the present level score.

3. You can end the game by pressing (5.

Explanation of the program:

Line 100 The display is cleared and the random number generator is initialized using
the current time in seconds.

Lines 116 - 125 The user may request instructions or proceed with the game. A
subroutine is used to wait for and return a single character from the keyboard. The
character is stored in the string variable A$. A subroutine is used to print out the
instructions if requested.

Notice that the IF statements in lines 120 and 125 are testing for both upper and lower
case characters. This is a useful technique which you may wish to incorporate in your
own programs. Since there is no way to know whether the CAPS LOCK key is
depressed or not, this technique ensures a correct response in either case.

Notice also that the IF statement in line 125 traps any key other than Y or N by
repeating the prompt. This technique is also useful in general to prevent undesired
reponses to mis-typed keys. This technique of ‘‘fool proofing’’ should be used
whenever possible to prevent undesired program behavior.

Lines 130 - 132 Another way of trapping inappropriate keyboard input is illustrated. If
a non-numeric key is pressed, then VAL(AS) returns a value of zero. The program
will then treat this the same as having pressed (@_).

Lines 134 - 136 The user is prompted to input the number of notes. Another trap is
used to prevent an inappropriate response.

Lines 142 - 200 A sequence of tones of length L is generated. A number from 1 to N
is randomly generated and stored in the numeric array A(I). The frequency of the
tone, used in the SOUND statement, is related to the random number using the
formula 6000 — A(1)*500

192

Lines 300 - 350 The user is prompted to enter his answer in the form of a sequence of
L keys. The tone is heard as each key is pressed (Line 324). A flag is set (C = 1) if
a key is pressed out of sequence (Line 340).

Lines 360 - 510 The flag (C) is checked to determine if the user’s answer was correct
or not. The number of correct responses (NC) is incremented if the answer was
correct.

Lines 600 - 630 The correct sequence of tones is replayed to provide feedback to the
user. Note the use of FOR/NEXT loops (Lines 600 and 620) to cause a short pause
between tones.

Lines 632 - 748 The score is computed and dispiayed. Note that the score is added to
the cumulative score (LAST) from any previous level of play. The user is allowed to
continue playing at the current level, change the difficulty level or stop the game. Any
other response will result in the prompt being redisplayed (Line 740).

Lines 800 - 870 This section of the program lets the user listen to the tones associated
with the number keys (1 through 9). When any key other than a number key is
pressed, execution jumps back to the beginning of the program.

Line 1000 This subroutine continuously scans the keyboard (A$=INKEY$) and waits
for a key to be pressed (A$ will be null until a key is pressed). When a key is
pressed, it will be stored in the string variable A$ and displayed before execution
returns.

Lines 20000 - 20200 This subroutine displays the instructions. A subroutine (GOSUB
30000) is repeatedly called to wait for a key to continue the instructions.

Lines 30000 - 36020 This subroutine displays a prompt to remind you to press any
key to continue the instructions. It also calls a subroutine (GOSUB 1000) to wait for
any key to be pressed before returning.

193

Application #3 Descriptive Statistics

This application program computes a variety of common statistics and prints a
histogram.

Insert the cassette containing the Descriptive Statistics application program in your
cassette recorder. Rewind the cassette if necessary. If you have loaded the Memory
Master application program and have not changed the position of the tape, you can
speed up the loading of the descriptive statistics program by not rewinding the
cassette.

Clear memory with the NEW command and then load the Descriptive Statistics
program by pressing PLAY on the recorder and entering the command:

CLOAD "STAT"
List and compare it to the listing below to verify that it loaded correctly.

100 DIM A(L1@0)F(1)

185 CLS

119 INPUT"RAM or CASSETTE FILE (R or CO)"5T$
120 IF T$<>"R" AND T#<{>"C" GOTO 1@5
130 INPUT"FILE NAME" iN%$

1490 IF T$="R" THEN N&="RAM:"+N$%

150 IF T#="C" THEN N$="CAS:"+N$%

160 OPEN N$ FOR INPUT AS 1

1685 N=1

170 INPUT #1,A(N)

180 IF EOF(1) GOTO 219

190 N=N+1

200 GOTO 170

210 CLOSE

220 CLS

Z30 INPUT"OUTPUT DATA (Y or NI"iTH
240 IF T$="N" GOTO 350

250 IF T$<>"Y" GOTO 220

260 PRINT"OUTPUT ON LCD, LINE PRINTER OR BOTH"
270 INPUT*(L P or B)"iT$%

280 IF T#="L" GOTO 310

2830 IF T#="P" GOTO 3490

300 IF T$<>"B" GOTO Z2G@

310 CLS:FOR I=1 TO N

320 PRINT A(I)}:NEXT I

330 IF T#="L" GOTO 350

340 FOR I=1 TO N

345 LPRINT ACI):NEXT I:LPRINT" "
350 PRINT:PRINT"SORTING, PLEASE WAIT®
360 FOR I=1 TO N-1

370 FOR J=1 TO N-I

195

380
3390
400
410
420
430
449
a5
460
a7
480
499
500
510
520
530
540
550
o690
°70
580
590
GO0
Bio
620
630
640
650
66O
670
675
680
682
684
686
688
700
702

704
706
708
710
720
728
730
735
738
740
750
760
770
780

IF A(JI<ACJ+1) GOTO 400 .
A=A(J) tA() =A(J+1) tA(JI+1) =A

NEXT JiNEXT 1

CLS

INPUT"OUTPUT SORTED VALUES (Y or N)I"3T$

IF T$="N" GOTO 550

IF T$<»"Y" GOTO 410

PRINT "OUTPUT ON LCDs LINE PRINTER OR BOTH"

INPUT"(Ls P or B)"3T$

IF T$="L" GOTO 500

IF T$="P" GOTO 530

IF T$<>"B" GOTO 450

CLS:FOR I=1 TO N

PRINT A(I):NEXT I

IF T¢="L" GOTO 550

FOR I=1 TO N

LPRINT A(I):NEXT I

REM CALCULATE THE MEAN

FOR I=1 TO N:S=S+A(I):NEXT I

M=5/N

REM CALCULATE THE (SAMPLE) VARIANCE

§=0:FOR I=1 TO N

S=S+(A(I)-M)"2:NEXT I

Y=§/ (N-1)

REM CALCULATE THE (SAMPLE) STANDARD DEVIATION

SD=SOR (V) .
REM CALCULATE THE MEDIAN

NI=INT((N+1)/2) sN2=INT((N+2)/2)

MD=(A(NL)+A(NZ)) /2

REM DISPLAY THE RESULTS

CLS

PRINT"NUMBER OF VALUES"TAB(28)N

PRINT"MAXs MIN VALUES"TAB(2@)A(N) A1)
PRINT"MEAN"TAB (28)M

PRINT"MEDIAN"TAB(28)MD

PRINT"VARIANCE"TAB(20)V

PRINT"STANDARD DEVIATION"TAB(Z0)SD

PRINT: INPUT"OUTPUT RESULTS TO PRINTER (Y or N)"

TS

IF T$="N" GOTO 740

IF T$<3"Yy" GOTO 782

LPRINT"NUMBER OF VALUES"TAB(48)N

LPRINT"MAX » MIN VALUES"TAB(4&)A(N)3A(1)
LPRINT"MEAN"TAB(4@)M

LPRINT"MEDIAN"TAB (40)MD

LPRINT"VARIANCE" TAB (4@)Y

LPRINT"STANDARD DEVIATION"TAB(4@)SD .
LPRINT" ":LPRINT" ":LPRINT" "
CLS:INPUT"HISTOGRAM (Y orf N)"iT$
IF T$="N" THEN END

IF Te<3"Y" cOTO 740

CLS

INPUT"NUMBER OF CLASSES (B-10)"iNC$

196

79¢
795
800
810
820
B30
B4
85¢
860
870
880
890
9090
910
9z
930
949
g950
960
979
g80
1000
1010
1020
1030
1040
10350
1069
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240

1250
1260
1265
1270

1280
1299

NE=INT(VAL (NC%))

IF NC<B OR NC:>15 GOTO 770
REM COMPUTE THE FREQUENCIES
RG=A(N)-A(1):CL=RG/NC
J=1
FOR I=1 TO NC-1
BD=A(1)+I*CL

IF A(J)>BD GOTO 880
FII)=F(I)+1l:d=J+1
GOTO 850
NEXT I
FINC)=N-J+1
REM DETERMINE THE MAX FREQUENCY
FOR I=1 TO NC

IF MF:F(I) GOTO 930 ELSE MF=F(I)
NEXT I
PRINT"HISTOGRAM ON LCD,s» LINE PRINTER OR BOTH"
INPUT" (L s P or B)"iT%

IF T#="L" GOTO 10410

IF T$="P" GOTO 1110

IF T#<x"B" GOTO 94¢

REM DISPLAY HISTOGRAM ON LCD
CLS

REM DRAW THE AXES
LINE(13+0)-(13+60):LINE-(238+60)
Y2=B60:K2=20

FORI=1 TO NC
HKl=XZ:Y1=60-50*F (1) /MF
KZ=X1+212/NC
LINE(XL+Y1)-(X2+¥Y2)+1,:BF

NEXT 1

IF T$="L" GOTO 1290

REM PRINT THE HISTOGRAM
X$=||****II:Y$=|| i

FOR I=3¢ TO 1 STEP -1

LPRINT "*"3TAB(1@)3

FOR J=1 TO NC

H=30*F(J) /MF

IF H>1 THEN LPRINT X$3 ELSE LPRINT Y#%$3
NEXT J:LPRINT

NEXT 1

LPRINT STRINGH(BD,"*")

FORI=1 TO NC

LPRINT TAB(10+4%(I-1))Ii:NEXTI
LPRINTY$:LPRINTY$:LPRINTYS%
LPRINT"CLASS NUMBER"TAB(2Z9)"CLASE"TAB(49)"
FREQUENCY

LPRINT STRING®(B®,"-")

FOR I=1 TO NC

BD=A(1)+(I-1)*CL

LPRINT TAB(A)ISTAB(14)BDITAB(31)"TO" iBD+CL S
TAB(S1)F(I)

NEXT 1

END

197

Save the program in a RAM file by entering the command:
BAVE "“BTAT"

You may wish to save the descriptive statistics program on a separate cassette to make
loading faster in the future. Use the command

CSAVE "STAT"
to write the program to a blank cassette.

This program computes a variety of common statistical measures on a set of data. The
data must be in the form of a file either in RAM or on cassette. You can use TEXT to
create the data file.

Go to the Menu by pressing (F8). Move the cursor over the word TEXT and press
ENTER). You will see the prompt

File to edit?
Enter a name for the data file to be created. For example, enter a file name of DATA:
File to edit? DATA

Type a list of data values separated with either commas or carriage returns. You can
speed up this process by pressing (NUM and then using the appropriate keys as a
ten-key number pad.

For example, type:

23:5433547 445,248 431267 30,444,222 4133+45<
16:+37:56:+74,:82:13:28,74,:66,91 43,3255«
46477 +31:86.58,:59,62,43,71.:38:69.:23.,77<
48:39.,42,:36:454+30,37,43,47.,41<

Save the data as a RAM file by pressing (F8). You will return to the Menu. If you
want to make any changes to your data file, simply move the cursor over the file
name DATA.DO and press (ENTER). Use the standard Editor commands to make your
changes.

After your data file is created, you can use the descriptive statistics program to list it,
sort it, compute the number of values, the maximum and minimum, the mean,
median, variance and standard deviation. You can also plot a histogram of the data to
give an indication of its distribution.

From the Menu, place the cursor over the file name STAT . BA and press (ENTER).
This will load and execute the descriptive statistics program. You should see the
prompt:

RAM or CASSETTE FILE (R or C)7

If you have saved your data in the RAM file DATA.DO as described above, enter an
R. You will see:

RAM or CASSETTE FILE (R or C)7 R
FILE NAME®?

Enter the name of your data file. For the example, enter a file name of DATA. The
display will clear and another prompt is displayed:

QUTPUT DATA (Y or NOT7

198

If you would like the data file to be listed, enter (for Yes). Enter CND) (for No)
if you do not want to see the data listed.

If you do request the data to be output, you will see the prompt

OUTPUT ON LCDs LINE PRINTER, OR BOTH
(LsP or B)7

Here you have a choice of output devices. Enter L if you want the data displayed only
on the LCD, enter P if you want the data output to the printer only, or enter B if you
want the output to go to both the LCD and the printer.

If you request output to the printer, make sure that you have your printer attached to
the printer port and that it is turned on. Otherwise, the program will wait for the
printer before proceeding.

The data is displayed and/or printed in a single column as illustrated below:

23.5
35.7
45.2

LB A

43
47
41

After the data is displayed, or if no data display was requested, you will see the
message

SORTING: PLEASE MWARIT
After the data has been sorted, the display will clear and you will be prompted with:
OUTPUT SORTED VALUES (Y or N7

Enter (for Yes) if you want to output the data values in sorted order, or enter
(ND (for No) if you do not desire a listing of the sorted data values.

If you do request the sorted values to be output, you will again be prompted to direct
the output to the LCD, the Printer or both as shown below:

OUTPUT SORTED VALUES (Y or N)7? Y
OUTPUT ON LCD, LINE PRINTER: OR BOTH
(Ly P or B)? &

The data values will be output in ascending order as illustrated below:

12
13
16

LR B

82
86
91

199

After the sorted data has been output, or if no output was requested, the display will .
clear and the results will be displayed. For the example, you would see:

NUMBER OF WALUES a7

MAX» MIN VALUES 81 12

MEAN 47.2

MEDIAN a4

VARIANCE 387.63695652174

STANDARD DEVIATION 18.6B849807684
The bottom line of the display gives the prompt
OUTPUT RESULTS TO PRINTER (Y ar N)7

If you would like to output the above results to the line printer, enter (Y) (for Yes).
Enter () (for No) if you do not want the results printed.

After the results are printed, or if you do not request output to the printer, the display
clears and another prompt appears:

HISTOGRAM (Y or N)7

Enter (YD) (for Yes) if you would like to see a histogram (graphic plot of the
distribution of the data). Enter () (for No) if you do not want a histogram.

If you request a histogram, you will be prompted to enter the number of classes:
NUMBER OF CLASSES (6-18)7

The number of classes is the number of intervals of equal width to classify the data
into. For example, if you want to divide the data into seven equal intervals, enter 10.

You must now direct the histogram to be output to the LCD, the Printer or Both in
response 1o the next prompt:
MUMBER OF CLASSES (6-102)7 1@

HISTOGRAM OMN LCD, LINE PRINTER OR BOTH
{L+ P or B)?

If you enter (B, you should see the histogram on the LCD similar to Figure 3A-1
and on the printer similar to Figure 3A-2.

Ok
a

m

Figure 3A-1. LCD Histogram

*EER
* % % ¥
% %
L3 X .
* % %%
* %% %
L2 2 2 2 2223
L2132 2.2 23]
30 3% N % *
(2232222222)
W N NN R K
(2222222222 2]
3NN RN
(222222222 22
W NN
(2222222 22 2]
3R
(222222282l
W RN k% H
3 3 9 39 R KR E R *x*E R
LA 222 2 At X XL sl LA L L
EEEREEEEREFEEEEEEELEEFLREEEEERFEEEEN
2224222222222 2222222222l
3696 3 3 I W W W AN W W NN NN R RN
(222222222222 2222222222322 2 22222 X T
B9 3 I I W I I I I I I I I I I W I I NI N RN
(2222222222222 2222222222222 2L]]
B 36 I W I N NI I I W W W NI I I NI W NN NN R
(2222222222222 2 2222222222222 2222223222
L2222 2222222222222 2222222222222 2222222222222 22 Y]
1 2 3 a 5 B 7 8 9 10

a ok ok ok ok dk ok K k k ok K dk ko ko dk ok ok ok ok ok ok ok ok ok ok ok ko ok

Figure 3A-2. Printer Histogram

If you request printer output, you will also obtain a listing of the class intervals and
the corresponding frequencies of occurence within each interval. This is illustrated in
Figure 3A-3. The frequency is the number of data values which occur within the class
boundaries. For example, in Figure 3A-3, there are seven data values within the
approximate boundaries 27.8 to 35.7.

CLASS NUMBER CLASS FREQUENCY
1 12 T0O 19.9 3
z 19.9 TO 27.8 3
3 27.8 TO 35.7 7
4 35.7 TO 43.6 19
5 43.8 TO 51,5 =4
-] 51.5 TO 59.4 4
7 59.4 TO B67.3 3
8 67.8 T0 75.2 4
9 75.2 70 83.1 3
10 88.1 T0 91 2

Figure 3A-3. Listing of Class Intervals

Explanation of the Program:

Line 100 The data values will be stored in the array A and the frequencies for the
histogram will be stored in the array F. The maximum number of data values is 100.

Lines 105 - 150 This part of the program allows the user to indicate whether the data
will be read from a RAM or cassette file and to input the file name. The file name is
stored in N$ along with the device (either RAM: or CAS:).

201

Lines 160 - 219 The data file is opened for input. The data is read one value at a time

from the input file until an end of file is encountered (Line 180). When the last data
value is read, the input file is closed. The number of data values is incremented and

stored in the numeric variable N.

Lines 220 - 345 The user is asked whether to output the data values or not. If not,

execution jumps to Line 350, If output is desired, the user is asked to specify whether

the LCD, the Printer or Both should be used. If the LCD only is desired, only the
PRINT statement is executed. If the Printer only is desired, only the LPRINT
statement is executed. If both the LCD and the Printer are desired, then both the
PRINT and the LPRINT statements are executed.

A FOR/NEXT loop increments through all N data values.

Lines 350 - 400 A bubble sort is used to put the data values into ascending order.
This is necessary in order to compute the median.

Lines 410 - 540 This section is similar to Lines 220 - 340, except that the sorted data

values will be output if desired.

Lines 550 - 660 The mean, variance, standard deviation and median are calculated
and stored respectively in the variables M, V, SD, MD.

Lines 670 - 738 The results are output to the display using PRINT statements. The
user is asked if output is also desired to the printer. If it is, the results are output a

second time using LPRINT statements.

Lines 740 - 930 The user is asked if a histogram is desired. If not, execution ends. If
a histogram is desired, it is necessary to input the number of classes, NC, and then to

calculate the class length, CL. A FOR/NEXT loop (Lines 830 - 880) increments
through all data values and counts the frequency of occurrence in each class. The

frequencies are stored in the F array.

A FOR/NEXT loop (Lines 910 - 930) is used to compute the maximum frequency and

stores it in MF. The maximum frequency is required in order to scale the histogram

display.

Lines 940 - 980 The user is asked whether to output the histogram to the LCD, to the

Printer or to both.

Lines 1000 - 1100 This section of the program displays the histogram on the LCD.
Since the display area is limited, no labels are used on the axes. The LINE statement

is used to draw the axes.

A FOR/NEXT loop (Lines 1050 - 1090) is used to draw a box for each class, where
the height of the box represents the frequency of that class.

Lines 1110 - 1220 The histogram is output to the printer. Since there is no LINE
statement for use with the printer, the histogram must be printed one line at a time

using standard ASCII characters. The asterisk,

Cogy

as the fill character because of its relative density.

A FOR/NEXT loop (Lines 1130 - 1190) prints the ‘‘boxes’’. The vertical axis is
printed in line 1140. The horizontal axis is printed in line 1200. A FOR/NEXT loop
(Lines 1210 - 1220) is used to print the horizontal axis labels.

, was picked somewhat arbitrarily

Lines 1230 - 1280 A table consisting of the class intervals and the corresponding

frequencies is printed.

202

INDEX

Subject Page Subject Page
ADDRESS 182 EntryMode................. 175
AND.................. 120, 121 ErrorMessage................ 3
ANS/ORIG 178 FILES....... ... 16
ASCIHl.......... 26, 116-118, 165 FOR/NEXT........... 88, 90, 91
ATN .o 114 FRE ... 115
Adding (aline)............... 12 File Extension 16
Arithmetic Expressions. 32 File Name............... 15, 16
Arithmetic Operators. 32 Files..................c.. 0. 3
Arrays ...l 92-94 Full/Half Duplex........ 169, 181
Assignment Statement........ 32 FunctionKeys 155
Auto Log-On................ 179 GOSUB............... 142, 143
BASIC.................... 1,3 GOTO ... 6
BASIC Program............... 5 Handshaking 166
BEEP...................... 145 IF/THEN, 46
BREAK 3,6 IF/THEN/ELSE. 50-52
BaudRate.................. 166 INKEYS ... 119
Bits...........oiiiiii, 165 INPUT ... 35-38
Branching 41 INPUTS................o. 0. 173
Bubble Sort. 136 INPUT#.................... 125
CALL...................... 182 INT........... Lt 135, 140
CHRS...................... 116 Infinite Loop 6, 54
CLEAR 40, 41 Insert (aling) 12
CLOAD 22 InsertMode 71
CLOAD? .. .ciieii i 24 KEYON 155
CLOSE 124, 125 KEYOFF 159
CLS ... 88 KEYSTOP 160
COMON.............. 172, 173 KEY ... 155, 156
COMOFF.................. 173 KEYLIST.............. 155, 156
CONT ... 7 KILL. ... 28, 29
CSAVE 21 Key Commands............. 180
Cassette 20 LEFTS ... 58
Command.................... 4 LEN ... 60
Communication Parameters ..176 LINE....................... 100
Condition. e 47 LIST..........c.cooii 7, 16
Cursor Movement Keys 70 LOAD. ... 17
Cut. 82, 83 LOAD “CAS: filename” 23
DATA. ... 55, 56 LOAD “COM:............... 170
DATES.c.t. 65 Line Status 166
DAYS. i 57 Log-ON Sequence 179, 181
DIM 92, 93 Log-Offt 181
Delete (aline) 11 Log-On 175, 182
Deleting..................... 74 Logical Operators 121
Download 169, 182 Looping..............covntt 53
EDIT..........c.iiii it 70 MAXFILES 128
END......c.ooiiiiiiii 143 MERGE.................. 26-28
ENTER 3 4 MID$63
Echo....................... 169 MainMenu................... 3
Editing....................... 7 Multiple Statements 90
EBditor....................... 69 NAME .. AS................ 20
end-offile 70 NEW ... 13

203

Subject Page Subject Page
NOT........... it 125 Subscripted Variables. 87, 93
Nested Loops................ 97 Syntax Error.................. 4
Numeric Constants 32 TAB ... 131
Numeric Variables............ 32 TAN 113
ONCOM. 172 TELCOM. 175
ON KEY GOSUB. 157, 158 TMES 62
OPEN 124 Term ... 178
OPEN"COM:............... 171 Terminal Mode. ... 168, 175, 178
OPEN "MDM:............... 183 Uploading 169, 182
OR ... 121 UserID.................... 179
PAUSE 8 VAL 63
PEEK........... 182 VARPTR................... 182
PRESET, 99 Variable, String 40
PRINT ...t 4 Word Length. 166
PRINTUSING................ 48 XON/XOFF............ 166, 167
PRINT@ 101
PRINT #................... 124
PSET....... Q9
Parallel Communication. 165
Parity bit 165, 166
Password 179
Paste................... 83, 84
Pastebuffer 82
RAM. 15
REM....................... 187
RESTORE 55
RIGHTS.......... .. 64
RND............ooiin 149
RS-232C Interface 165
RUN................. ..., 5 6
Random Numbers........... 149
Relational Operator........... 47
Reverse Video 82
SAVE................... 16, 17
SAVE “CAS:filename” 21
SAVE“COM:............... 167
SOUND............... 145, 146
SOUNDOFF............... 145
SQR........... .. 111
STEP..........ciii . 96
STOP......... .o i 56
STRS i, 63
STRINGS 61
SUBROUTINE 157
Select................... 82, 83
Serial Port.................. 165
Serial Communications 165
Sorting................ 136, 137
Start Bit.................... 165
StopBit................ 165-167

204

