MOS Memories

FUJITSU

MB81416-10, MB81416-12, MB81416-15 NMOS 65,536-Bit Dynamic **Random Access Memory**

Description

The Fujitsu MB81416 is a fully decoded, dynamic NMOS random access memory organized as 16384 words by 4-bits. The design is optimized for high speed, high performance applications such as mainframe memory, buffer memory, peripheral storage and environments where low power dissipation and compact layout are required.

Multiplexed row and column address inputs permit the MB81416 to be housed in a standard 18-pin DIP that is compatible with the JEDEC approved pinout. Greater refresh versatility is provided by a new CAS before RAS on chip refresh capability. The MB81416 also features "page mode" which allows high speed random access of up to 64 nibble wide words within the same row address.

The MB81416 is fabricated using silicon gate NMOS and Fujitsu's advanced Double-Layer Polysilicon process. This process, coupled with single-transistor memory storage cells, permits maximum circuit density and minimal chip size. Dynamic circuitry is employed in the design, including the sense amplifiers.

Clock timing requirements are non-critical, and the power supply tolerance is very wide. All inputs and outputs are TTL compatible.

Features

- Organized as 16384 words by 4-bits
- Row Access Time/Cycle Time: MB81416-10 100nsec max/200 min. MB81416-12 120nsec max/230 min.
 - MB81416-15 150nsec max/260 min.
- Low Active Power (t_{RC} = min) MB81416-10 303mW (max.) MB81416-12 275mW (max.) MB81416-15 248mW (max.) All devices 25mW standby
- Single +5V ±10% Power Supply CAS before RAS Refresh
- RAS Only Refresh Hidden CAS before RAS
- Refresh

- 2ms/128 cycle Refresh (A₀~A₈) Read-Modify-Write Capability Page Mode Capability for
- faster access Output unlatched at cycle end
- Early Write or Output Enable controls output buffer impedance
- On Chip Address and Data In latches
- Standard 18-pin DIP
- All Inputs TTL Compatible, low capacitive load
- Three-State TTL Compatible Outputs
- On-chip Substrate Bias Generator

NOTE: The following IEEE Std. 662-1980 Symbols are used in this data sheet: DQ = Data I/O, \tilde{G} = Output Enable and \widetilde{W} = Write Enable.

MB81416 Block Diagram and **Pin Configurations**

Absolute Maximum Ratings (See Note)

Rating		Symbol	Value	Unit
Voltage on any pin rela	ative to V _{SS}	V _{IN} , V _{OUT}	-1 to +7	v
Voltage on V _{CC} supply	relative to V _{SS}	V _{cc}	-1 to +7	٧
	Ceramic	T	-55 to +150	•0
Storage Temperature	Plastic	TSTG	-55 to +125	•C
Power Dissipation		Pp	1.0	W
Short Circuit Output Current		_	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operations sections of this data sheet. Exposure to absolute maximum rating condi-tions for extended periods may affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Capacitance

(T_A = 25 °C)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance A ₀ ~A ₇ ,	C _{IN1}	_	5	pF
Input Capacitance RAS, CAS, W, G	CIN2	_	8	pF
Output Capacitance DQ1~DQ4	Cp		7	pF

Recommended Operating

Conditions

(Referenced to V_{ss})

Parameter	Symbol	Min	Тур	Max	Unit	Operating Temperature
Supply Voltage	V _{cc}	4.5	5.0	5.5	v	
Supply voltage	V _{SS}	0	0	0	V	-
Input High Voltage	VIH	2.4	_	6.5	٧	0°C to +70°C
Input Low Voltage, all inputs except DQ	V _{IL}	2.0	_	0.8	v	-
Input Low Voltage, DQ	V _{ILD} *	- 1.0	_	0.8	v	-

*The device will withstand undershoots to the -2.0V level with a maximum pulse width the 20ns at the -1.5V level.

FUJITSU

DC Characteristics (Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Unit
OPERATING CURRENT*	MB81416-10			55	
Average power supply current	MB81416-12	I _{CC1}		50	mA
(RAS, CAS cycling; t _{BC} = min)	MB81416-15			45	
STANDBY CURRENT Power supply current (RAS = CAS = V _{IH})	I _{CC2}		4.5	mA
REFRESH CURRENT1*	MB81416-10			38	
Average power supply current	MB81416-12	I _{CC3}		35	mA
$\overline{(CAS} = V_{HI} \overline{RAS}$ cycling; $t_{BC} = min$)	MB81416-15	000		32	
PAGE MODE CURRENT	MB81416-10			38	
Average power supply current	MB81416-12	I _{CC4}		35	mA
$(\overline{RAS} = V_{II}, \overline{CAS} \text{ cycling; } t_{PC} = \min)$	MB81416-15	004		32	
REFRESH CURRENT 2*	MB81416-10			42	
Average power supply current	MB81416-12	I _{CC5}		38	mA
(RAS cycling, CAS before RAS)	MB81416-15			35	
INPUT LEAKAGE CURRENT	,				
Input leakage current, any input					
$(0 \le V_{IN} \le 5.5V, V_{CC} = 5.5V, V_{SS} = 0V,$		կլ	- 10	10	μA
all other pins not under test = 0V)					
OUTPUT LEAKAGE CURRENT		IOL .	- 10	10	μA
(Data out is disabled, $0V \le V_{OUT} \le 5.5V$)		*UL			
OUTPUT LEVELS			~ •		
Output high voltage (I _{OH} = -5mA)		V _{OH}	2.4	0.4	v
Output low voltage (I _{OL} = 4.2mA)		V _{OL}		0.4	V

Note*: I_{CC} is dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is dependent on input low voltage level V_{ILD} , V_{ILD} = 0.5V.

FUJITSU

AC Characteristics (Recommended operating conditions unless otherwise noted.)

47R

	Notes	Symbol Alternate	*Standard	MB8	MB81416-10		MB81416-12		MB81416-15	
Parameter				Min	Max	Min	Max	Min	Max	Unit
Time between Refresh		t _{BEF}	TRVRV	_	2	_	2	_	2	ms
Random Read/Write Cycle Time		t _{RC}	TRELREL	200	_	230	_	260	_	ns
Read-Write Cycle Time		tewc	TRELREL	290		330		375		ns
Access Time from RAS	(4), (6)	tRAG	TRELQV	_	100	_	120	_	150	ns
Access Time from CAS	(5), (6)	tCAG	TCELOV		50		60		75	ns
Output Buffer Turn Off Delay		t _{OFF}	TCEHQZ	0	30	0	35	0	40	ns
Transition Time		t _T	TT	3	50	3	50	3	50	ns
RAS Precharge Time		t _{BP}	TREHREL	90		100	00	100		ns
RAS Pulse Width		tBAS	TRELREH	100	10000	120	10000		10000	ns
RAS Hold Time		t _{RSH}	TCELREH	50		60		75	10000	
CAS Precharge Time (Page Mode on	lv)	t _{CP}	TCEHCEL	45		50		60		ns
CAS Precharge Time	.,,,	1CP		+5				60		ns
(All cycles except page mode)		t _{CPN}	TCEHCEL	40	—	45	-	55	-	ns
CAS Pulse Width		t _{CAS}	TCELCEH	50	10000	60	10000	75	10000	ns
CAS Hold Time		t _{CSH}	TRELCEH	100	_	120	_	150	_	ns
RAS to CAS Delay Time	(4), (7)	t _{RCD}	TRELCEL	20	50	20	60	25	75	ns
CAS to RAS Set Up Time		tCRS	TCEHREL	20		25	_	30	_	ns
Row Address Set Up Time		tASR	TAVREL	0	-	0	_	0	_	ns
Row Address Hold Time		t _{RAH}	TRELAX	10	_	10		15		ns
Column Address Set Up Time		tASC	TAVCEL	0		0		0		ns
Column Address Hold Time		t _{CAH}	TCELAX	15		15	_	20		ns
Read Command Set Up Time		t _{RCS}	TWHCEL	0		0		0		ns
Read Command Hold Time Referenced to RAS	(9)	t _{RRH}	TREHWX	20		20	_	20	_	ns
Read Command Hold Time Referenced to CAS	(9)	t _{RCH}	TCEHWX	0	_	0	_	0	_	ns
Write Command Set Up Time		twcs	TWLCEL	-5		~5		-5	_	ns
Vrite Command Hold Time		twcH	TCELWH	20		25		30		ns
Vrite Command Pulse Width		twp	TWLWH	20		25		30		ns
Vrite Command to RAS Lead Time		1 _{BWL}	TWLBEH	45		50		60		ns
Vrite Command to CAS Lead Time		t _{CWL}	TWLCEH	45		50		60		ns
Data In Set Up Time		t _{DS}	TOVCEL	0		0		0		
Data In Hold Time		t _{DH}	TCELDX	20		25		30		ns
CAS to W Delay	(8)		TCELWL	85		100		120		ns
AS to W Delay	(8)	t _{cwp}	TRELWL	135		160				ns
Access Time from G	(0)	t _{RWD}	TGLQV					195	_	ns
to Data in Delay Time			TGHDV	30	25				40	ns
Hold Time Referenced to W			TWLGL	0	-			40		ns
Output Buffer Turn Off Delay from G		t _{оен}	TGHOZ	0		0		0		ris
Page Mode Cycle Time		t _{OEZ}			30	0		0	40	ns
age Mode Read-Write Cycle Time		t _{PC}	TCELCEL	105	-	120		145	-	ns
CAS Set Up Time Referenced to RAS (CAS before RAS Refresh)		t _{PRWC}	TCEHCEH	180 20	_	205 25		240 30		ns
AS Hold Time Referenced		t _{ECH}	TRELCEH	20		25		 30		ns
to RAS (CAS before RAS Refresh) AS Precharge to CAS Active Time			TREHCEL	20						
efresh Counter Test BAS Pulse Width	(10)	t _{RPC}				20		20	_	ns
efresh Counter Test Cycle Time	. (t _{TRAS}	TRELREH	280		325		390	_	ns
to RAS Inactive Setup Time	(10)	t _{RTC}	TRELREL	380		435		500		ns
		toes	TGLREH	0		0		0	_	ns
ata in to CAS Delay Time	(11)	tpzg	TDXCEL	0		0		0		ns
ata in to G Delay Time	(11)	t _{DZO}	TDXGL	0	_	0	- (0	_	ns
AS Precharge Time CAS before RAS cycle)		t _{CPR}	TCEHCEL	25		30	- :	30	_	ns

Notes: See notes on next page.

*These symbols are described in IEEE Std. 662-1980: IEEE Standard Terminology for Semiconductor Memory.

FUJITSU

AC Characteristics (Continued)

Timing Diagrams

Notes:

- An initial pause of 200µs is required after power up, followed by any 8 RAS cycles, before proper operation is achieved. If the internal refresh counter is to be effective, a minimum of 8 CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
- 2. AC measurements assume $t_T = 5ns$.
- V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} (min.) and V_{IL} (max.).
- 4. t_{RCD} is specified as a reference point only. If $t_{RCD} \le t_{RCD}$ (max.) the specified maximum value of t_{RAC} (max.) can be met. If $t_{RCD} > t_{RCD}$ (max.) that t_{RAC} is increased by the amount that t_{RCD} exceeds t_{RCD} (max.).
- 5. Assumes that $t_{RCD} \ge t_{RCD}$ (max.).
- Measured with a load equivalent to 2 TTL loads and 100pF.

- 7. t_{RCD} (min.) = t_{RAH} (min.) + $2t_T$ + t_{ASC} (min.): t_T = 5ns.
- 8. t_{WCS}, t_{CWD} and t_{RWD} are non-restrictive operating parameters. They are included in the data sheet as electrical characteristics onily. If t_{WCS} ≥ t_{WCS} (min.), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle.

If $t_{CWD} \ge t_{CWD}$ (min.) and $t_{RWD} \ge t_{RWD}$ (min.), the cycle is a read-write cycle and data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of the data out is indeterminate.

- Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- 10. Refresh counter test cycle only.
- Either t_{DZC} or t_{DZO} must be satisfied for all cycles.

FUJITSU

Note 1: When t_{OWD} is satisfied and G is low (Delayed-Write Cycle), the data out will be "VALID". But when t_{OWD} is not satisfied, the data out will be "INVALID".

Read-Write/Read-Modify-Write Cycle

FUJITSU

ME81416-10 ME81416-12 ME81416-15

Timing Diagrams

(Continued)

Page Mode Write Cycle

FUJITSU

Timing Diagrams

(Continued)

Page Mode Read-Write Cycle

CAS-Before-RAS Refresh Cycle NOTE: A, W, G = Don't Care

HIGH-Z

1-91

DQ

VOL

M881416-10 M881416-12 M881416-15

Timing Diagrams

(Continued)

Note 1: When t_{CWD} is satisfied and \overline{G} is Low (Delayed-Write Cycle), the data out will be "VALID". But when t_{CWD} is not satisfied, the data out will be "INVALID".

FUJITSU

Description

Address Inputs

A total of 14 binary input address bits are needed to decode any one of 16,384 nibble wide words from the MB81416's 65,536 memory cells. Addressing a Random 4-bit word is initiated by establishing 8 row address bits on the address input pins, (A₀ through A₇), and after they are stable, latching these address bits with the falling edge of the Row Address Strobe (RAS). Then 6 column address bits are established on the address input pins A1 through A₆. After the addresses are stable, they are latched with the falling edge of the Column Address Strobe (CAS). Address timing is made non-critical by the MB81416's "gated CAS" circuitry which automatically inhibits CAS until the Row Address Hold time (t_{BAH}) has been satisfied and the address inputs have changed from row to column addresses.

Data Input/Output

The MB81416 has 4 common I/O pins (DQ₁, DQ₂, DQ₃, and DQ₄). Read or write modes are selected with the write enable pin (Ŵ). An output enable pin (Ĝ) controls the state of the output buffers making delayed write and read-modify-write cycles possible. The DQ pins provide TTL compatible inputs and three-state TTL compatible outputs with a fan-out of two standard TTL loads. Data-out has the same polarity as datain.

Write Enable

The read mode or write modes are determined by the state of the write enable pin (\overline{W}). A logic high on \overline{W} selects the read mode and a logic low on \overline{W} selects the write mode. When \overline{W} is high (read mode), the data inputs are disabled. If \overline{W} goes low and satisfies the write command set-up time (t_{WCS}) before \overline{CAS} goes low, the data outputs will remain in the high-impedance state for the duration of the cycle. This allows a write cycle to occur regardless

of the state of the output enable (G).

Output Enable

The output buffers are controlled by both CAS and output enable (G). If either CAS or G are high the output buffers are in the high impedance state. During a read or read-modifywrite cycle if both CAS and G are low, the output buffers are enabled. During an early write cycle G has no effect on the output buffers.

Data Inputs

Data may be written into the MB81416 during a write or readmodify-write cycle. The last fall-ing edge of CAS or W, strobes the data into the 4 on-chip data latches. In an early-write cycle, W is brought low prior to CAS, and the data is strobed in by CAS with both the set-up time (tDS) and hold time (tDH) referenced to the falling edge of CAS. The outputs are in the high impedance state regardless of G's state. In a delayed write or a read-modifywrite cycle, W is brought low after CAS, data is strobed-in by W, and set-up and hold times are referenced to W. To avoid buss contention on I/O pins, it is necessary during a delayed write or a read-modify-write cycle for G to be high prior to data input so that the output buffers are in the high impedance state when data is being written

Data Outputs

Data can be read from the MB81416 with either a read or a read-modify-write cycle. These cycles begin with the outputs in the high impedance state. The outputs contain active, valid data only after both CAS and G have been brought low and have satisfied the minimum access time from RAS (t_{RAC}) and the minimum access time from the output enable t_{OED}. Outputs contain valid data as long as both CAS and G are held low. They return to the high impedance state when either CAS or G go high.

RAS-Only Refresh

The MB81416's dynamic memory cells may be refreshed by performing any memory cycle at each of the 128 row addresses (A₀ through A₀) at least every 2 milliseconds. When a row is accessed all bits in the row are refreshed. During refresh, A₇ (Pin 10) is not used and either V_{IL} may be appiled to this pin.

RAS-only Refresh is a simplified cycle that consists of strobing a row address with RAS while CAS remains high. During a RAS-only Refresh cycle, CAS is high and the output buffers are in the high impedance state. Strobing each of the 128 row addresses (A₀ through A₀) with RAS will refresh all 65,536 memory cells in the MB81416. RAS-only Refresh results in a substantial reduction in power dissipation compared to a full RAS/CAS memory cycle.

CAS Before RAS Refresh*

 \overline{CAS} before \overline{RAS} refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set-up time (t_{FCS}) before \overline{RAS} goes low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next \overline{CAS} before \overline{RAS} refresh operation.

Hidden CAS Before RAS Refresh

A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the CAS active time and cycling RAS. The refresh row address is provided by the on-chip refresh address counter. This eliminates the need for the external row address that is required by DRAMs that do not have CAS before RAS refresh capability.

*Note: CAS Before RAS refresh available on request.

FUJITSU

Description, (Continued)

CAS Before RAS Refresh Counter Test Cycle

A special timing sequence using the CAS before RAS Refresh Counter Test Cycle provides a convenient way to verify the functionality of the CAS before RAS refresh circuitry. The cycle begins with a CAS before RAS operation. Then CAS is cycled "high" and then "low". This enables a read, write, or read-modify-write operation to occur. Four memory cells are accessed with the location defined as follows:

Row Address -

Bits A_0 through A_6 are supplied by the on-chip refresh counter. Bit A_7 is set low internally.

Suggested CAS Before RAS Refresh Counter Test Procedure

The CAS before RAS Refresh Counter Test Cycle timing is used in each of the following steps:

- 1. Initialized the internal refresh counter by performing 8 cycles.
- Write a test pattern of "lows" into each set of 4 memory cells at a single column address and 128 row addresses. (The row addresses are supplied by the on-chip refresh counter.)
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 128 times so that "highs" are written into the 128 sets of 4 memory cells.
- Read the highs written during step 3.
- Compliment the test pattern and repeat steps 2, 3, and 4.

Page Mode

Page mode memory cycles provide faster access and lower power dissipation than normal memory cycles. In page mode, it is possible to read, write, or read-modify-write. As long as the applicable timing requirements are observed, it is possible to mix these cycles in any order. A page mode cycle begins with a normal cycle. While RAS is kept low to main-tain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to setup and strobe sequential row addresses for the same page. Up to 64 nibble wide words may be accessed with the same row address.

Typical Characteristics Curves

CURRENT WAVEFORM (V_{CC} = 5.5V, T_A = 25°C)

50ns/Division

FUJITSU

Typical Characteristics Curves

(Continued)

FUJITSU

Typical Characteristics Curves

(Continued)

FUJITEU

Typical Characteristics Curves

(Continued)

FUJITEU

Typical Characteristics Curves

(Continued)

SUPPLY CURRENT VS SUPPLY VOLTAGE DURING POWER UP

100

FUJITSU

Typical Characteristics Curves (Continued)

FUJITSU

Package Dimensions

(Continued) Dimensions in inches (millimeters)

*Shape of Pin 1 index: Subject to change without notice