

CASL

Programmer's

Guide

Digital Communications Associates, Inc. ("DCA") has prepared this
document for use by DCA personnel, licensees, and customers. The
information contained herein is the property of DCA and shall not be
copied, photocopied, translated or reduced to any electronic or machine
readable form, either in whole or in part, without prior written approval
from DCA. .

DCA reserves the right to, without notice, modify or revise all or part of
this document and/or change product features or specifications and shall
not be responsible for any loss, cost, or damage, including consequential
damage, caused by reliance on these materials.

© 1992 by Digital Communications Associates, Inc. All rights
reserved.

Trademarks and registered names

Crosstalk and DCA are registered trademarks and CASL and QuickPad
are trademarks of Digital Communications Associates, Inc. Microsoft
is a registered trademark and Windows is a trademark of Microsoft Cor­
poration. All other brand and product names are trademarks or registered
trademarks of their respective owners.

1

Contents

Before You Begin ..xvii

Intended audience ...xvii

Ternlinology .. xx

Common abbreviations ..xx

Need help? ..xxi

U sing the DCA bulletin board ..xxi

Related publications ..xxii

About this guide ..xviii

Documentation conventions ...xix

Introducing CASL ..1 -1

What is CASL? ...1-2

How to use this guide ...1-2

Why use scripts? ..1-4

Scripts automate routine tasks ..1-4

Scripts are easy to implement .. 1-4

Recording scripts with Learn .. 1-5

Recording keystrokes .. 1-5

Replaying your script ... 1-6

Writing scripts with CASL ..1-6

Script types ..1-6

Script structure ..1-7

Comments ...1-7

Declarations ... 1-7

Directives .. 1-8

Script elements ... 1-8

Statements ...1-8

Variables ...1-9

Constants ..1-9

Expressions ...1-9

Labels ... 1-9

iii

Procedures and functions ... 1-9

Keywords .. 1-9

Designing a script .. 1-10

Developing a sample script .. 1-11

Logging on in a trouble-free environment 1-11

Describing the purpose of the script 1-12

Documenting the script's history 1-12

Displaying a message .. 1-12

Using string constants ... 1-13

Establishing communications with MCI Mail 1-13

Waiting for a prompt from the host 1-13

Sending the logon sequence ... 1-13

Using CASL predeclared variables 1-14

Using keywords .. 1-14

Ending the script ... 1-14

Using comments and blank lines 1-14

Verifying the MCI Mail connection 1-15

Declaring variables .. 1-16

Initializing variables .. 1-17

Performing a task while a condition is true 1-17

Using a relational expression to control the process 1-17

Waiting for a character string ... 1-18

Checking if a time-out occurred 1-18

Testing the outcome with a boolean expression 1-18

Branching to a different script location 1-19

Continuing the logon ifthe connection is established 1-19

Incrementing a counter using an arithmetic expression 1-20

Alerting the user if the connection failed 1-20

Disconnecting the session ... 1-20

Using indentation .. 1-21

Using braces with a statement group 1-21

Controlling the entire logon process 1-22

Performing a task while multiple conditions are true 1-24

Watching for one of several host responses 1-24

Sounding an alarm .. 1-26

Using the line-continuation sequence 1-27

Compiling and running your script .. 1-28

Compiling a script ... 1-29

From a communications session 1-29

From the Script Editor ... 1-29

Running a script .. 1-30

From a communications session 1-30

From the Script Editor ... 1-30

Where do you go from here? ... 1-31

iv

2 Understanding the Basics of CASL 2-1

General rules for using CASL ..2-2

Staten1ents ...2-2

Line continuation characters ..2-2

Con1n1ents ...2-3

Block comments ...2-3

Line comments ...2-3

Notational conventions used in this guide2-4

Typeface ..2-5

Angle brackets ..2-5

Bold square brackets ...2-6

Bold braces ..2-6

Ellipsis ...2-6

DOS and Macintosh differences ..2-7

Terminology ..2-7

Naming conventions ..2-7

Script file name conventions ...2-8

File path specifications ..2-8

End-of-line delimiters ...2-9

Wild cards ..2-9

Identifiers ... 2-10

Data types .. 2-10

Integer ... 2-11

Real .. 2-11

String .. 2-11

Boolean ... 2-11

Byte .. 2-11

Word ... 2-11

Char .. 2-11

Array ... 2-11

Constants ... 2-12

Integer constants .. 2-12

Decimal integers ... 2-12

Hexadecimal integers ... 2-12

Octal integers ... 2-13

Binary integers ... 2-13

Kilo integers .. 2-13

Real constants ... 2-13

String constants .. 2-14

Embedded quotation marks .. 2-14

Unprintable characters .. 2-14

Special characters .. 2-16

v

3

Key names ... 2-16

String constants that continue on a new line 2-16

Boolean constants .. 2-16

Expressions .. 2-17

Order of evaluation ... 2-17

Arithmetic expressions ... 2-18

String expressions ... 2-21

String concatenation operation 2-21

Relational expressions .. 2-21

Boolean expressions ... 2-22

Type conversion .. 2-24

Converting an integer to a string .. 2-24

Converting a string to an integer .. 2-24

Converting an integer to a hexadecimal string 2-25

Converting an ASCII value to a character string 2-25

Compiler directives .. 2-26

Suppressing label information .. 2-26

Suppressing line number information 2-26

Trapping an error ... 2-26

Including an external file ... 2-27

Defining a script description .. 2-27

Reserved keywords ... 2-27

Declaring Variables, Arrays, Procedures,

and Functions ...3-1

Introduction ..3-2

Variables3-3

Predefmed variables ..3-3

System variables ...3-3

Module variables ...3-3

User-defined variables ...3-4

Explicit declarations ..3-4

Implicit declarations ..3-5

Public and external variables ...3-6

Initializers3-6

Arrays ..3-7

Single-dimension arrays ..3-7

Arrays with multiple dimensions ..3-7

Arrays with alternative bounds .. .3-8

Procedures3-9

Procedure argument lists ...3-9

vi

Forward declarations for procedures 3-10

External procedures .. 3-11

Functions ... 3-12

Function argument lists .. 3-12

Forward declarations for functions 3-13

External functions .. 3-13

Scope rules ... 3-14

Local variables .. 3-14

Global variables .. 3-14

Default variable initialization values 3-14

Labels ... 3-15

4 	 Interfacing with the Host, Users, and

Other Scripts ..4-1

Interacting with the host4-2

Waiting for a character string ...4-2

Watching for one of several conditions to occur4-3

Capturing data .. .4-4

Setting and testing time limits .. .4-5

Sending a reply to the host ..4-6

Communicating with a user .. .4-6

Displaying information ...4-6

Requesting information .. .4-7

Invoking other scripts .. .4-9

Chaining to another script .. .4-9

Calling another script ...4-9

Passing arguments .. .4-9

Exchanging variables .. 4-10

Trapping and handling errors .. 4-11

Enabling error trapping ... 4-11

Testing if an error occurred4-11

Checking the type of error .. .4-11

Checking the error number .. 4-12

5 	 Introducing the Programming Language 5-1

Functional purpose of CASL elements5-2

Capture and upload control ..5-2

Date and time operations ...5-3

DDE interface ...5-4

Device interaction ..5-5

vII

6

Error control ...5-5

File input/output operations ..5-5

Host interaction .. .5-7

Mathematical operations ...5-8

Printer control ...5-8

Program flow control ...5-9

Script and session management .. 5-10

String operations ... 5-13

Type conversion operations :.............. 5-14

Window control ... 5-15

Miscellaneous elements .. 5-17

Using the Programming Language 6-1

Information provided for CASL elements6-2

abs ..6-3

activate ..6-4

activatesession ...6-5

active ...6-6

activesession ...6-7

add ..6-8

alarm ...6-9

alert ... 6-11

arg .. 6-13

asc .. 6-15

assume ... 6-16

backups .. 6-17

binary .. 6-18

bitstrip .. , 6-19

blankex .. 6-20

breaklen ... 6-21

bye .. ,......................... 6-22

call .. 6-23

capchars ... 6-24

capfile .. 6-25

capture ... 6-26

case/endcase .. 6-29

chain ... 6-31

chdir .. 6-32

chmod .. 6-33

choice .. 6-35

chr .. 6-36

cksum .. 6-37

viii

class .. 6-38

clear .. 6-39

close .. 6-40

cIs ... 6-41

cmode .. 6-42

compile .. 6-43

connected .. 6-44

connectreliable ... 6-45

copy .. 6-46

count ... 6-47

crc ... 6-48

curday .. 6-49

curdir ... 6-50

curdrive .. 6-51

curhour .. 6-52

curminute ... 6-53

curmonth ; .. 6-54

cursecond .. 6-55

curyear ... 6-56

cwait ... 6-57

date ... 6-59

definput .. 6-60

defoutput .. 6-61

dehex ... 6-62

delete (statement) ... 6-63

delete (function) ... 6-64

description .. 6-65

destore ... 6-66

detext ... 6-67

device .. 6-68

dialmodifier ... 6-70

dialogbox/enddialog .. 6-71

Dialog items ... 6-72

Dialog item options ... 6-74

dirfil .. 6-77

display ... 6-78

do ... 6-79

dosversion .. 6-81

downloaddir ... 6-82

drive .. 6-83

end .. 6-84

enhex ... 6-85

enstore ... 6-86

entext .. 6-87

Ix

environ .. 6-88

eof .. 6-89

eol .. 6-91

errclass ... 6-93

errno .. 6-94

error .. 6-95

exists ... 6-96

exit ... 6-97

extract .. 6-98

false .. 6-99

fileattr .. 6-100

filedate ... 6-102

filefmd ... 6-103

file size ... 6-104

filetime .. 6-105

fncheck .. 6-106

fnstrip .. 6-107

footer ... 6-109

for/next .. 6-110

freefile ... 6-113

freemem ... 6-114

freetrack ... 6-115

func/endfunc .. 6-116

genlabels .. 6-119

genlines ... 6-120

get .. 6-121

go ... 6-122

gosub/return .. 6-123

goto .. 6-125

grab ... 6-126

halt ... 6-127

header .. 6-128

hex .. 6-129

hide ... 6-130

hideallquickpads ... 6-131

hidequickpad .. 6-132

hms ... 6-133

if/then/else .. 6-135

include ... 6-138

inject ... 6-139

inkey ... 6-140

input ... 6-142

inscript .. 6-143

insert ... 6-144

x

instr .. 6-145

intval ... 6-146

jump ... 6-147

kermit .. 6-148

keys .. 6-150

label .. 6-151

left .. 6-152

length .. 6-153

linedelim .. 6-154

linetime ... 6-155

load ... 6-156

loadquickpad .. 6-157

loc .. 6-158

lowcase .. 6-159

lprint ... 6-160

lwait .. 6-162

match .. 6-164

max ... 6-165

maximize ... 6-166

message ... 6-167

mid ... 6-168

min ... 6-169

minimi ze .. 6-170

mkdir ... 6-171

mkint .. 6-172

mkstr ... 6-173

move ... 6-174

name ... 6-175

netid .. 6-176

new ... 6-177

nextchar ... 6-178

nextline (statement) .. 6-179

nextline (function) .. 6-181

null ... 6-183

number .. 6-184

octal .. 6-185

off ... 6-186

on ... 6-187

online .. 6-188

ontime ... 6-189

open .. 6-190

pack .. 6-192

pad .. 6-193

password .. 6-195

xi

patience .. 6-196

perform .. 6-197

pop ... 6-198

press .. 6-199

print .. 6-201

printer .. 6-203

proc/endproc .. 6-204

protocol ... 6-207

put .. 6-209

quit ... 6-210

quote ... 6-211

read ... 6-212

read line ... 6-213

receive ... 6-214

redialcount .. 6-216

redialwait .. 6-217

renrune ... 6-218

repeat/until ... 6-219

reply .. 6-221

request ... 6-222

restore .. 6-223

return ... 6-224

rewind .. 6-226

right .. 6-227

rmdir ... 6-228

run .. 6-229

save ... 6-230

script ... 6-231

scriptdesc .. 6-232

seeno ... 6-233

seek ... 6-234

send ... 6-235

sendbreak .. 6-236

session ... 6-237

sessname .. 6-238

sessno .. 6-239

show ... 6-240

showallquickpads ... 6-241

showquickpad .. 6-242

size ... 6-243

slice .. 6-244

startup ... 6-245

str ... 6-246

strip .. 6-247

xii

stroke .. 6-249

subst ... 6-250

systime .. 6-251

tabex ... 6-252

tabwidth ... 6-253

terminal ... 6-254

terminate .. 6-257

time 	 .. 6-258

timeout .. 6-259

trace 	.. 6-260

track (statement) .. 6-261

track (function) .. 6-265

trap 	... 6-267

true 	... 6-268

unloadaUquickpads .. 6-269

unloadquickpad .. 6-270

upcase .. 6-271

upload .. 6-272

userid ... 6-273

val .. 6-274

version ... 6-275

wait ... 6-276

watch/endwatch .. 6-279

weekday ... 6-282

while/wend ... 6-283

winchar .. 6-284

winsizex ... 6-285

winsizey ... 6-286

winstring .. 6-287

winversion .. 6-288

write .. 6-289

write line .. 6-291

xpos 	.. 6-292

ypos 	.. 6-293

zoom ... 6-294

7 	 Working with Terminal, Connection, and

File Transfer Tools ...7-1

The tool concept ..7-2

Terminal tool ..7-3

Connection tool ...7-4

File transfer tool ..7-5

xiii

8

A

B

C

Compatibility Issues ..8-1

Introduction ..8-2

Crosstalk for Windows ..8-2

New elements ...8-2

Changed elements ..8-3

Removed elements ...8-3

Crosstalk for Macintosh ..8-4

Crosstalk Mark 4 ...8-4

Windows Considerations ..A-1

Developing DDE scripts ... A-2

ddeadvisedatahandler ... A-I 0

ddeexecute .. A-I2

ddeinitiate .. A-I3

ddenak ... A-I5

ddepoke ... A-I6

dderequest .. A -17

ddestatus .. A-I8

ddeterminate ... A -19

Topic name support .. A-2

Requesting information .. A-2

Executing Crosstalk commands ... A-3

Learning more about DDE .. A-5

DDE demonstration scripts .. A-6

Running the DDE scripts .. A-6

Information provided for DDE commands A-7

ddeack ... A-8

ddeadvise ... A-9

ddeunadvise .. A-20

Macintosh Considerations8-1

Writing scripts for a Macintosh environment B-2

Error Return Codes ...C-1

CASL error messages .. C-2

Compiler errors .. C-3

Input/output errors .. C-3

xiv

Mathematical and range errors ... C-4

state errors .. C-5

Critical errors ... C-6

Script execution errors ... C-7

Compatibility errors .. C-8

DOS gateway errors .. C-9

Call failure errors .. C-9

Missing infonttation errors ... C-ll

DDE errors .. C-12

Communications device errors ... C-13

Terminal errors ... C-13

File transfer errors ... C-14

o Product Support ..0·1

Requesting technical support ... D-2

Accessing DCA on-line services .. D-3

Updating or upgrading your software ... D-3

Index .. lndex-1

Tables

1-1. Where to look for information 1-31

2-1. Placeholders in angle brackets2-5

2-2. DOS and Macintosh terminology2-7

2-3. ASCII control characters ; 2-15

2-4. CASL keywords .. 2-28

6-1. Alarm sounds ..6-9

6-2. Integer values and their binary string lengths 6-18

6-3. Capture options ... 6-26

6-4. Bitmap values for the chmod statement 6-33

6-5. Class groupings ... 6-38

6-6. Options for the clear statement 6-39

6-7. Options for the cmode variable 6-42

6-8. Options for the cwait statement i6-57

6-9. Connection devices ... 6-68

6-10. Bitmap values for the fileattr function 6-100

6-11. Bitmap values for the fncheck function 6-106

xv

6-12.
6-13.
6·14.
6-15.
6-16.
6-17.
6-1B.
6-19.
6-20.
6-21.
6-22.
6-23.

A-1.
A-2.
A-3.
A-4.
A-5.
A-6.

C-1.
C-2.
C-3.
C-4.
C-5.
C-6.
C-7.
C-B.
C-9.
C-10.
C-11.
C-12.
C-13.
C-14.

Bitmap values for the fnstrip function ,.............. 6-107

Bitmap values for the hms function 6-133

Keyboard keys and their corresponding numbers 6-140

Commands for the kermit statement 6-148

Parameters for the lwait statement 6-162

Integer ranges for the octal function 6-185

Mode options for the open statement 6-190

File transfer protocols ... 6-207

Terminal emulations ... 6-254

Conditions for the track statement 6-262

Conditions for the wait statement 6-277

Conditions for the watch statement 6-280

Valid requests for the system topic A-2

Valid requests for a session topic A-3

Valid commands for the system topic A-4

Valid commands for a session topic A-4

DDE demonstration script files A-6

DDE demonstration script control keys A-7

CASL error class values ... C-2

Input/output errors .. C-3

Mathematical and range errors C-4

State errors .. C-5

Critical errors ... C-6

Script execution errors ... C-7

Compatibility errors .. C-8

DOS gateway errors ... C-9

Call failure errors .. C-9

Missing information errors C-ll

DDE errors , ... C-12

Communications device errors---direct connection C-13

Terminal errors ... C-13

File transfer errors ... C -14

xvi

Before You Begin

The CASL Programmer's Guide is designed to assist you in creating and
implementing scripts. It introduces the DCA ® Crosstalk® Application
Script Language (called CASL TM) and explains how to use the language
with your Crosstalk product.

The information provided is applicable to both the Macintosh® and
Windows™ environments. Exceptions are noted in Chapter 8, "Com­
patibility Issues"; Appendix A, "Windows Considerations"; and Ap­
pendix B, "Macintosh Considerations."

Intended audience

This guide is written for users and programmers who want to write
scripts using CASL. It provides conceptual information for the in­
experienced programmer as well as detailed reference material for the
sophisticated application developer.

Before reading this guide, you should have a knowledge of the follow­
ing subjects:

• 	 General concepts for the Crosstalk product you have installed ..
Refer to your product documentation for more information.

• 	 One of the following operating environments:

- Microsoft® Windows 3.1 with DOS 3.1 or newer.

- Macintosh System 6.0.5 or newer. (Note that the Apple® Comm
ToolBox is also required. Your Crosstalk product installs a copy
if you do not already have one installed.)

xvII

About this guide

The CASL Programmer's Guide includes the following chapters:

Chapter 1, "Introducing CASL," contains information concerning
why scripts are useful, how to create scripts by recording keystrokes,
what makes up a script, how to develop a sample script, and how to
compile and run a script.

Chapter 2, "Understanding the Basics of CASL," provides an under­
standing of the basic elements of CASL, such as identifiers, data types,
constants, expressions, compiler directives, and CASL keywords. Nota­
tional conventions used to describe the CASL elements are explained in
this chapter.

Chapter 3, "Declaring Variables, Arrays, Procedures, and Functions,"
covers how to declare elements in a script. Scope rules for variables
and labels are also discussed.

Chapter 4, "Interfacing with the Host, Users, and Other Scripts,"
outlines some techniques you can use to interact with a host com­
puter, communicate with a user, invoke other scripts, and trap and
handle errors.

Chapter 5, "Introducing the Programming Language," provides a
quick reference to the CASL elements grouped by their functional
purpose.

Chapter 6, "Using the Programming Language," contains a detailed
description, in alphabetical order, of each CASL element, with exam­
ples showing how each is used.

Chapter 7, "Working with Terminal, Connection, and File Transfer
Tools," explains how to use variables to set up or modify Crosstalk's
Terminal, Connection, and File Transfer tools.

Chapter 8, "Compatibility Issues," lists the language elements that
are new, modified, or changed for Crosstalk for Windows. It also lists
compatibility issues for Crosstalk for Macintosh and Crosstalk Mark 4.

xviii

Appendix A, "Windows Considerations," provides a detailed descrip­
tion of the Dynamic Data Exchange (referred to as DDE) commands
supported by CASL.

Appendix B, "Macintosh Considerations," outlines considerations
you should keep in mind when writing scripts for a Macintosh environ­
ment.

Appendix C, "Error Return Codes," contains tables of the error code
values returned by Crosstalk.

Appendix D, "Product Support," explains the support provided by
DCA.

This manual also includes an index.

Documentation conventions

The following documentation conventions are used in this manual:

KEY This typeface represents a specific key on the key­
board. If you have remapped the function originally
mapped to the key, substitute the new key or key
combination for the original.

KEY1-KEY2 Keys displayed with a hyphen between them are called
combination keystrokes. To enter combination key­
strokes, press one key and hold it down while you
press one or more other keys. Release all the keys at
the same time.

monospace
text

Monospace text is used to identify CASL elements.
The elements can be CASL names, format descrip­
tions, examples, and sample scripts.

xix

Icons

I"Vlnl

(Mac I
Note:

V Caution:

•

Icons are used to show that text relates only to a par­
ticular subject. The following describes the icons that
appear in this manual:

Crosstalk for Windows

Crosstalk for Macintosh

This signifies important additional information.

This symbol means that a failure to follow the recom­
mended procedure could result in a loss of data or
damage to equipment or related products.

This signifies the end of the text associated with a
note, caution, or icon.

Terminology 	 The term pull-down, as used in this guide, refers to a pull-down menu in
the Macintosh environment.

Common abbreviations

The following abbreviations are used in this guide.

API
ASCII
BBS
BPS
CASL
CR
CRC
CRILF
DDE
DTE
FCC
GUI
KB
KCP
NASI

Application Programming Interface
American Standard Code for Information Interchange
Bulletin Board Service
Bits per second
Crosstalk Application Script Language
Carriage return
Cyclical redundancy check
Carriage-return/line-feed
Dynamic Data Exchange
Data Terminal Equipment
Federal Communications Commission
Graphical User Interface
Kilobyte
Kermit Command Processor
NetWare® Asynchronous Services Interface

xx

Need help?

If you have questions while using Crosstalk to edit, compile, or run a
script, you can find the information you need in the on-line help. On­
line help describes the purpose of a pull-down or dialog box; the avail­
able pushbuttons, list boxes, and edit boxes; and, where applicable,
step-by-step instructions.

The information in the on-line documentation is both descriptive and
instructive. That is, instead of merely stating the choices available, the
on-line help guides you in making the correct choice.

For a detailed explanation of how to use the on-line help, refer to your
Crosstalk user's guide.

Using the DCA bulletin board
You can stay informed about your Crosstalk product and communicate
with other DCA users with the DCA Connection Bulletin Board System
(BBS). You can learn about product announcements, news, and techni­
cal specifications; private and public e-mail; technical support, technical
tips, and product histories; and a private/public user's file exchange for
sending files to and from DCA engineers and other users.

Registration and access to the DCA Connection are free to all users by
dialing this number with an asynchronous modem and using your
Crosstalk or other asynchronous communications software:

(404) 740-8428

Set your communications software parameters as follows:

Data: 8

Parity: N

Stop bits: 1

Speed: 1200,2400, or 9600 (V.32)

Emulation: ANSI (preferred) or TrY

xxi

Related publications

This manual does not provide a detailed explanation of the products,
architectures, or standards developed by other companies or organiza­
tions. The following paragraphs indicate where to look for additional
information.

For information on DOS, refer to the documentation provided by your
DOS vendor.

For information on Microsoft Windows 3.1, refer to the documentation
provided by Microsoft.

For information on Macintosh System 6 and System 7® and the Apple
Comm ToolBox, refer to the documentation provided by Apple.

For information on Dynamic Data Exchange, refer to the Microsoft
Windows Software Development Kit, Guide to Programming 3.1.

xxii

What is CASL

What is CASL?

CASL is a scripting language that allows you to create custom scripts
that can interface with other computers, users, and scripts. The scripts
you develop can be simple or complex. For instance, you can create a
simple script that waits for a prompt from the host computer and then
replies with a user ID and password. Your more complex scripts can
automate entire communications sessions or create custom menus that
enable users to operate a host computer without learning its commands.

While CASL is designed to simplify the process of communicating
with other computers, it is by no means limited to that function.
CASL is a full-featured programming language that is capable of
handling almost any task, including complex mathematical compu­
tations and the display of sophisticated dialog boxes. As you become
familiar with its features, you will discover many other functions you
can perform. The following section explains how to find what you need
to create your CASL scripts.

How to use this guide

This guide is designed for easy use by beginners and experts alike.
Depending on your programming expertise, you can start reading at
different chapters.

If you are a beginner, start reading this chapter. It introduces CASL and
explains why scripts are useful, how to record scripts with Learn, what
makes up a script, and how to design and develop a script. It also des­
cribes how to compile and run a script.

If you already know about scripts and how to develop them, you can
start reading Chapters 2 through 7. These chapters contain in-depth
information about CASL and its comprehensive set of language ele­
ments. For your convenience, Chapter 5, "Introducing the Program­
ming Language," contains a quick reference to the CASL elements.
The elements are presented alphabetically by their functional purpose,
and each has a brief one-line description.

CASL Programmer's Guide 1-2

How to use this guide

If you have questions about CASL compatibility among Crosstalk
products, refer to Chapter 8, "Compatibility Issues." This chapter
covers compatibility issues for Crosstalk for Windows, Crosstalk
for Macintosh, and Crosstalk Mark 4. Appendix A, "Windows Con­
siderations," and Appendix B, "Macintosh Considerations," provide
additional infornlation specific to the Windows and Macintosh en­
vironments.

Once you start running your scripts, you may need to look up infor­
mation about error messages. Appendix C, "Error Return Codes,"
contains a list of possible error return codes and what they mean.

The following chart shows at a glance where to find the information
you need.

Read
If you want to ... chapter(s)

Learn about scripts and how to record
your keystrokes to create them

Develop a sample script

Compile and run a script 1

Review language reference material 2 to 7

Read about compatibility issues 8

Review Windows and Appendix A and
Macintosh considerations AppendixB

Look up error codes Appendix C

Note: The term "host computer" is used throughout this guide. This
term is used as a general reference to the remote system to which you
are connected, regardless of the connection type (for example, modem,
direct connection, NASI, or INT 14). A host can be another PC run­
ning a Crosstalk product, a system running a BBS program, or a large
mainframe computer. •

Introducing CASL 1-3

Why use scripts?

Why use scripts?

Scripts automate
routine tasks

Scripts are easy
to implement

When you work in a data communications environment, you often
have to perfonn the same functions over and over again to complete
your daily activities. For instance, each time you start a communi­
cations session with the host computer, you have to enter your logon
ID and password. In the following paragraphs, you will see how you
can automate many routine tasks.

You can eliminate the manual repetition of routine tasks by using
scripts to communicate with your host computer. You have to create
and save a script to be able to use it; but once you have your script,
you will find it invaluable in saving time and effort in the future. Fur­
thennore, you will find that creating and implementing scripts are not
difficult because CASL gives you an easy-to-use means of automating
your daily activities within your computing network.

Traditionally, developing applications and utilities that run in a com­
munications environment required you to use a complex programming
language and an Application Programming Interface (API) to access
your host. You also had to understand the underlying data communica­
tions link. CASL removes these obstacles. When you write a CASL
script, you do not have to concern yourself with the details of commun­
ications programming; CASL handles the communications interface.
With CASL, you will discover how easy it is to automate many of the
manual tasks you currently perfonn.

When you use CASL, you can create scripts that are simple, or you can
develop complex scripts. You can create a script simply by recording
the keystrokes you enter to log on to your host. In the following sec­
tion, you will see how to use the Learn process to record scripts.

CASL Programmer's Guide 1-4

Recording scripts with Learn

Recording scripts with Learn

Recording
keystrokes

You can record keystrokes to create scripts that perfonn routine activi­
ties. For example, you can create a script while you are entering your
logon ID and password at your tenninal.

Crosstalk's Learn facility captures the keystrokes you enter in a sequence
of statements that are communicated to the host computer. You do not
have to write any programming statements; the session connection and
appropriate directives are incorporated for you by the script processor as
part of the completed script. You can replay your recorded script just as
it is, or you can use it as a base for developing a more complex script.

The sections that follow briefly describe the Learn process. For a more
detailed description of how to use the Learn facility, refer to your Cross­
talk user's guide and on-line help.

When you are ready to enter your communications-session logon, or any
other keystroke sequence, you can start recording a script. Follow these
steps:

1 	 Start the Crosstalk application if it is not already active.

2 	 From a session window, choose Learn from the Script pull-down.
Note that Learn changes to Stop Learn once you start the Learn
process.

3 	 Type in the keystroke sequence you nonnally enter for the current
communications session.

4 	 When you have completed the task, choose Stop Learn from the
Script pull-down. At the prompt, specify the file name under
which the script should be saved and also indicate whether the
script should be set as the logon script.

The data you enter for your logon, or other communications function,
is sent to the host as usual, but now you have a recorded script that
you can replay to perfonn the same function.

Introducing CASL 1-5

Recording scripts with Learn

Replaying your
script

To replay your recorded script, follow these steps:

1 Start the Crosstalk application if it is not already active.

2 From a session window, choose Run from the Script pull-down.

3 Specify the script in the Run dialog box.

Note: If you set the script as a logon script, it is run automatically
when the session connection is established.•

Recording your keystrokes is a fast and efficient way to create scripts.
However, you may want to write your own scripts using CASL. The
following section provides guidelines to help you get started.

Writing scripts with CASL

Script types

Recording scripts allows you to automate many daily routines. How­
ever, you may want to create a script to handle special needs such as
sending a file to the host computer or accessing information from a
bulletin board service. To develop these scripts, use CASL.

CASL statements, functions, procedures, variables, and other language
elements allow simple interaction with host-based systems. By fol­
lowing consistent guidelines for writing statements, you can make your
script readable with the comprehensive set of keywords provided.

There are two main types of CASL scripts: on-line and off-line. On­
line scripts work while Crosstalk is connected to a host and usually
interact with the host to automate part of or an entire communications
session. You can use on-line scripts to log on to the host, retrieve
electronic mail, or create a custom menu interface for a host.

Off-line scripts do not interact with a host. For example, you can use
an off-line script to display a list of host computers.

Note: A session is required to run either an on-line or an off-line
script. •

CASL Programmer's Guide 1-6

Writing scripts with CASL

Script structure

Comments

Declarations

CASL is flexible enough to accommodate most writing styles. If you
have written computer programs before, you should be able to retain the
same style you have used in the past.

In general, the contents of a script include such items as comments,
declarations, and directives. Comments document a script; declarations
define such items as variables, arrays, procedures, and functions; and
directives specify an action to be taken.

Use comments to explain what will happen when a segment of code is
executed or to block out part of a script that you do not want to execute.
Comments are ignored by the script compiler and do not take up any
space in a compiled script. Therefore, you can include as many com­
ments as you feel necessary to document the purpose and flow of your
script.

It is a good idea to start your script with a comment header that includes
your name, the date of the script's creation, and some explanation of its
objective. An example of this type of comment is as follows:

Script name: LOGON.XWS
-- Date: 6/24/92

Author: John Doe

In this example, the double dash is used to indicate a comment. Chap­
ter 2, "Understanding the Basics of CASL," describes other notations
you can use to designate a comment.

Set up your declarations and assign values to them, if appropriate, im­
mediately following the comment header. This will help you keep the
declarations organized and easy to fmd, as shown in the following ex­
ample:

Script name: LOGON.XWS
-- Date: 6/24/92
-- Author: John Doe

integer count, access_number
count = 1
access number = NetID

Introducing CASL 1·7

Writing scripts with CASL

Directives

Script elements

Statements

The body of a script, which follows the declarations, is made up of dir­
ectives, or statements. You can structure your script statements with
one statement on a logical line, multiple statements on a logical line
separated by colons (:), or a series of statements enclosed in braces
({ I). The following example shows one script statement on a logical
line:

print "Hello!"

Chapter 2, "Understanding the Basics of CASL," provides examples of
how to write statements using the alternate structures.

To make your script more readable and maintainable, you can indent
statements that are part of a larger construct. Indentation, which is
ignored by the compiler, is shown in the following example of a
fa r/n ex t construct:

-- This segment prints 1 through 10 vertically.

integer count
for count = 1 to 10

print count
next

As shown in the preceding example, you can also use blank lines to
improve program readability.

Your scripts can consist of many different kinds of language elements.
The sample script you develop in a later section contains examples of
many of them. A brief description of the more commonly used CASL
components follows.

Statements perform such functions as assignment of values, file input/
output, file transfer, script t10w control, host interaction, window con­
trol, and communications session management. CASL statements are
described in detail in Chapter 6, "Using the Programming Language."

CASL Programmer's Guide 1-8

Writing scripts with CASL

Variables

Constants

Expressions

Labels

Procedures and
functions

Keywords

Variables are elements that can have different values from time to time.
In your scripts, you can use variables that you create and variables that
are predeclared by CASL. CASL's predeclared variables are described in
Chapter 6, "Using the Programming Language."

Constants are elements that have a fixed value. Use the value directly
in your script.

Expressions include arithmetic expressions, string expressions, rela­
tional expressions, and boolean expressions.

Labels are named reference points in a script. A label can be the destina­
tion of a goto statement or it can mark the beginning of a subroutine.
Guidelines for using the 1 abe 1 statement in a script are presented in
Chapter 6, "Using the Programming Language." Label scope rules are
explained in Chapter 3, "Declaring Variables, Arrays, Procedures, and
Functions. "

Procedures and functions perfoml unique tasks. They differ in that func­
tions return a value, and procedures do not. CASL provides built-in
functions, which are predeclared. You can use these built-in elements as
well as implement your own procedures and functions. See Chapter 6,
"Using the PrograD1ffiing Language," for details.

Keywords make your script more readable. CASL keywords are reserved
for a particular use in your script; for example, statement names and
words that bind arguments are all reserved keywords. You cannot use
keywords as names for your variables, functions, procedures, or sub­
routines. Chapter 2, "Understanding the Basics of CASL," contains a
table of the keywords reserved by CASL.

In the section "Developing a Sample Script" later in this chapter you
will see how to use many of these elements in a script. Before you
start creating a script, however, consider what you want your script to
accomplish and how to structure the script to meet your programming
objectives. The next section presents guidelines to help you design a
script.

Introducing CASL 1-9

Designing a script

Designing a script

In the process of developing and implementing a more complex script,
there is a typical development cycle. You will do the following, in the
order shown:

• Design the script.

• Create and edit the script.

• Compile and locate errors.

• Fix the errors and compile again.

• Run the script; test it to be sure it works.

• Correct any problems and run the script again.

Before you actually begin to write a script, it is a good idea to map out
what you want the script to accomplish. This step in the development
cycle is especially important when you create scripts to use with com­
munications programs. It is difficult to predict exactly what another
computer will do during a communications session. Therefore, it is
advisable to design your script to handle any type of situation that
may occur.

Your script design can be as simple as a list of steps that outline the
goals you want to accomplish. You can produce more detailed design
plans by drawing flow charts. Listing goals and drawing flow charts are
not always necessary, but they can often save you hours of work later.

When you have completed the initial framework, you are ready to write
your script. Tum to the next section for guidelines on developing a
script.

1-10 CASL Programmer's Guide

Developing a sample script

Developing a sample script

Logging on in
a trouble-free
environment

In an earlier section, you learned about recording keystrokes to create
a script. This section explains how to develop a sample script using
some of CASL's comprehensive set of language elements. To create a
script, you need to use a text editor that produces plain ASCII text files,
such as the one built into your Crosstalk product. Refer to your Cross­
talk user's guide for information about the Script Editor.

The sample scripts that follow introduce you to the different forms of
CASL statements, program design, and interaction with a host system
that you can incorporate in a script. The samples are introduced in order
of increasing complexity. An explanation of each sample script follows
its presentation. The scripts are also provided on your Crosstalk distri­
bution diskettes. Look for them in the main directory.

In this sample script, you send a logon sequence to MCI Mail. The ex­
anlple assumes that your script will run in a trouble-free environment,
that is, it will not encounter errors or slow responses from the host.

1* This script shows how to display messages and send a user
ID and password to MCI Mail. *1

Script name: SAMPLEl.XWS
Created: 6/24/92 - Jane Smith

1* Display a message on the status line to tell the user
what is going on. *1

message "MCI Mail auto-logon in progress"

1* Send a carriage return (CR) to get MCI's attention and
then send the logon user ID and password. *1

reply Send a CR
wait 2 seconds Wait for prompt
reply userid Send User ID
wait 2 seconds Wait for prompt
reply password Send password

message 'MCI auto-logon complete' Tell the user

end End the script

Introducing CASL 1-11

Developing a sample script

Describing the
purpose of the
script

Documenting the
script's history

Displaying
a message

At the beginning of the script, you find a comment describing the pur­
pose of the script.

1* This script shows how to display messages and
send a user 10 and password to MCl Mail. *1

This type of comment is called a block comment because it is enclosed
in the symbol pair 1* and * I. When you start your script with an ex­
planation of its purpose, you make it easier for others to understand and
use the script.

As you can see, the sample script also contains a comment header that
provides a history of the script's development, including the script
name, the date it was created, and the author's name.

Script name: SAMPLE.XWS
-- Created: 6/24/92 - Jane Smith

The header in this example shows the original date and author. For
subsequent script modifications, the header might appear as follows:

Script name: SAMPLE.XWS
Created: 6/24/91 - Jane Smith
Modified: 3/12/92 - Jane Smith
Mod ifi ed: 7/16/92 - John Doe

Note that this comment is designated with a double dash. The double
dash tells the script compiler that this is a line comment. Line com­
ments do not require an end-of-comment symbol.

In the first line of actual code, the sample script displays a message to
tell the user what is occurring. To display this type of simple message,
use the me s sag e statement.

message "MCl Mail auto-logon in progress"

1-12 CASL Programmer's Guide

Developing a sample script

Using string
constants

Establishing
communications
with Mel Mail

Waiting for a
prompt from
the host

Sending the logon
sequence

As you can see in the foregoing message statement, the words that
are displayed are enclosed in quotation marks. A character string en­
closed in quotation marks is called a string constant. When you use
CASL, you must enclose all string constants with quotation marks.
You can use either double quotation marks, as shown in the preceding
example, or single quotation marks, as shown in the script's second
message.

message 'Mel auto-logon complete'

Be sure to use the same type of beginning and ending quotation marks.

To establish communications with MCI Mail, use the rep 1y state­
ment.

reply

When you use the rep 1y statement without an argument, a carriage
return is sent to the host application. This alerts the host to prompt
for a user ID.

After you send a carriage return to the host, you should wait for a brief
period to allow the host to send a prompt.

wait 2 seconds

The wa i t statement causes the script to pause for 2 sec 0 n d s to allow
the host to respond with the first prompt. Note that the amount of time
to wait is dependent on your operating environment and the host.

Once you have set up the connection, you can send your user ID and
password. To do this, use two rep 1y statements---one to send the
user ID and one to send the password. Be sure to wait for a brief period
before sending the second rep 1y statement to allow time for the host to
send the password prompt.

reply userid
wait 2 seconds
reply password

Introducing CASL 1-13

Developing a sample script

Using CASL
predeclared
variables

Using keywords

Ending the script

Using comments
and blank lines

CASL provides a rich set of predeclared variables, which include system
variables and module variables. The sample script contains two of the
predeclared system variables: use rid and pas s w 0 rd.

use rid and pas s w 0 r d are set up as system variables to make it easy
for everyone to use CASL scripts and also to help maintain security.
You can define these variables from the Crosstalk application by
choosing Session from the Settings pull-down and then choosing the
General icon. You can also modify these variables in a script. The
sample script uses the predefined contents of the variables to send the
user ID and password to MCI Mail.

reply useri d
reply password

In the wa i t statement, you find the word sec 0 n d s.

wait 2 seconds

This word is one of many CASL keywords that make your script more
readable and flexible. Use the keywords only where specified in the
various language elements.

There are several ways to end a script, depending on the reason for its
temlination. The most common way is to use the end statement, as
shown in the sample script.

The end statement brings the script to an orderly conclusion. Other
CASL statements, such as hal t, qui t, and t e r min ate, cause related
scripts, sessions, or the Crosstalk application to end also. These state­
ments are discussed in detail in Chapter 6, "Using the Programming
Language."

Throughout the sample script there are comments explaining what the
programming code is to accomplish. Some of the comments are block
comments, which are enclosed in the symbol pair I * and * I .

1* Display a message on the status line to tell the
user what is going on. */

1·14 CASL Programmer's Guide

Verifying the
Mel Mail
connection

Developing a sample script

Other comments are line comments.

-- Script name: SAMPLE.XWS

reply Send a CR

As you can see, the line comments begin with a double dash (--).
You can use both of these commenting methods in your script.

The sample script also shows how to use blank lines to make a script
more readable. You can use blank lines almost anywhere in your script.

The preceding sample script assumed that Mel Mail responded to the
initial carriage return within the expected time frame. This may not
always be the case. This sample script shows how to verify that
communications have, in fact, been established.

1* This script shows how to display messages and send a user
rD and password to MCr Mail. it also verifies that the MCr
Mail connection is active. *1

Script name: SAMPLE2.XWS
Created: 6/24/92 Jane Smith
Modified: 6/25/92 - Jane Smith (Added code to

check for the "port:" prompt.)

/* First, define the required variable. */

integer i

1* Display a message on the status line to tell the user
what is going on. */

message "MCr Mail auto-logon in progress"

/* Try to get MCr Mail's attention by sending a carriage
return (CR) until the "port:" prompt is received. */

i ~ 1 Initialize the
variable to 1

while i <~ 10 Perform while i is
less than or equal
to 10

reply Send a CR
wait 2 seconds for "port:" Wait for prompt

Introducing CASL 1-15

Developing a sample script

Declaring variables

if not timeout
{

goto LOGIN

then If no timeout

Branch to LOGIN to
wait for prompts

i
wend

~ i + 1 Increment counter

/* Could
hang up.

not
*/

get MCr Mail's attention. Tell the user and

alert "System not responding - Logon canceled.", ok
bye Disconnect
end End

1 abel LOGIN
wait for "name:" First prompt
reply userid Send user ID
wait for "password:" Next prompt
reply password Send password
message 'MCI auto-logon complete' Tell the user

end End the script

As in the first sample script, this sample starts with a description of its
purpose and an outline of its history. (Note that the comment header
has been updated to reflect a modification to the original script.) This
script, however, adds logic to take into account that MCI Mail may not
respond to the initial rep 1y statement that sends a carriage return to the
host.

First the script declares a variable that it will use as part of a conditional
expression that determines how long to perform a task. As part of the
task, it sends a carriage return to establish communications with MCI
Mail and then waits for the expected character string from the applica­
tion. If a time-out does not occur, the script branches to a different lo­
cation to send the logon sequence to the application. If, however, com­
munications cannot be established after 10 carriage returns are sent, the
script alerts the user to the failure, disconnects the session, and ends.

To declare a variable, specify a data-type identifier and a variable name.
In the sample script, a variable named i, with a data type of i n t e g e r,
is declared.

integer i

1-16 CASL Programmer's Guide

Initializing variables

Performing a task
while a condition
is true

Using a relational
expression to
control the process

Developing a sample script

This script uses only one variable. If your script contains mUltiple var­
iables of the same data type, you can declare all of them on the same
line.

integer i, tries

Note: If the variables have different data types, you must declare them
on separate lines .•

The script compiler initializes an integer variable to a default value of
zero. To initialize the variable to a different value, use the equal sign
(=). In the sample script, the i variable is initialized to the value 1.

i = 1

To execute statements repeatedly while a condition is true, use the
w hi 1 e/we n d construct. If the condition is initially false, the state­
ments are not executed at all. This script uses the w hi 1e/we n d con­
struct to control the process of connecting to Mel Mail.

while i <= 10
reply
wait 2 seconds for "port:"
if not timeout then
{

goto LOGIN

i = i + 1
wend

The statements between the whi 1e and wend are continually executed
until the condition i <= 10 is no longer true. Then control passes to
the statement following the wend.

Expressions that use relational operators such as "<=" are called rela­
tional expressions. When you use these operators, the result is always
a boolean value (true or false). In this script, the relational expression
i <= 10 is used to determine how many times the whi 1e/wend con­
struct is performed. As long as the condition is true, the statements
within the construct are executed. When the condition is no longer
true, the statement following the wen d is executed.

Introducing CASL 1-17

Developing a sample script

Waiting for a
character string

Checking if a
time-out occurred

Testing the
outcome with
a boolean
expression

If you want your script to wait for one specific text string, use the
CASL wa i t statement. This sample script waits for the character
string "p 0 r t : " to ensure that a connection with MCI Mail is es­
tablished. To prevent the script from waiting forever, a duration
time of 2 sec 0 n d s is specified.

wait 2 seconds for "port:"

You can determine if a time-out occurred before the character string
arrived. The next section explains what to do.

Use the if/then construct and the timeout system variable to
determine the outcome of the wa i t statement.

if not timeout then
{

goto LOGIN

= i + 1

The timeout system variable is either true or false indicating whether
the last wa i t statement timed out. In this script, timeout is true if
the wa i t statement exceeds the time specification of 2 sec 0 nd s before
finding the "p 0 r t : " text string.

When you use the if/then construct, the statement(s) following the
then are executed only if the condition is true. In this script, the goto
LO GIN statement is executed if a time-out does not occur; if a time-out
occurs, the i = i + 1 statement is executed.

The condition you use in an if ... the n statement is usually a boolean
expression. Boolean expressions return either true or false. Your
boolean expressions can be simple, as shown in this script:

if not timeout then

1-18 CASL Programmer's Guide

Branching to a
different script
location

Continuing the
logon if the
connection is
established

Developing a sample script

You can also use more complex expressions, involving multiple con­
ditions with boolean operators, as shown in the following example:

if var1 >= 12 and var2 (= 5 then

In the sample script, if the boolean expression is true, the script trans­
fers control to a logon routine, which is located in a different part of
the script. The next section explains how to branch to a different script
location.

Sometimes it is preferable to handle a certain piece of coding logic in a
separate part of a script. To branch to this location, you can use the
got 0 statement.

if not timeout then
(

goto LOGIN

To enable the script compiler to know where to branch, you must sup­
ply a 1 abe 1 name in the got 0 statement. In the sample script, the
label LOG I N is used to indicate the location where the next logical piece
of code is located. The actual location is identified by the 1 abe 1 state­
ment.

1abel LOGI N

CASL provides another statement that allows you to branch to a label:
gosub ... retu rn. Chapter 6, "Using the Programming Language,"
describes this statement in detail.

If the script receives the "p 0 r t : " prompt before a time-out occurs, it
sends the logon sequence to the host, displays a message, and ends.

1abel LOGIN
wait for "name:"
reply userid
wait for "password:"
reply password
message 'Mel auto-logon complete'
end

Introducing CASL 1-19

Developing a sample script

Incrementing a
counter using
an arithmetic
expression

Alerting the user
if the connection
failed

Disconnecting the
session

If the "p 0 r t : " prompt does not arrive in time, the script increments
the wh i 1e/wend conditional counter. Continue with the next section to
learn how to use an arithmetic expression to increment a counter.

The number of times the wh i 1e/wend construct is performed depends
on the value in the variable i. To increment that value, you must use
an arithmetic expression. Arithmetic expressions consist of numeric
arguments and arithmetic operators. In the sample script, the addition
operator, which is a plus sign (+), is used to add 1 to i.

i = i + 1

The counter continues to increment until the host sends the character
string" p 0 r t : " or until the counter's value no longer satisfies the con­
dition for the w hi 1e/we n d construct (i <= 10). If the host does not
respond, the script alerts the user to the failure. Read the next section to
learn about the ale r t statement.

In general, the sample script uses the me s sag e statement to inform the
user of current events. A message, which is displayed on its own with­
out a dialog box, does not require any user intervention and is replaced
by other messages.

To display information to which the user must respond, use the ale r t
statement. The ale r t statement displays a message in a dialog box,
which requires the user to choose a pushbutton to exit the dialog box.
In the sample script, the ale r t statement provides an OK pushbutton
for the user.

al ert "System not respondi ng - Logon cancel ed.", ok

The script pauses at the ale r t statement until the user chooses OK.

If the connection with Mel Mail cannot be established, the script uses
the bye statement to end the session. The bye statement immediately
disconnects the current communications session and also disconnects the
modem connection.

1-20 CASL Programmer's Guide

Developing a sample script

Using indentation

Using braces with
a statement group

As you can see, some of the lines of code in the script are indented.
For instance, the code within the whi 1e/we n d loop is indented.

while i <= 10
reply
wait 2 seconds for "port:"
if not timeout then
{

goto LOGIN

i = i + 1
wend

Indentation is not required, but it helps to make your script more read­
able. If indentation was not used in the sample script, it would be dif­
ficult to determine which lines of code applied to the whi 1e / wen d
construct.

You can use braces to enclose one or more statements that belong to­
gether. In the sample script, braces enclose the goto statement that
follows the if ... the n statement, indicating that the got 0 statement
is part of the i fit hen construct.

if not timeout then
1

goto LOGIN

Introducing CASL 1-21

Developing a sample script

Controlling the 	 In the previous examples, the sample scripts did not verify the logon

entire logon 	 prompts sent by the host and therefore did not take corrective action if
a prompt never appeared. In this script, you can see how to use theprocess
watch/endwatch construct, within a wl1i 1e/wend loop, to wait
for anyone of multiple character strings from the host and then take
appropriate action based on the string that is received. The program­
ming logic in this script gives you greater control over the sequence
of events that may occur when communicating with your host com­
puter.

/* This script shows how to display messages and send a user
ID and password to MCI Mail. It also verifies that the MCI
Mail connection is active. In addition, it uses the watch
statement to verify that the logon sequence is successfully
communicated to the host. */

Script name: SAMPLE3.XWS
Created: 6/24/92 - Jane Smith
Modified: 6/25/92 - Jane Smith (Added code to

check for the "port:" prompt.)
Mod ifi ed: 7/02/92 - John Jones (Added code to

check for specific logon
prompts.)

/* First, define the required variables. */

integer i, tri es

/* Display a message on the status line to tell the user
what is going on. */

message "MCI Mail auto-logon in progress"

/* Try to get MCI Mail's attention by sending a carriage
return until the "port:" prompt is received. */

i = 1 	 Initialize
variable

while i <= 10 	 Perform while 1 1S

}ess than or equal
to 10

reply 	 Send CR
wait 2 seconds for "port:" 	 Wait for prompt
if not timeout then goto LOGIN 	 If no timeout,

branch to LOGIN to
check next prompts

i = i + 1 Increment counter
wend

/* Coul d not get MCI Mai l' s attenti on. Tell the user and
hang up. */

alert "System not responding - Logon canceled.", ok
bye 	 Di sconnect
end - -	 End the scri pt

1·22 CASL Programmer's Guide

Developing a sample script

label LOGIN --	 Branch-to location

/* Try to log on to MCI Mail for 50 seconds. If not
successful, disconnect the session and exit. */

tries = 1 	 Initi al i ze
variable

while online and tries < 5 	 Perform while both
conditions are
true

watch 10 seconds for 	 Wait for anyone
of the following
host responses

quiet 2 seconds reply
"name:" wait 5 ticks reply userid
"password:" wait 5 ticks reply password
"sorry, inc" wait 5 ticks bye :

message "Unable to log on." : end

"COM" : alarm 1 : message "MCI " +

"Mail auto-logon complete." : end

"call Customer Servi ce" : ...

alert "Connection refused.", ok : end
endwatch
tries = tries + Increment counter

wend

if tries < 5 then If not successful
{

bye Disconnect
alert "Lost the connection.", ok Tell the user

)
end - -	 End

As in the second sample script, which verified the MCI Mail connec­
tion, this script contains the appropriate lead-in comments, attempts
to establish communications with MCI Mail, waits for the "p 0 r t : "
prompt from the host, and branches to a different location to handle the
balance of the logon process. At this point, however, this script uses a
more comprehensive technique to ensure that it sends the correct logon
responses to the host.

Based on two controlling conditions (the script is 0 n1i n e and t r i e s
is less than 5), the script repeatedly watches for one of several host
responses to arrive. If either of the two controlling conditions becomes
invalid, the logon process terminates. Otherwise the script responds
appropriately to whichever host prompt or message it receives.

Introducing CASL 1-23

Developing a sample script

Performing a task
while multiple
conditions are true

Watching for one
of several host
responses

In the previous sample script, the whi 1e/w end construct contained one
relational expression that determined how many times the while loop
was repeated. This script uses two conditions to determine the duration
of the loop: the result of the 0 n1 i n e function and the result of a re­
lational expression.

while online and tries < 5

As long as both conditions are true, the statements in the whi 1e/wend
construct are repeatedly executed. If either of the conditions becomes
false, script execution continues with the statement following the wend.

The 0 n1 i ne function returns true as long as the script is on line to
the host (that is, the modems are connected). The relational expression
t r i e s <5 returns true as long as t r i e s is less than 5. Since the var­
iable t r i e s is initialized to 1 before the while loop and then is incre­
mented by 1 each time the loop is executed, the wh i 1e/wend construct
will be repeated a maximum of 4 times. It may be repeated fewer than
4 times, depending on what happens while the script is watching for
one of several host responses.

If you know that the host may send one of several different prompts, use
the wa tch/endwa tc h construct with multiple conditions to watch for
each possible prompt or message. The sample script watches 10
seconds for 6 potential conditions.

Write each watch condition as a separate entity. When one of the con­
ditions occurs, the statements for that watch condition are executed and
the watch/endwatch construct ends. If the 1O-second time-out expires
before a watch condition is satisfied, processing returns to the
whi 1e/we n d construct. If both of the while conditions are still true,
the script executes the wa t c h/ endwat c h construct again.

You need to write the actual wa t c h statement only once for all of the
watch conditions.

watch 10 seconds for

1-24 CASL Programmer's Guide

Developing a sample script

Each watch condition, along with its accompanying directives, is speci­
fied individually. These conditions are discussed in the paragraphs that
follow. As you can see in this script, the watch conditions are followed
by a colon (:). The colon is required.

A quiet connection

The first watch condition waits for the connection to be quiet for 2
consecutive seconds.

quiet 2 seconds : reply

If this condition is met, the script sends a carriage return to Mel Mail
and processing returns to the wh i 1e/wend construct. If the script is
still on 1 in e and t r i e s is less than 5, the wa t c hIe ndwa tc h construct
is executed again.

The "name:" prompt

The second watch condition looks for the character string" name : "

"name:" : wait 5 ticks: reply userid

If the script receives the "n ame : " prompt, it waits 5 tic k s (a tick is
one tenth of a second) and then sends the contents of use rid to Mel
Mail. If the script is still 0 n1 i ne and t r i e s is less than 5, the
wa t c hIend w at c h construct is executed again.

The "password:" prompt

If the host sends the "p ass w0 r d : " prompt, the script executes the
statements associated with the third watch condition.

"password:" : wait 5 ticks: reply password

After a brief wait of 5 tic ks, the script sends the contents of the sys­
tem variable pas s w0 r d to Mel Mail and then processing returns to the
whi 1e/wend construct. The watch/endwatch construct is executed
again if both of the while conditions remain true.

Introducing CASL 1-25

Developing a sample script

Sounding an alarm

The "sorry, inc" message

The fourth watch condition looks for the character string "s 0 r r y,
inc",

"sorry, inc" : wait 5 ticks: bye:
message "Unable to log on." : end

If the script receives this message, it waits 5 tic ks, disconnects the
session, displays a message for the user, and ends. Processing does not
return to the whi 1e/we n d construct ifthis character string is received.

The "COM" message

If the host sends the" COM" message, the statements associated with the
fifth watch condition are executed.

"COM" : alarm 1 : message "MCl " + ...
"Mail auto-logon complete." : end

In this case, the script recognizes that the logon process has completed
successfully. Therefore, it sounds an alann to get the user's attention,
displays an appropriate message, and ends.

The "call Customer Service" message

If the script receives the" call C u s tome r Se r vic e" message, it
executes the statements associate with the last watch condition.

"call Customer Servi ceo : ...
alert "Connection refused.", ok : end

The script displays an ale r t dialog box and waits for the user to
choose the OK pushbutton; then it ends.

To get the user's attention, you can use the a 1 a rm statement to make
the terminal emit a sound. This script uses the a 1 a rm statement, with
an argument of 1, to cause the terminal to play the "Close Encounters
of the Third Kind" theme.

"COM" : alarm 1 : message "MCl " + ...
"Mail auto-logon complete." : end

1-26 CASL Programmer's Guide

Using the
line-continuation
sequence

Developing a sample script

The a 1 a rm statement argument determines the type of sound that is
heard. In this case, an argument of 1 specifies that the terminal should
play the "Close Encounters of the Third Kind" theme. You can make
the terminal sound other types of alarms, such as 3 beeps or a 4-note
toot. Chapter 6, "Using the Programming Language," lists all of the
possible alarm sounds.

To write a directive that continues on another line, use the line-contin­
uation sequence (...) at the end of the line to be continued. You can
see an example of this in the sample script.

"sorry, inc" : wait 5 ticks: bye
message "Unable to log on." : end

If you have a string constant that is too long to fit on one line, you
can break the string into segments and use the line-continuation
sequence to indicate the string continues on another line. You must
enclose each string segment with quotation marks and use the string
concatenation operator (+) to join the strings.

"COM" : alarm 1 : message "MCI " +
"Mail auto-logon complete." : end

Introducing CASL 1-27

Compiling and running your script

Compiling and running your script

Once you have created and saved a script, you should compile it to
determine possible syntax errors. The script compiler converts your
source script into a binary, machine-readable fOim and reports any errors
that it detects.lhe compilation process takes only a small amount of
time. When you have corrected all of the syntax errors, you can run the
script.

Before you begin, however, it is important to understand how scripts are
recognized by the script processor. Note the following:

• 	 There are two types of script files: the source file, which you create
and edit, and the executable file, which is created when you compile
your script.

• 	 To enable the script processor to differentiate between script source
files and executable files, unique file-name formats are used.

Your script source files are identified as follows:

- By a .XWS file extension, if you are Windows user
(LOGON.xWS)

- By the file name alone, if you are a Macintosh user (LOGON)

Your executable script files are identified as follows:

- By a .XWC file extension, if you are a Windows user
(LOGON.xWC)

- By a bullet following the file name, if you are a Macintosh user
(LOGON.)

Now you are ready to compile and run your script. The following sec­
tions explain how to proceed.

Note: To obtain detailed instructions for or assistance in compiling
and running a script, use the on-line help provided with the Crosstalk
software. _

1-28 CASL Programmer's Guide

Compiling and running your script

Compiling a 	 You can compile a script from a communications session or from the

script 	 Crosstalk Script Editor. The following sections explain how to pro­
ceed. Before you begin, be sure to save the script you have created.

From a To compile a script from a session window, follow these steps:

communications

session 1 Start the Crosstalk application if it is not already active.

2 	 From a session window, choose Compile from the Script pull­
down.

3 	 Specify the script in the Compile dialog box.

4 	 As the script compiles, make note of any compilation errors that
may occur.

5 	 Correct the error(s).

6 	 Repeat steps 2 through 5 until your script compiles without
errors.

From the To compile the script you are currently editing with the Crosstalk Script
Script Editor Editor, follow these steps:

1 	 Choose Compile from the Script pull-down or choose the CASL
icon from the QuickBar. The Script Compiler message box,
which displays the compiler's progress, is displayed.

2 	 Make note of compilation errors, if any should occur. (The com­
piler stops when a syntax error is encountered and allows you to
exit to the Script Editor to correct the error. The error is high­
lighted to assist you in making corrections.)

Note: To stop the compilation, choose Cancel from the message
box.•

3 	 Correct the error(s).

4 	 Repeat steps 1 through 3 until your script compiles without
errors.

Introducing CASL 1-29

Compiling and running your script

Note: The script compiler automatically compiles any script you run
if the script has not already been compiled or if the most recent version
of the source script is newer than the compiled version. However, we
recommend that you compile your scripts before trying to run them to
ensure that all syntax errors are corrected .•

Running a script 	 You can run a script from a communications session or from the Cross­
talk Script Editor. The following paragraphs explain each process.

From a To run a script from a session window, follow these steps:
communications
session 1 Start the Crosstalk application if it is not already active.

2 From a session window, choose Run from the Script pull-down.

3 Specify the script in the Run dialog box.

Note: If you associate a script with a session when you define the
session parameters, the script runs automatically when the session is
started.•

From the 	 To run the script you are currently editing with the Crosstalk Script
Script Editor 	 Editor, you must specify a session in which to run the script. To do

this, choose a session from the Script pull-down. Note that only active
sessions are displayed on the Script pull-down.

Once you start running your script, you do not have to actively partici­
pate other than to note run-time errors, if any should occur, or respond
to prompts, if the script requires user input.

Note: You can use the Crosstalk trace facility while you are running a
script. Tracing lets you track the lines of your script as they are exe­
cuted. To start the trace facility, access a session window and choose
Trace from the Script pull-down. When you activate tracing, the Trace
option changes to Stop Trace. Choose Stop Trace to stop the trace
facility.

You can also stop a running script from a session window by choosing
Stop from the Script pull-down .•

1·30 CASL Programmer's Guide

Where do you go from here?

Where do you go from here?

In this chapter, you have been introduced to scripting and, in particular,
to developing scripts using CASL. For some of you, the information
provided is sufficient to satisfy the requirements of your job, and you
know that you can create the scripts you need by using Learn to record
your keystrokes.

For those of you who want to learn more about CASL, Table 1-1 can
help you fmd the information you need.

Table 1-1. Where to look for

To learn about. ..

Basic CASL concepts

CASL's language elements

Compatibility issues

DDE scripts

Declarations for variables,
arrays, procedures, or functions

Error messages

Interfacing with a host, users,
or other scripts

Macintosh considerations

Product support

Sample scripts

Terminal, connection, and
file transfer tools

Windows considerations

information

Refer to ...

Chapter 2

Chapters 5 and 6

Chapter 8

Appendix A

Chapter 3

Appendix C

Chapter 4

AppendixB

AppendixD

Distribution diskettes

Chapter 7

Appendix A

Introducing CASL 1-31

General rules for using CASL

General rules for using CASL

Statements

Line continuation
characters

CASL has general rules for using statements and comments in your
script. This section outlines these rules and explains the notation used
in this guide to describe the script language.

Statements specify an action to be taken. You can write the statements
in any of the following ways:

• 	 One statement to a logical line, as shown in the following example:

reply userid

• 	 Multiple statements to a logical line with a colon (:) between each
statement. This is shown in the following example:

wait for "Enter user ID:" : reply userid
wa it for "En te r pa ss wo rd :" : rep ly pas sw or d

• 	 A series of statements enclosed in braces ({ }), as shown in the fol­
lowing example:

if 	0 n 1 in e th en
{

reply userid
wait for "?"
reply password

You can continue a statement on the next line by placing line continua­
tion characters (...) at the end of the previous line. You can use the
line continuation sequence anywhere in a script except inside quotation
marks. The following example shows how to use the line continuation
characters:

proc add_integers takes integer one_num, ...
integer second_num

The line continuation sequence after the word one_num indicates that
there is more information to follow.

CASL Programmer's Guide 2-2

General rules for using CASL

Comments

Block comments

Line comments

Use comments to document your script. Comments are useful for
maintaining, modifying, or debugging the script in the future.

You can add both block comments and line comments to a script. The
following paragraphs explain each type.

When you want to add a block of comments, enclose the comment text
with the symbol pair / * and * / as shown in the following example:

/* This script logs on to the host. First send the
host logon. Then send the user 10 and password.*/

You can use block comments anywhere in a script except in the middle
of an identifier (such as a function or variable name) or inside a string
constant. You can even nest comments in a block comment; the script
processor sorts out the pairs correctly.

Be careful when using block comments, however, for if you fail to
terminate the block comment correctly, the compiler will treat every
statement in the rest of the script as part of the block comment.

Use line comments when your comment text is brief. Line comments
do not require a matching end-of-comment symbol.

There are two types of line comments-double hyphens (- -) and the
semicolon (;).

Note: We recommend that you use double hyphens for your line
comments because the semicolon has special meaning for some of
the CASL elements, such as the p r i nt statement. The semicolon
comment indicator is supported only for backward compatibility .•

Double hyphens

When you use the double-hyphen indicator, any characters that follow
the hyphens, through the end of the line, are considered comment text.
Since double hyphens are used only to designate a comment, you can
use them anywhere (except, of course, in the middle of identifiers or
string constants).

Understanding the Basics of CASL 2·3

General rules for using CASL

Notational
conventions
used in this
guide

Typeface

The following is an example of a double-hyphen comment:

Scri pt name: HELLO. XWS
-- Date: 12-18-92

Semicolon

Use the semicolon indicator only in a location where you would norm­
ally place a CASL statement. The following are examples:

print "Hi," : ; This is a comment

reply userid
; Send your user ID to the host

Notational conventions are used to explain the syntax and semantics of
the various procedures, functions, variables, and statements in the script
language. The notation is only a typographical convention provided to
help you understand how to use CASL and should not be used in your
scripts.

The following notational conventions are used to illustrate the format of
CASL language elements:

• Typeface

• Angle brackets

• Square brackets

• Braces

• Ellipsis

An explanation of the notation follows.

Words or characters displayed in the following typeface are part of the
script language:

online

2·4 CASL Programmer's Guide

General rules for using CASL

Angle brackets 	 Words or characters in italics that are enclosed in angle brackets (< >)
are placeholders for data you must fill in. The words or characters
shown in the brackets often indicate the type of argument that is re­
quired. Table 2-1 explains some of the placeholders you may find in
angle brackets.

Table 2-1. Placeholders in angle brackets

Word Type 	 Explanation

<char> Integer 	 The integer ASCII value of a character.

<express ion> Any 	 More than one type of expression can be
used here. Read the text to determine
which is suitable.

<fi 7ename> String 	 A legal file specification. You can use
full path names, as well as wild-card
characters (where appropriate).

<fi 7enum> Integer 	 A file number. Range: 1-8. These
expressions are usually optional and
must be preceded by a pound sign (#)
if they are specified.

<t i me_expr> Integer 	 An amount of time. You can use any
numeric expression followed by tic k s,
seconds, mi nutes, or hours. If
you do not specify a keyword,
seconds is assumed.

The following example illustrates the notational use of angle brackets:

delete <filename>

In this example, <fj 7ename> represents the name of a file.

Understanding the Basics of CASL 2·5

General rules for using CASL

Bold square
brackets

Bold braces

Ellipsis

Bold square brackets ([]) indicate that the argument is optional. The
following example illustrates the notational use of bold square brackets:

close [iF <fi7enum>J

In this example, the argument <fi 7enum> is optional.

Words or characters in bold braces ({ }) represent multiple arguments
from which to choose. The choices are separated by a vertical line, as
shown in the following example:

genlines {on I off}

In this example, there are two choices, 0 n and 0 f f. These are the only
possible choices.

An ellipsis (00.) immediately after an item indicates that the previous
item may be repeated. You can find an ellipsis used after items in angle
brackets and after optional items in bold square brackets.

After an item in angle brackets

An ellipsis after an item in angle brackets indicates that you can repeat
the previous item one or more times. The following example illustrates
this notational use of the ellipsis:

<digit> ...

In this example, you can have just one <dig it>, or you may have
multiple digits. You must have at least one digit.

After an optional item in bold square brackets

An ellipsis after an optional item in bold square brackets indicates that
you can repeat the item zero or more times. The following example
illustrates this notational use of the ellipsis:

[,<var>J ...

CASL Programmer's Guide 2-6

DOS and
Macintosh
differences

Terminology

Naming
conventions

General rules for using CASL

In the preceding example, va r is optional. If you choose to use va r as
an argument, the ellipsis indicates that you can have multiple variables
as arguments.

Note: Parentheses, nonbold square brackets, and nonbold braces that
appear in syntax descriptions and script language examples in this guide
are part of the language and should be included in your script .•

The information provided in this guide is applicable to both Macintosh
and DOS environments. However, the two environments use different
terminology and conventions. This section explains the differences.

To simplify the presentation of information, this guide uses the DOS
terminology in text. Whenever you see the DOS term shown in Table
2-2, it also refers to its Macintosh equivalent.

Table 2·2. DOS and Macintosh terminology

DOS Macintosh

Drive

Directory

Subdirectory

File

Volume

Folder

Subfolder

File

DOS drive names are limited to I character followed by a colon (for ex­
ample, A:, B:, or C:). Directories and files are limited to 8 characters
with an optional3-character extension in the form xxxxxxxx. xxx.

Macintosh volume names can consist of up to 27 characters. Folder and
file names can be up to 31 characters long.

Understanding the Basics of CASL 2·7

General rules for using CASL

Script file name
conventions

File path
specifications

To enable the Crosstalk script processor to differentiate between script
source files and executable files, you must use distinctive file-name
formats.

If you are creating a Windows script, use the following conventions:

e The .XWS file extension (LOGONXWS) for source files

e The XWC file extension (LOGONXWC) for executable files

If you are creating a Macintosh script, use the following conventions:

e The file name alone (LOGON) for source files

e A bullet following the file name (LOGONe) for executable files

In a Windows script, use a backslash (\) to delimit drives, directories,
and files. The following is an example:

"c:\xtalk\fil\somefile"

In a Macintosh script, use a colon (:) to delimit volumes, folders, and
files. The following is an example:

"HD 80:Crosstalk:Download Folder:Some File"

This guide uses the DOS convention to represent both.

Absolute and relative file paths

An absolute file path is one that begins with the root directory while a
relative file path starts with the current directory. The file paths shown
in the preceding examples illustrate how to set up absolute path specifi­
cations for the DOS and Macintosh environments respectively.

To set up a relative file path for DOS, format the path as follows
(assuming that x tal k is the current directory):

"fi 1\somefil e"

CASL Programmer's Guide 2-8

End-ot-line
delimiters

Wild cards

General rules for using CASL

To set up a relative fIle path for the Macintosh, format the path as
follows (assuming that Cr 0 sst a 1 k is the current folder):

":Download Folder:Some File"

Note that in a Macintosh environment, a colon must precede the first
item specification; otherwise the first item is assumed to be the volume.

In a DOS environment, a carriage-return/line-feed (CRlLF) character is
often used to indicate the end of a line. In a Macintosh environment, a
carriage-return (CR) is used to designate the end of a line. This guide
uses the DOS convention to represent both.

The DOS environment supports the use of wild cards (* or ?) to spe­
cify batch fIle operations. For example, if you want to send all of the
fIles that have the .XWP extension to another computer, you can spe­
cify a wild-card fIle name as follows:

*.XWP

Although these wild cards are not a typical Macintosh convention, you
can use thert in a Macintosh CASL script to ensure the script is porta­
ble between the platforms.

Understanding the Basics of CASL 2-9

Identifiers

Identifiers

Data types

Each variable, procedure, function, label, and other type of element used
in a script must have a unique name, referred to as an identifier.

An identifier can be any length up to 128 characters. The first character
must be alphabetic, or one of the following special characters: $, %, or
_. The remaining characters can be alphabetic characters, special char­
acters, or numbers; spaces cannot be used. Identifier names are not case­
sensitive.

Unlike in some other programming languages (for example, BASIC),
use of the percent (%) or dollar ($) symbol in a variable name does not
force the variable to be a particular data type. CASL determines the
data type of a variable from the keyword used in its explicit declaration
or from the type of expression assigned to it in an implicit declaration.
Refer to Chapter 3, "Declaring Variables, Arrays, Procedures, and Func­
tions," for more information on variable declarations.

Note: Do not use the same identifier for different elements (for exam­
ple, do not identify a variable with the same name assigned to a proce­
dure). Duplicate identifiers are an error. •

CASL supports the following data types:

• Integer

• Real

• String

• Boolean

• Byte

• Word

• Char

• Array

Note: For type-checking purposes, integer, byte, and word are all
considered integers .•

2-10 CASL Programmer's Guide

Integer

Real

String

Boolean

Byte

Word

Char

Array

Data types

The integer data type represents positive and negative numbers. Inter­
nally, integers are stored as 32-bit signed integers, so values between
-2,147,483,648 and 2,147,483,647 are possible.

The real data type represents positive and negative floating point num­
bers. Internally, reals are stored as 4-byte IEEE floating point numbers,
consisting of a sign bit, an 8-bit excess 127-bit binary exponent, and a
23-bit mantissa. The range of possible values is approximately 3.4E-38
to 3.4E+38.

The string data type represents variable length strings. A null string has
zero length. The maximum length of any string is 32,767 characters.

A string variable has a particular length at any given time, but the
length can change when a new value is assigned to the variable. The
new length can be longer or shorter than the original length of the
string.

The boolean data type represents true or false values.

The byte data type consists of unsigned, non-fractional values of 0 (zero)
to 255. It is often preferable to use bytes, rather than integers, in arrays
because bytes require less memory than integers.

The word data type consists of unsigned, non-fractional values from
o(zero) to 65,535. As with the byte data type, you may find it pre­
ferable to set up your arrays using words, rather than integers.

The char data type consists of a single-character string that can be as­
signed as strings or bytes.

The array data type consists of multiple elements of a data type. You
can have an array of integers, reals, strings, booleans, bytes, words, or
chars.

Understanding the Basics of CASL 2-11

Constants

Constants

Integer
constants

Decimal integers

Hexadecimal
integers

A CASL constant can be one of the following four types:

• mteger

• Real

• String

• Boolean

mteger constants have one of the following formats:

[-J <digit> Decimal integers

[-J <digit> {h H} Hexadecimal integers

[-J <di gi t> {o 0 I q I Q} Octal integers

[-J <digit> {b B} Binary integers

[-J <digit> {k K} Kilo integers

Decimal integers use a base of 10, which means that 0 (zero) through 9
are valid digits. The following are examples of decimal integers:

1

-61

Integer constants that end with an h or Hare hexadecimal constants.
These constants use a base of 16; therefore, the digits of the constant
can be 0 (zero) through 9 and also a through f (lower- or uppercase).

The first digit of a hexadecimal constant must always be numeric. If
the leading digit is not numeric, you must supply a leading zero. The
following are examples of hexadecimal constants:

oFOH

3f8h

2·12 CASL Programmer's Guide

Constants

Octal integers

Binary integers

Kilo integers

Real constants

Integer constants that end with the letter 0, 0, q, or 0 are octal con­
stants. These constants use a base of 8, which means that 0 (zero)
through 7 are valid digits. The following are examples:

170

170

Integer constants that end with a b or 8 are binary constants. Valid
digits are 0 (zero) or 1 (one). Since the binary suffix b or 8 is also a
valid hexadecimal digit, the script processor treats a b or 8 in an integer
constant as a binary suffix only if the b or 8 is not followed by a legit­
imate hexadecimal digit or by the hexadecimal character h or H.

The following is an example of a binary constant:

10010018

Integer constants that end with a k or K are kilo integers. Valid digits
for this type of integer constant are 0 (zero) through 9. When the script
processor encounters a k or K following an integer constant, it multi­
plies the constant by 1,024. For example, 32K becomes 32,768.

The following are examples of kilo integers:

64K

128k

Real constants specify a numeric value that may have a fractional com­
ponent. For CASL to recognize a constant as a real constant, rather
than as an integer constant, a decimal point (.) or the exponent indi­
cator (e or E) must appear somewhere in it. A real constant must start
with a digit (0 through 9) or a decimal point, optionally preceded by a
minus sign.

Real constants have one of the following formats:

[-] [<digit> ...] n." <digit> ... [<exponent>]

[-] <digit> ... <exponent>

Understanding the Basics of CASL 2·1 3

Constants

String constants

Embedded
quotation marks

Unprintable
characters

The <exponent> has the following format:

{e I E} [+ I -J <digit> ...

The following are examples of real constants:

0.2
-0.4elO
12.2e+l0
20.3e-4

String constants consist of a string of characters enclosed in single
quotation marks (,) or double quotation marks ("). You must use
the same type of beginning and ending quotation marks. A null string
is represented as ' , , if you use single quotation marks, or " ", if you
use double quotation marks.

The following is an example of a string constant:

'This is a string'

In this example, the script processor recognizes that T his i s a s t r i n g
is a string constant because it is enclosed in single quotation marks.

If you have a quotation embedded in a string constant, use the other type
of quotation marks to enclose the embedded quotation, as shown in the
following example:

'She sai d, "Hello. '"

In this example, the quotation He 1lois enclosed in double quotation
marks because it is embedded in a longer string, which is enclosed in
single quotation marks.

To include an unprintable control character in a string constant, put
a carat symbol before the control character (for example, "G for the
control-G). To specify a numeric string, enclose the string in angle
brackets (for example, <007> for the ASCII value 7). Table 2-3 lists
the control characters and their corresponding ASCII values.

2-14 CASL Programmer·s Guide

Constants

Table 2·3. ASCII control characters

Control
ASCII character Description

0 A@ Null
1 AA Start of header
2 AB Start of text
3 AC End of text
4 AD End of transmission
5 AE Enquiry
6 AF Positive acknowledgment
7 AG Bell
8 AH Backspace
9 AI Horizontal tab
10 AJ Line feed
11 AK Vertical tab
12 AL Form feed
13 AM Carriage retum
14 AN Shift out
15 AO Shift in
16
17

Ap
AQ

Data link escape
Device control 1

18 AR Device control 2
19 AS Device control 3
20 AT Device control 4
21 AU Negative acknowledgement
22 AV Synchronous idle
23 AW End of transmission block
24 AX Cancel
25 Ay End of medium
26 AZ Substitute
27 A[Escape
28 A\ File separator
29 A] Group separator
30 Record separator
31 Unit separator

Understanding the Basics of CASL 2·15

Constants

Special characters

Key names

String constants
that continue on
a new line

Boolean
constants

Some characters have special meanings. For example, the vertical bar
(I) is interpreted as a carriage return; a single or double quotation mark
is interpreted as a delimiter for a string constant; and a carat symbol is
interpreted as notation for control characters.

If you want a special character to be recognized as part of the string
rather than as a special character, use a backquote (,), which is also
called a grave accent, before the special character. This is illustrated in
the following examples:

reply "I"
rep 1 y '" I "

In the first example, the script processor interprets the " I " to mean a
carriage return should be sent to the host. In the second example, the
script processor recognizes that " ' I " means a vertical bar should be
sent to the host.

If you want a backquote character to be recognized as part of the string,
put two backquote characters in a row; the first one protects the second
one.

If you need to specify a particular key on the keyboard, enclose the key
name in angle brackets. Then enclose the entire string in quotation
marks, as shown in the following example:

"<PFl>"

If you have a string constant that is too long to fit on one line, break
the string into segments, enclosing each segment with quotation marks,
and use the string concatenation symbol (+) to join the segments. Do
not use the line continuation sequence (...) or a carriage return inside the
quotation marks. The following example illustrates how to continue a
string constant on a new line:

message "You are running a new system" + ...
"software version"

A boolean constant is one of the following:

false
true

2-16 CASL Programmer's Guide

Expressions

Expressions

Order of
evaluation

CASL expressions include arithmetic, string, relational, and boolean
expressions. There is a specific order of evaluation applied to these
expressions based on precedence and the use of parentheses. A type
conversion can be performed for some expressions. When a type con­
version is performed, the original type of the expression is converted
to a different type. Type conversion is explained later in this chapter.

Operators perform mathematical, logical, and string operations on ex­
pressions, or arguments. Most of the CASL operators have two argu­
ments in the following format:

argumentl operator argument2

arg ument 1 and a rgument2 must be expressions of the valid type
for the operator involved. In general, you can use any expression con­
taining a syntactically correct mixture of arguments and operators in a
script wherever the result is allowed. For example, the following state­
ments are functionally equivalent:

wait 9 seconds
wait 4 + 5 seconds

wait 3 * 3 seconds
wait 18 / 2 seconds

Expressions are normally evaluated based on the precedence of the opera­
tors; higher precedence operators are applied before lower precedence op­
erators. You can control the order of evaluation of any expression by
using parentheses. SUbexpressions inside parentheses are evaluated
before the main expression.

The general precedence of operators is as follows:

flighestprecedence Arithmetic and string operators.

Next highest precedence Relational operators.

Lowest precedence Boolean operators.

Understanding the Basics of CASL 2-17

Expressions

Arithmetic and string operators share the same precedence level because
they cannot be mixed. Arithmetic and string expressions are completely
evaluated before participating in relational expressions. Relational
expressions are completely evaluated before participating in boolean
expressions.

Within a particular type of expression, the precedence rules for that type
are followed. The following sections explain the precedence rules for
each expression.

Arithmetic You build arithmetic expressions using numeric arguments and arith­

expressions metic operators. Unary operators are evaluated from right to left, and
binary operators of the same precedence are evaluated from left to right.

The standard arithmetic operators you can use are listed in groups of
decreasing precedence. Each operator has a symbolic representation
and a name.

The operators with the highest precedence are as follows:

BitNot

Negate

The operators with the second highest precedence are as follows:

rol Rol
ror Ror
shl Sh 1
shr Shr

The operators with the third highest precedence are as follows:

& 	 BitAnd
1\ BitXor
I Division
\ IntDivision
mod Modulo
* 	 Multiplication

The operators with the lowest precedence are as follows:

+ 	 Addition
BitOrI
Subtraction

2-18 CASL Programmer's Guide

Expressions

These operators, which are listed in alphabetical order, are explained in
the paragraphs that follow.

Ad d i t ion produces the numeric sum of its arguments. The following
is an example:

2 + 2

8i tAnd, 8i tOr, Bi tXor, and 8i tNot are bitwise operators. They are
common operators in the assembler language. In the following dia­
grams, which show how these operators work, x and y are bit arguments
and z is the result of the bitwise operation.

BitAnd 8itOr

x y z x y z

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

BitXor BitNot

x y z

0 0 0 o 1
0 1 1 1 0

1 0 1

1 1 0

±
The following examples use 8 itAnd, 8itO r, 8 i txor, and 8 itNot, in
that order:

somevar bitva rl & bitva r2

somevar somevar bitvar3I
somevar somevar /\ bitva r3

somevar ~ bitvarl

Understanding the Basics of CASL 2-19

Expressions

oi vis ion and I n t 0 i vis ion cause the mathematical division of the
first argument by the second argument. For 0 i vis ion, the result is
a real (floating point) value if either of the two quantities is a real; for
In t 0 i vis ion, only integers are allowed, and the result is an integer,
possibly truncated. The following are examples:

x = 3.0 / 2.0 The result is 1 . 5

an_integer = 3 \ 2 The result is 1

Mo du10 returns the remainder after dividing its first argument by its
second argument, as shown in the following example:

10 mod 4 The result is 2

Mu1tip 1i cat ion is an algebraic operator that returns the product of
two arguments. The following is an example:

2 * 2

Neg ate is also called "unary minus" in some programming languages.
It multiplies a numeric value by minus one. The Neg ate operator is
used in the following example:

neg_num = - pos_num

Pol, Po r, Sh1 , and S hr are bitwise operators that either rotate or shift
the bits in an individual 8-bit, 16-bit, or 32-bit argument. These
operators are common in the assembler language.

When you use these operators, the fIrst argument has its value moved
the number of positions specified in the second argument. In rotation,
the bits that are moved off one end of the first argument are moved back
onto the other end of the argument. In shifting, the bits that are moved
off the end of the argument are discarded and replaced with zeros on the
other end of the argument.

The Po 1 and Sh 1 operators move bits to the left (toward the most sig­
nificant bit) while the Po r and Shr operators move bits to the right
(toward the least significant bit). The following are examples of these
operators:

print 1 ror 8
print 1 shr 8
print 1 ral 8
print 1 s h 1 8

2-20 CASL Programmer's Guide

String
expressions

String
concatenation
operation

Relational
expressions

Expressions

For the first example, '16,777,216' is printed. For the second example,
'0' (zero) is printed. For the third and fourth examples, '256' is printed.

Sub t rae t ion reduces the first argument by the value in the second
argument. Both arguments must be numeric. The following is an ex­
ample:

4 - 2

There is only one string operator-the string concatenation operator.
However, CASL provides a comprehensive set of statements and
functions that you can use to perform other string operations.

String concatenation joins two strings. The string concatenation opera­
tor is as follows:

+

When you use the string concatenation operator, two strings connected
by a "+" are joined together to make one long string. This is shown in
the following example:

"123" + "456" is the string "123456"

For a complete list and description of the statements and functions that
perform string operations, see Chapter 5, "Introducing the Programming
Language," and Chapter 6, "Using the Programming Language."

Relational expressions result in boolean values. The relational oper­
ators have no precedence.

You can use the following relational operators to compare numbers,
strings, or booleans:

Equal
)= GreaterOrEqual
) GreaterThan
<> Inequality
<= LessOrEqual
< LessThan

Understanding the Basics of CASL 2-21

Expressions

Boolean
expressions

These operators are described in the paragraphs that follow.

Equa 1i ty compares two expressions (either numeric or string) and
returns t rue if the two items compared are exactly the same. Trailing
spaces are significant in string comparisons. The following are
examples of the E qua 1i ty operation:

if a variable = 2 then <statement>

Note: The equal sign is also used for variable assignment, as shown
in the following example where the variable a_va ria b1e is assigned
a value of 2:

a variable = 2.

GreaterOrEqual, GreaterThan, LessOrEqual, LessThan,and
In e qua 1i ty are also comparison operators. They apply to numeric
quantities or strings. While the comparison of numeric quantities is
straightforward, the comparison of strings is more complex.

In string comparisons, single characters are compared on the basis of
their ASCII collating sequence; therefore, "Z" is less than "a." For
longer strings, characters are compared position by position until a
character is found that is different; then the characters that are different
are compared on the basis of their ASCII collating sequence.

The following examples show the LessThan, LessOrEqual,
GreaterThan, and GreaterOrEqual operators:

if some var < 2 then <statement>
if stringl <= string2 then <statement>
while length(a_string) > 12

<statement> unti 1 rec_poi nter => max records

The boolean operators you can use are listed in the order of decreasing
precedence.

The operator with the highest precedence is as follows:

not

2-22 CASL Programmer's Guide

Expressions

The operator with the next highest precedence is as follows:

and

The operator with the lowest precedence is as follows:

or

The arguments to boolean operators can be boolean variables, relational
expressions, or other boolean expressions.

And, Or, and Not produce a true or false result from their arguments,
that is, they see their arguments only as true or false, not as quantities.
The And operator returns true only if both arguments are true. The 0 r
operator returns true if either or both of its arguments are true. The Not
operator returns the opposite of its argument.

The following examples contain these operators:

if null (a_string) and x = 1 then <statement>

if counter> maximum or inkey then <statement>

if not eof(fl) and inkey <> 27 then <statement>

flip = not flip

If the value of the left argument of a logical operator is sufficient to
determine the outcome of the expression, the right argument is not
evaluated at all. This is the case when the left argument of the And
operator is false, or when the left argument of the 0 r operator is true.

For instance, in the following example, the array reference d a t a [n J
will never attempt to index beyond the end of the array; if n were greater
than 10, the expression n <= 10 would be false, and the right argument
would never be evaluated.

integer data[lOJ

if n <= 10 and data[nJ >= 0 then <statement>

Understanding the Basics of CASL 2-23

Type conversion

Type conversion

Converting
an integer
to a string

Converting
a string to
an integer

You may find it is necessary to convert values from one type to another.

CASL provides the means to perform a variety of type conversions.

This section explains how to convert an integer to a string, a string to

an integer, an integer to a hexadecimal string, and an ASCII value to its

corresponding character string.

To convert an integer to a string, use the s t r function. This function

does not add leading or trailing spaces.

The following example illustrates how to use the s t r function:

In this example, s t r converts s ha r e_ to_b uy to a string, which is
sent to the host with the rep 1y statement.

To convert a string to an integer, use the i nt val function. This
function ignores leading spaces and evaluates the string until a non­
numeric character is found.

You can convert a string to a decimal or hexadecimal integer. If you
need a hexadecimal integer, add an H to the end of the string. If your
hexadecimal string does not begin with a numeric character, place a
zero at the beginning of the string. If you need a kilo integer, add a K
to the end of the string.

The following example illustrates how to use the i n t val function:

num = intval(user_input_string)

In this example, i nt val converts use r _ i nput_s t ri ng to an integer
and returns the result in n um.

2-24 CASL Programmer's Guide

Type conversion

Converting an
integer to a
hexadecimal
string

Converting an
ASCII value to
a character
string

To convert an integer to a hexadecimal string, use the hex function. If
the integer is below 65,536, the string is 4 characters long; otherwise, it
is 8 characters long.

The following example shows how to use this function:

print hex(32767)

In this example, the hex function converts the integer 32,767 to a
hexadecimal string and the result is displayed on the screen.

To cOIivert an ASCII value to its correspoIiding I-byte character string,
use the c hr function. The following is an example of how to use this
function:

cr = chr(13)

In the preceding example, c hr converts the ASCII value 13 to its
corresponding carriage return character and returns the result in cr.

For more information on these and other CASL functions that perform
type conversions, see Chapter 5, "Introducing the Programming Lan­
guage," and Chapter 6, "Using the Programming Language."

Understanding the Basics of CASL 2-25

Compiler directives

Compiler directives

Suppressing
label
information

Suppressing
line number
information

Trapping an
error

Compiler directives provide instructions for the script compiler. CASL
compiler directives let you do the following:

• Suppress label information

• Suppress line number information

• Trap an error

• Include an external file

• Define a script description

By default, infornlation about labels is included in the compiled version
of your script. To suppress the label information, add the 9 e n 1abe 1 s
off compiler directive at the beginning of your source script. The
default for this directive is 9 e n 1abe 1son.

Note: If you use the 9 e n 1abe 1S 0 ff directive, you cannot use the
ins c r i pt function or the 9 oto @<express i on> statement in your
script. _

Information about line numbers is also included as part of a compiled
script. To suppress this information, add the 9 e n1 i n e S 0 ff compiler
directive at the beginning of your script. The default for this directive is
genl i nes on.

Use the t ra p compiler directive to enable and disable CASL's error
trapping feature. Error trapping is disabled (t rap 0 ff) by default.
To enable error trapping, set t rap 0 n just prior to a statement that
might generate an error. For additional information about trapping
and handling errors, see Chapter 4, "Interfacing with the Host, Users,
and Other Scripts."

Note: The t rap compiler directive does not affect whether errors
occur; it simply provides a way to effectively handle the errors if they
do occur._

2-26 CASL Programmer's Guide

Compiler directives

Including an 	 Use the inc1 u decompiler directive when you want to include another
file in the script being compiled. The file is included in the script fol­external file
lowing the inc 1 u d e directive, as if the included file were part of the
original file.

The inc1 u d e directive includes the file only once, no matter how many
times you use the directive. The reason for this is that included files
typically contain declarations, and including them more than once causes
duplicate declaration errors.

Defining a script 	 Use the s c rip t des c compiler directive to define descriptive text for a

description 	 script. When the script is added to the Script pull-down and to the Open
dialog box, the s c rip t des c text appears next to the associated script
name.

For more detailed information about these compiler directives, see
Chapter 6, "Using the Programming Language."

Reserved keywords

CASL reserves celtain words called keywords. You may not use any
of the keywords as identifier names. The reserved words are not case­
sensitive.

Keywords include such elements as statements (for example, capt u r e
and wa t c h), words that define time (for example, sec 0 nd s and tick s),
and words that bind statements, (for example, for and nex t).

Table 2-4, which begins on the following page, lists the CASL key­
words.

Understanding the Basics of CASL 2·27

Reserved keywords

2-28 CASL Programmer's Guide

Table 2-4. CASL keywords

abs
accept
across
activate
activatesession
active
activesession
add
alarm
alert
align
alluc
and
answer
append
arg
arrow
as
asc
assume
at
attr
aux
backups
binary
bitstrip
black
blankex
blue
bol
boo 1
boolean
border
bow

box

bright

breaklen

brown

browse

builtin

bye

byte
ca 11
cancel
capacity
capchars
capfile
capture
case
cd
chain
char
chdir
checkbox
chmod
choice
choices
chr
cksum
class
clear
close
cls
cmode
color
compile
connected
connectreliable
copy
count
crc
ctext
curday
curdir
curdrive
curhour
urminute
curmonth
cursecond
curyear
cwa it
cyan

continued

Reserved keywords

Table 2-4. CASL keywords (cont.)

date editor
ddeack edittext
ddeadvise else
ddeadvisedatahandler end
ddeexecute endcase
ddei niti ate enddialog
ddenak endfunc
ddepoke endproc
dderequest endwatch
ddestatus enhex
ddeterminate ens tore
ddeunadvise en text
default environ
definput eof
defoutput eoj
defpushbutton eo1
dehex eop
delay eow
delete errclass
deletesubstring errno
description error
des tore exec
de text exists
device exit
devicevar extern
dialmodifier external
dialogbox extract
di r fail
direct false
dirfil field
diskspace fileattr
display filedate
do filefind
dosversion filesize
down filetime
downloaddir f ill
draw filter
drive filtervar
drop fkey
echo flashing
edit fl ood

continued

Understanding the Basics of CASL 2-29

Reserved keywords

2·30 CASL Programmer's Guide

Table 2·4. CASL keywords

fncheck
fnstrip
focus
footer
for
form
forward
freefile
freemem
freetrack
from
func
function
genlabels
genl i nes
get
getnextline
global
go
gosub
goto
grab
gray
green
group
groupbox
alt
header
height
help
hex
hidden
hide
hideallquickpads
hidequickpad
hms
hollow
hour
hours
if
include

(cont.)

index

inject

inkey

input

inscript

insert

instr

integer

intval

inverse

is

isnt

istrackhit

jump

keep

key

keys

kermit

1abe 1

1eft

leftjustify

1en

length

library

1 i ft

1 i n e

linedelim

linetime

listbox

load

loadquickpad

loc

locked

lowcase

1pri nt

1text

1wait

magenta

match

max

maximize

continued

Reserved keywords

Table 2-4. CASL keywords (cont.)

maxlength ontime
md open
message optional
mid or
millisecond output
mi 11 i seconds over
min pack
minimize pad
minus page
minute paint
minutes pan
mkdir password
mkint patience
mkstr pa use
mod perform
modem picture
move plus
name pop
netid preserve
new press
next print
nextchar printer
nextline proc
noask procedure
noblanks prompt
nobye protocol
nocase protocolvar
none public
nopause pure
norma 1 pushbutton
not put
null quiet
number quit
octal quote
of radiobutton
off random
offset rd
ok read
on real
online receive
only red

continued

Understanding the Basics of CASL 2·31

Reserved keywords

Table 2-4. CASL keywords (cont.)

redialcount show
redialwait showall qui ckpads
release showquickpad
remove shr
rename shut
repeat size
replace slice
reply some
request sort
reset space
restore start
resume startup
return statevar
returns static
reverse status
rewind step
right str
rmdir string
ro 1 strip
ror stripclass
routine stripwild
rtext stroke
run style
save subst
script subtitle
scriptdesc swap
scroll systemvar
secno systime
second tabex
seconds tabstop
seek tabwidth
send takes
send break terminal
session terminalvar
sessionvar terminate
sessname then
sessno tick
setup ticks
setvar time
shl timeout

continued

2-32 CASL Programmer's Guide

Reserved keywords

Table 2-4. CASL keywords

times
titl e
to
toggle
trace
track
trackhit
trap
true
type
unloadallquickpads
unloadquickpad
until
up
upcase
upload
userid
val
version
view
viewport
wa it

(cont.)

watch
weekday
wend
while
white
width
winchar
window
winsizex
winsizey
winstring
winversion
word
write
xpos
xsep
yellow
yourself
ypos
ysep
zone
zoom

Understanding the Basics of CASL 2·33

Introduction

Introduction

In Chapter 2, "Understanding the Basics of CASL," you were introduced
to the basic components of CASL. As you develop your scripts, you
will find it necessary to declare many of these elements, just as you
declare them in other programming languages.

In a CASL script, you use declarations to define your variables, arrays,
procedures, and functions. Declarations make your script more readable
and maintainable; in some instances, they are mandatory. The informa­
tion contained in this chapter will help you understand and use declara­
tions.

CASL Programmer's Guide 3-2

Variables

Variables

Predefined
variables

System variables

Module variables

A variable is a language element whose value can change during the
course of running a script. You use variables as storage areas where
you can keep the results of a computation, data arriving from the host,
and other data such as a user name or password.

With CASL, you can use two types of variables: predefined variables,
which you can reference in your script; and user-defined variables, which
you define in your script.

There are two types of predefined variables: system variables and
module variables.

System variables contain user-profile (or configuration) information
or session information.

The variables that contain user-profile information are stored in the
XTALK.lNI file on a PC or in "Crosstalk Preferences" in the Pre­
ferences folder, which is in the System folder, on a Macintosh. The
information in these variables is global, that is, it pertains to all
sessions.

The variables that contain session information are stored in a session
profile. Each session entry contains session parameters such as the
terminal emulation type, user ID, and password.

Module variables contain tool-specific information and are stored in
a session profile. For example, if a session uses the dcamodem
connection device type, the entry contains settings for Port, Speed,
DataBits, and so on. To reference these variables, use the ass ume
statement as follows:

assume device "DCAMODEM"

Declaring Variables, Arrays, Procedures, and Functions 3·3

Variables

User-defined
variables

Explicit
declarations

User-defined variables are those you define in your script. These varia­
bles can be local to one script or shared across multiple scripts.

You must declare your variables before you use them. With CASL,
you can declare them explicitly or, in some cases, implicitly.

Explicitly declare your variables to make your script more readable and
maintainable.

Explicit declarations consist of a data-type identifier and a variable name.
You can use any variable name you like as long as it is not the same as
that of another language element in your script. It is often helpful to
assign a name that reflects the variable's purpose; for example, the name
fi 1e_name is more descriptive than the name xyz.

Your variable names can contain any combination of alphanumeric char­
acters as well as some symbols. The first character must be alphabetic,
or one of these special characters: $, %, or _. Variable names can con­
sist of up to 32,767 characters.

The following illustrates the general form of an explicit declaration:

<data_type> <name> [, <name>] ...

Single-variable declarations

You can declare variables one to a line. The following is an example of

single declaration:

integer counter

In this example, co u n t e r is declared as an integer variable.

CASL Programmer's Guide 3-4

Variables

Implicit
declarations

Multiple-variable declarations

You can also declare more than one variable on a logical line, but the
variables must be of the same type. Multiple declaration is shown in
the following example:

integer row, col

In this example, both row and co 1 are declared as integer variables.

The following are examples of explicit declarations for other data types:

boolean failed
real percentage
string file_name, extension

You can implicitly declare a variable if the first time it is used it is
possible to infer its type from the context. However, use implicit
declarations sparingly, for your script is less readable and maintainable
when variables are not declared explicitly.

The most common case of implicit declaration is where the variable is
assigned a value. In this case, the type of the variable is implicitly de­
clared to match the type of the expression assigned to it. In the example
that follows, use r _n ame is implicitly declared as a string variable be­
cause the string "J 0 hn" is assigned to it. Note that" J0 hn" is enclosed
in quotation marks; you must use quotation marks to enclose a data
string assigned to a string variable.

user name = "John"

The same concept applies for all other cases where the variable type can
be inferred. For instance, the following example implicitly declares
co unt to be an integer variable because the initial value is an integer.

for count = 1 to 10

next

Declaring Variables, Arrays, Procedures, and Functions 3-5

Variables

Public and external
variables

Initializers

If you want to share a variable among multiple scripts, declare the var­
iable as pub 1 i c in the main script (parent script) and as ext ern a 1
in the other scripts (child scripts). The data type ofthe variables must
match; and if the variable is an array, the declared array size must match.
As with any other explicit declaration, you can declare multiple public
or external variables of the same type on one logical line, separating the
variable names with commas.

The following are examples of public and external variables:

public integer user_name (parent script declaration)

external integer user_name (child script declaration)

For additional information about public and external variables, see
Chapter 4, "Interfacing with the Host, Users, and Other Scripts."

Variables you declare explicitly are automatically initialized by the com­
piler: strings are initialized to nulls; reals and integers are initialized to
zero. To initialize these variables to a different value, use the assign­
ment operator (=).

The following are examples of variable initialization:

a var = 10

amount = "Quantity"

In the first example, the integer variable a_va r is initialized to 10.
In the second example, the string variable am 0 untis initialized to
Quant i ty.

CASl Programmer's Guide 3-6

Arrays

Single­
dimension
arrays

Arrays with
multiple
dimensions

Arrays

Arrays require an explicit declaration; it is not possible to implicitly
declare an array.

An array declaration is similar to other declarations, but you must also
declare the dimensions. Enclose the dimensions of the array in square
brackets.

Note: The elements in CASL arrays are numbered starting from zero;
therefore, there are actually n + 1 elements in an array of size n.•

Some arrays have only one dimension. For example, you declare a
single-dimension array of 30 integers as follows:

integer epsilon[29J

In this example, the size of the array e psi 10 n is 29, but there are
actually 30 elements in the array because the fIrst element is element
o(zero).

Arrays can also be multidimensional. You declare multiple dimen­
sions by providing multiple dimension sizes, separated by commas.
For example, you declare a 10-by-20 string matrix in the following
way:

string matrix[9, 19J

Declaring Variables, Arrays, Procedures, and Functions 3-7

Arrays

Arrays with
alternative
bounds

You can use altemative bounds declarations when you need to use
bounds other than the default. The following examples show how
to declare arrays with altemative bounds:

integer vector[O:99]
integer profile[3:6]
integer samples[-lO:lO]

The first example, an array of 100 elements, is equivalent to i nt e g e r
vee tor [99] because 0 is the default lower bound. In the second ex­
ample, the array pro f i 1e, an array of 4 elements, is indexed from 3
to 6. The array sam p1e s, an array of 21 elements, is indexed from
-10 to 10 in the third example.

When you declare multiple dimensions, you can use altemative bounds
declarations for each dimension individually. For example, declare a
matrix whose first dimension is indexed from 10 to 30 and whose
second dimension contains 100 integers in the following way:

integer data[lO:30, 99]

CASL Programmer's Guide 3-8

Procedures

Procedures

Procedure
argument lists

A procedure definition is a declaration because it only defines the state­
ments that make up the procedure. The statements themselves are not
executed until the procedure is called.

You must declare a procedure before you use it. A procedure cannot be
inside a function or another procedure.

Procedures are useful for replacing groups of statements that are fre­
quently used. For example, a script that repeatedly performs a com­
plicated sequence of steps can use one common procedure to perform
the task. The statement(s) that call the procedure simply pass the ap­
propriate information to the procedure, and it performs the task. If you
need to return a result, consider using a function instead of a procedure.

The following example illustrates the syntax of a procedure definition:

proc <name> [takes <arglist>]

endproc

As shown in the preceding syntax illustration, a procedure can have an
argument list. The <a r 9 1 i s t >is optional, and is used only if the
procedure takes arguments. If arguments are included, you must use
the same number and type of arguments in both the procedure and the
statement that calls the procedure. The arguments are assumed to
be strings unless otherwise specified.

The syntax of <a rg lis t> is as follows:

[<type>] <argument> [, [<type>] <argument>] ...

Declaring Variables, Arrays, Procedures, and Functions 3-9

Procedures

Forward
declarations for
procedures

The following is an example of a procedure definition:

/*

This procedure sends the user 10 and password to the

host.

*/

proc logon takes username, passwrd
reply username
wait 2 seconds
reply passwrd

endproc

In this example, the statements enclosed in the / * and * / symbols
are comments describing the procedure's purpose, The procedure,
which is named logon, expects two string arguments-use rname
and pas s w r d; and it sends the arguments to the host. When the pro­
cedure ends (e n d pro c), control is passed to the statement immediately
following the one that called the procedure.

You call this procedure as follows:

logon userid, password

The arguments use rid and pas s w 0 r d are passed to the procedure
logon.

You can use forward declarations to declare procedures whose definitions
occur later in the script. The syntax of a forward procedure declaration is
the same as the first line of a procedure definition, with the addition of
the forward keyword.

Forward declarations are useful if you want to place your procedures near
the end of your script. A procedure must be declared before you can call
it; the forward declaration provides the means to declare a procedure and
later defme what the procedure is to perform.

The following syntax is used for a forward declaration:

proc <name> [takes <arg7ist>] forward

3-10 CASL Programmer's Guide

Procedures

External
procedures

When the procedure defInition is encountered, each of its arguments (if
provided) must match the data type of the corresponding argument in the
forward declaration.

The following example illustrates how to set up the logon procedure
using a forward declaration:

proc logon takes ... -- The forward declaration
username, passwrd forward

logon useri d, password -- The procedure call

proc logon takes username, passwrd -- The procedure
reply username
wait 2 seconds
reply passwrd

endproc

You can also use the per for m statement to call a procedure before it is
declared. This is shown in the following example:

perform logon userid, password

Procedures can be an integral pmt of a script, or they can be in separate
files. The latter allows you to keep a library of procedures you often
use; you don't have to duplicate the procedure for each script you create.

To include an external procedure in a script, use the inc 1 u decompiler
directive. For example, suppose the logon procedure, which was des­
cribed previously, is an external procedure that is stored in a fIle called
myprocs. xws. To include it in your script, add the following line at
the beginning of the script:

include "myprocs"

For more information about the proc/endproc procedure construct, the
per for m statement, and the inc 1 u decompiler directive, see Chapter 6,
"Using the Programming Language."

Declaring Variables, Arrays, Procedures, and Functions 3-11

Functions

Functions

Function
argument lists

A function is similar to a procedure, but it returns a value. You must
declare the type of the return value within the function definition and
specify a return value before returning.

You must declare a function before you can use it. A function cannot
be inside a procedure or another function.

The syntax of a function definition is as follows:

func <name> [«arg7ist»] returns <type>

endfunc

As for a procedure, the <a rg 7is t> is optional. The syntax of the
<arg 7is t> is the same as for procedure arguments.

The following example illustrates a function with an <a r g 1 i s t >:

func calc(integer x, integer y) returns integer
if x < y then return x else return y

endfunc

In this example, the integers x and y are the function arguments. The
values of x and y are passed to the function when it is called. The func­
tion returns one or the other value depending on the outcome of the i f
the n e 1 s e comparison. If x is less than y, x is the return value; if x
is not less than y, the value of y is returned.

You call this function as follows:

integer return_value

return_value = calc(3, 8)

The integer values of 3 and 8 are passed to the function cal c where
they are used as the values x and y in the function. The function returns
the result of its calculations in the variable ret urn val u e.

3-12 CASL Programmer's Guide

Functions

Forward
declarations for
functions

External
functions

You can use forward declarations to declare functions whose definition
occurs later in the script. The syntax of a forward function declaration
is the same as the first line of a function definition, with the addition
of the forward keyword.

Forward declarations are useful if you want to place your functions near
the end of your script. A function must be declared before you can call
it; the forward declaration provides the means to declare a function and
later define what the function is to perform.

The following syntax is used for a forward declaration:

func <name> [C<arg7ist>l] returns <type>
forward

When the function definition is encountered, each of its arguments (if
provided) must match the data type of the corresponding argument in
the forward declaration.

The following example illustrates how to set up the cal c function
using a forward declaration:

integer return_value -- The integer declaration
func ca 1 c (i nteger x, integer y 1 -- The

returns integer forward --forward
-- declaration

return_value = calc(3,8) -- The function call

func calcCinteger x, integer y) ... --The function
returns integer
if x < y then return x else return y

endfunc

As with procedures, functions can be in separate files. To include an
external function in a script, use the inc 1 u decompiler directive. For
example, if the cal c function is external to the script and is stored in a
file called my pro c s . x ws, add the following line at the beginning of the
script to include it in the script:

include "myprocs"

For more information about the fun c / end fun c function construct and
the inc 1 u decompiler directive, see Chapter 6, "Using the Program­
ming Language."

Declaring Variables, Arrays, Procedures, and Functions 3·13

Scope rules

Scope rules

You can reference a variable from the line on which it is declared until
the end of its scope. This is true for both implicit and explicit declar­
ations.

Local variables 	 The variables you declare inside procedures and functions are local var­
iables. The scope of local variables terminates when the function or
procedure that defines them ends. You can refer to and modify these
variables only while the procedure or function is executing. Their
values are lost when the procedure or function returns control.

Global variables 	 The variables you declare outside procedures and functions are global
variables. The scope of global variables terminates when the script
ends. You can refer to and modify these variables within and outside
procedures and functions. They retain their values throughout execution
of the script.

Default variable 	 The local and global variables you declare are initialized to default values
when they are created. The default value for each data type is as follows: initialization

values
integer 	 o
real 	 0.0

string "" 	 (the null string)

boolean 	 False.

array 	 Each element is initialized to the array-type
default.

Local variables are initialized each time the procedure or function begins
execution. Global variables are initialized once when the script begins
execution.

Procedure and function arguments are like local variables, but they are
not initialized to default values like other local variables. They receive
their values from the actual arguments.

3-14 CASL Programmer's Guide

Scope rules

Labels The scope of labels you declare inside procedures and functions termi­
nates when the function or procedure that defmes them ends. You can
refer to these labels only while the procedure or function is executing,
and only from within the procedure or function.

The scope of labels you declare outside procedures and functions termi­
nates when the script ends. Procedures and functions cannot reference
labels that are not defined within the procedure or function.

Declaring Variables. Arrays, Procedures, and Functions 3·15

Interacting with the host

Interacting with the host

Waiting for a
character string

Many of the scripts you develop involve communicating with a host
computer. CASL provides a number of language elements you Can
use to interact with a host. For example, the wa i t statement provides
basic data-handling functions while the watch statement offers more
sophisticated methods for handling data.

In the sections that follow you will see how to use these and other
CASL elements to control your script's interaction with the host.

Use the wa i t statement when you need to wait for a specific, unique
string of text. The following is an example:

wait for "What is your first name?"

Note that the string "W hat i s you r fir s t n a me?" is enclosed in
quotation marks because it is a string constant.

The wa i t statement does not require a complete sentence as shown in
the previous example. If just the word "n ame?" is unique at the time
the script executes the wa i t statement, you can shorten the statement as
follows:

wait for "name?"

You can have your wa i t statement wait for one of several conditions
to occur. For example, if you want to send a carriage return when your
script receives either "m 0 r e" or "p res sen t e r" from the host, write
the statement as follows:

wait for "more", "press enter" : reply

The default wait time for the wa i t statement is forever. You Can spe­
cify a specific time period for the script to wait, as shown in the fol­
lowing example.

reply Send CR
wait 2 seconds for
if timeout then

"login:" Wait

{

alert "Host not responding", ok
end

4·2 CASL Programmer's Guide

Interacting with the host

Watching for
one of several
conditions to
occur

In this example, the script waits 2 sec and s for the host to send the
log in: prompt. If a time-out occurs before the prompt appears, the
user is alerted and the script ends.

By default, the wa i t statement is not case- or space-sensitive. If your
script requires an exact match, you must use the statement's cas e or
spa c e modifiers or both. There are several other conditions for which a
wait statement can wait, including waiting to receive a specific "count"
of characters and waiting for the connection to be "quiet." Refer to
Chapter 6, "Using the Programming Language," for a complete list of
wa i t conditions.

Use the watch/endwatch construct when you need to wait for anyone
of several conditions to occur and then take an action based on that con­
dition. The following is an example:

watch for
key 27, "$" end
"more:" wait 1 second reply

endwatch

In this example, when the wa t c h statement is encountered, the script
pauses while waiting for one of the 2 conditions to take place. The
statement, or statements, to the right of the colon are executed for
whichever condition occurs first.

Note that watch/endwatch is not a looping construct. If you want
to repeat the wa t c hie n d wat c h statements, enclose them in a w hi 1e/
wend or a repea t/unt i 1 construct. The following example shows
the w h i 1e/w end construct:

while online
watch for

key 27, "$" end
"more:" wait 1 second reply

endwatch
wend

This example is taken from a simple script that automates "reading"
electronic mail on a host. The whi 1e/wend loop is needed because the
mo re: prompt will appear multiple times during the reading process.

Interfacing with the Host, Users, and Other Scripts 4·3

Interacting with the host

Capturing data

As specified by the first line of the wa t c h construct in the previous
example, the script ends if the user presses the ESC key (key 27).
If mo r e: is found, the script waits 1 second and then uses the rep 1y
statement to send a carriage return to the host. If the dollar sign ($)
appears, there is no more mail to read, and the script ends,

The wa t c h statement, like the wa i t statement, can watch for several
different kinds of conditions, Refer to Chapter 6, "Using the Program­
ming Language," for a complete list of the conditions.

Use the capt u restatement to capture and save data that the host dis­
plays on the screen. You can use cap t u r e with either the wa i t or the
wa t c h statement. The following example shows how to capture data
using wa i t:

wait 5 seconds for "stock prices for"
if not timeout then
{

capture "stock.dat"
wait for "end of listing"
capture off

}
else print "Never received stock prices."

In this example, the script waits 5 seconds for a message that indicates
the host is going to send today's stock prices. If a time-out does not
occur, the data is captured in a file named s to c k . d a t and when the
message "e n d of 1 i s tin g" is received, the script turns off the
cap t u restatement. If a time-out occurs, a message is displayed on
the screen.

To make this type of operation more versatile, use the wa t c hi
end w at c h construct inside a w h i 1 e/we n d loop. This allows the
script to wait for both the string that will tum cap t u r e on and the
string that will tum it off all in the same loop. The following is an
example:

while online
watch for

"stock prices for"
"end of
key 27

endwatch

listing"
capture
capture
capture

"stock.dat"
off
off : end

wend

CASL Programmer's Guide 4-4

Interacting with the host

Setting and
testing time
limits

In addition to watching for the 2 character strings, the script in this
example is also watching for ESC (key 27). If this key is pressed,
cap t u r e is turned off and the script ends.

For more information about the cap t u restatement, see Chapter 6,
"Using the Programming Language."

Use the time 0 u t system variable to determine if the condition for
which you are waiting or watching has occurred within an expected
time frame. To use the timeout system variable, you must set a
time-out value for the wa i t or wa t c h condition. Then you can test
the tim e0 u t system variable; it returns t rue if the condition was not
satisfied or fa 1 s e if it was satisfied.

For example, sometimes a user has to press ENTER a number of times
before the host recognizes the response. You can set up a simple rou­
tine to handle this situation:

repeat
reply
wait 1 second for "Login:"

until not timeout
repl y useri d
end

This example shows how to use the rep e a t/u ntil construct to
execute the same statements one or more times. When the repeat/
un til condition is satisfied, script execution continues with the state­
ment following the repea t/unt i 1 construct.

In the example, the script uses the rep 1 y statement without an argu­
ment to send only a carriage return character to the host. Then it waits
1 second for the string" Log in:" to arrive. If the string does not
arrive within the I-second time frame (t i me 0 u t is t rue), the script
repeats the statements in the rep e a t/u ntil construct. If the string
arrives within the time frame specified (t i me 0 u t is fa 1 s e). the script
sends the contents of the system variable use rid to the host and ends.
The useri d variable must be defined in the user's profile for the ses­
sion running this script.

Interfacing with the Host, Users, and Other Scripts 4-5

Interacting with the host

Sending a reply
to the host

Many of the examples in this section use the rep 1 y statement to
respond to the host computer. The rep 1 y statement lets you send
a string of text to the host. If you use the statement without a text
string argument, only a carriage return is sent. You can concatenate
more than one string in are ply statement by using the plus sym­
bol (+) to join the strings, as shown in the following example:

reply userid + " " + password

Communicating with a user

Displaying
information

In addition to interacting with a host computer, your scripts may also
have to communicate with a user. CASL has several language elements
specifically designed for interfacing with a user: pri nt, mes sage,
input, al ert, and di al ogbox ... enddi al og. This section des­
cribes how you can use these statements to display information for the
user and request information from the user.

Use the p r i n t statement to display information in the session window.
You can display constants, variables, or a combination of the two; and
you can control such display characteristics as attributes for bright or
flashing characters and for color. Note that attributes will work only if
the terminal tool, which controls the interface between the script and a
terminal, understands what the attributes mean.

The following are examples of simple p r i n t statements:

print "Greetings."

print time(cursecond)

print "The time is " ,. time(cursecond)

print "Thi sis all on the ";
print "same line."

The first example displays the phrase G r e e tin g s. The second and third
examples display the time. Note that the p r i n t statement in the third
example contains a semicolon. The semicolon causes the text string
and the time to be displayed with no space between them.

CASL Programmer's Guide 4-6

Requesting
information

Communicating with a user

The fourth example shows how to use the semicolon at the end of a
p r i nt statement to suppress a carriage return. In this example, both
p r i nt statements display text strings that appear on the same line of
the screen.

You create a more complex p r i nt statement when you display words
with an attribute. This is shown in the following example:

print "This is a ";bright;"bright"
normal;"idea!"

In this example, the br; ght option is used to display the word "bright"
using the bright attribute. Note that when an attribute is set, it remains
in effect until another attribute is specified. In the example, the
nor mal option resets the attribute to normal.

A special character, "G, causes the terminal to beep when the pri nt
statement is executed. The reason for this is that the p r i nt statement
can print ASCII control characters. This attribute is shown in the fol­
lowing example:

print "Beep!"G"

The "G in the example is the ASCII decimal 07 or Bell. Refer to
Chapter 2, "Understanding the Basics of CASL," for a list of other
ASCn control characters.

The me s sag e statement allows you to display user-defined messages
on the status bar of the session window. The following is an example
of a message:

message "Logging on -- Please wait"

Use the input statement to obtain information from the user. The
i n put statement suspends the script while waiting for the user to
enter data. When the user presses the ENTER key, input knows that
data entry is complete. The data entered is stored in a specified variable.

The following is an example of how to use the i n put statement:

string user_name

print "Please enter your name:
input user name
pri nt "Hello, "; user_name

Interfacing with the Host, Users, and Other Scripts 4-7

Communicating with a user

In the previous example, use r_n ame is declared as a string variable.
Since the i n put statement does not display a prompt, the p r i n t
statement requests the user to enter a name. After the user enters a
name and presses ENTER, the entry is stored in the string variable
use r _n a me. This variable is then used in the last p r i n t state­
ment to display the name that was entered.

The al ert and di al ogbox ... enddi al og statements allow you
to define Windows or Macintosh-style dialog boxes for text input.

The ale r t statement displays a simple dialog box in which the
user can enter text or respond by choosing a pushbutton. The
d i a log box/en d d i a 1og construct allows you to create more
sophisticated dialog boxes, which can contain pushbuttons, text,
edit boxes, radio buttons, check boxes, list boxes, and so on.

The following is an example of an ale rt statement that displays a
message:

alert "File not found", "Try again", cancel, ok

In this example, the message F i 1 e not f 0 U nd is displayed in the alert
box. The user can choose either Try Again, Cancel, or OK to exit the
alert box.

Refer to Chapter 6, "Using the Programming Language," for additional
information about the pri nt, message, input, alert, and
d i a log box ... end d i a log statements.

CASL Programmer's Guide 4-8

Invoking other scripts

Invoking other scripts

Chaining to
another script

Calling another
script

Passing
arguments

With CASL, you can invoke, or start, another script from your script.
Depending on your programming requirements, your script can termi­
nate and pass control (chain) to the other script; or your script can use
the do statement to call the other script as a child script.

To pass control to another script without returning control to your
script, use the c h a instatement. For example, to pass control to
a script called SCRIPT2, write the c h a instatement as follows:

chain "SCRIPT2"

Note: Any statements that follow the c h a instatement are not
executed.•

To call another script as a child script, use the do statement. When
you use this statement, the child script returns control to the parent
script when the child script has completed. The following is an ex­
ample of the do statement:

do "cvtsrc"

To pass arguments to the invoked script, add the arguments to the
c h a i n or do statement after the name of the script. In the follow­
ing c h a instatement, the argument CS E RV E is passed to SCRIPT2:

chain "SCRIPT2 CSERVE"

To retrieve the arguments in the invoked script, use the a rg function.
Use a rg with no arguments (or an argument of zero) to retrieve the
arguments as one long string. Use a rg (1) through a rg (n) to retrieve
each individual argument.

InterfaCing with the Host, Users, and Other Scripts 4-9

Invoking other scripts

Exchanging
variables

If you use the do statement to invoke another script, the scripts can ex­
change variable information. To pass a variable between scripts, declare
the variable as pub 1 i c in the invoking script and as extern a 1 in the
invoked script.

In the following example, the invoking script, SCRIPT!, declares the
string myname as pub 1 ie, invokes SC RI PT2, prints a message when
SCRIPT2 returris control, and ends.

public string myname
do "SCRI PT2"
print "My name is " + myname
end

In the next example, SCRIPT2, which was invoked by SCRIPT!,
declares the string variable my name as exte rn a 1, assigns a value
to myname, and returns control to SCRIPTl. Note tbat the value
SCRIPT2 assigns to myname is what SCRIPTl prints when it
regains control (see the first example).

external string myname
myname = "Bert"
end

The message that SCRIPT! displays on the screen is as follows:

My name is Bert

Note: You cannot exchange data with another script if you use the
c ha instatement to invoke the script. Also, if you are using public
and external variables, you must declare the variable as pub 1 i c in the
parent script. •

4·10 CASL Programmer's Guide

Trapping and handling errors

Trapping and handling errors

Enabling error
trapping

Testing if an
error occurred

Checking the
type of error

Error trapping makes a script capable of handling almost any situation,
and it is essential in scripts that are interfacing with other resources.
With error trapping, you can control many different situations; for
example, you can set up recovery procedures if a file transfer or file
input/output operation fails. In the following sections, you will see
how to enable error trapping, determine if an error occurred, check the
type of error, and check the error number. You can also fmd a sample
script that shows how to trap and handle errors.

Use the t rap compiler directive to enable and disable error trapping
in your script. The default setting for this directive is t rap 0 ff. If
t rap is 0 f f, a dialog box is automatically displayed and the script
terminates whenever a fatal error occurs. If t rap is 0 n, the dialog
box is not displayed; rather, the script continues executing.

In general, it is best to turn trapping on just prior to a statement that
may generate an error and then tum it off after testing for the error. Be
sure to check the error-trapping function err 0 r, and the system varia­
bles err c 1 ass, and err n0 just after the statement executes; otherwise,
you may lose the error information if a subsequent statement resets the
error function and variables. (See the following sections for an
explanation of these elements.)

Use the err 0 r function to test if an error occurred. This function re­
turns true if an error occurs or false if no error occurs. When you test
the function, its value is reset to zero. If you want to continue to trap
errors throughout the execution of the script, you must test (reset) the
err 0 r function each time an error occurs.

Use the err cIa s s system variable to check the type of error that oc­
curred. This variable contains zero if no error occurs; if an error does
occur, it contains an integer value that reflects the type of error. This
variable is not reset when you check its value. The value remains un­
changed until another error occurs. For information on the err c 1 ass
values you may encounter, refer to Appendix C, "Error Return Codes."

Interfacing with the Host, Users, and Other Scripts 4-11

Trapping and handling errors

Checking the
error number

Use the er rno system variable to check the number of the error that
occurred. The error number is associated with the type of error that is
returned by the errc1ass variable. For example, the return code
13-08 represents the err c1ass value 13 and the err n0 value 08;
this type of error is a file I/O read error. (For additional information,
see Appendix C, "Error Return Codes. ")

If no error occurs, the err n0 variable contains zero. This variable is
not reset when you check its value; the value remains unchanged until
a different error occurs.

When setting up your script to trap and handle errors, follow these
guidelines, in the order shown:

• 	 Set trap on right before a statement that could generate an error
condition (for example, a statement that sends files to the host).
Note that setting trap on suppresses error message display.

• 	 Set trap of f immediately after the statement executes.

• 	 Check the e r ro r function after setting t ra p 0 ff .

• 	 If an error occurs (e r ro r is true), check the e rr c1 as s and e rr no
system variables to determine the error type and number.

The following sample script illustrates how to use CASL's error trap­
ping capabilities. The script's purpose is to send a file to the host. If
the file transfer is successful, the script ends. If, for any reason, the
file transfer does not complete successfully, the script sounds an alarm
and prints an error message.

/* Script to send a file. */
string fname
fname = "*.exe"

trap on turn on error trapping
send fname send the file
trap off turn off error trapping
if error then
{

alarm
print "Send failed. Error: "; + ...

errcl ass; "- "; errno
}
end

4-12 CASL Programmer's Guide

Trapping and handling errors

This script is very simple and is shown here only to illustrate how you
can use t rap, err 0 r, err c 1 ass, and errn0 to handle an error
condition. Ideally, your error-handling should be more comprehensive.
For example, if the script is unattended, error handling should either
attempt to send the file again or hang up and retry later, depending on
the error type. If the script is attended, error handling might print a
message that informs the user of the error and instructs the user to
correct the problem and retry the file transfer.

It is not always necessary to determine the values in err c 1 ass and
err no; sometimes it is sufficient just to know that an error occurred
(by checking err 0 r). How you use error trapping and to what extent
depends on what your script needs to accomplish.

Refer to Chapter 6, "Using the Programming Language," for more in­
formation on the t rap compiler directive, the err 0 r function, and the
err c 1 ass, and err n0 system variables.

Interfacing with the Host, Users, and Other Scripts 4·13

Functional purpose of CASL elements

Functional purpose of CASL elements

r
,

This chapter and Chapter 6, "Using the Programming Language," pro­
vide reference information to help you use the CASL elements. This
chapter contains a quick reference to all of the elements. A detailed
description of the elements and examples showing how to use them in
your scripts are covered in Chapter 6.

The CASL elements in this chapter are grouped according to their func­
tional purpose, for example, session management, program flow con­
trol, file input/output operations, and so on. Some elements may
appear more than once if they have more than one purpose. A brief
description of the element is also included. Each description ends with
an element identifier as follows:

F Function

S Statement

V Variable (system and module)

C Constant

D Declaration (procedure and function)

CD Compiler directive

DH Data handler (DDE) •

Capture and The language elements that control the capture of data and the upload of

upload control data to the host are as follows:

add 	 Adds text to the capture file. (S)

blankex 	 Controls the way a blank line is repre­
sented during uploads. (V)

capchars 	 Returns the number of characters captured.
(F)

capfile 	 Returns the name of the capture file. (F)

capture 	 Turns capture on and off. (S)

cmode 	 Specifies a capture method. (V)

CASL Programmer's Guide 5-2

cwa it

d i rfi 1

downloaddir

9 ra b

linedelim

linetime

1wait

tabex

upload

Functional purpose of CASL elements

Controls the inter-character delay during
uploads. (S)

Defines the directory used for transfers
and captures. (V)

Defines a different directory to be used for
transfers and captures. (V)

Writes window data to the capture file.
(S)

Sets the string to send at the end of each
line. (S)

Sets the maximum time to wait between
each line. (S)

Controls the inter-line delay during up­
loads. (S)

Defines the tab expansion during uploads.
(V)

Initiates a text file upload. (S)

Date and time The following language elements help you determine the date and time:

operations
curday

curhour

curminute

curmonth

cursecond

curyear

date

hms

Returns the current day of the month.
(F)

Returns the current hour. (F)

Returns the current minute. (F)

Returns the number of the current month.

(F)

Returns the current second. (F)

Returns the current year. (F)

Returns today's date as a string. (F)

Returns a string in hours, minutes, and

seconds format. (F)

Introducing the Programming Language 5-3

Functional purpose of CASL elements

secno

time

weekday

Returns the number of seconds since
midnight. (F)

Returns the current time as a string. (F)

Returns the number of the day of the
week (0--6). (F)

The language elements that allow interaction with other applications IWin I DDE
using Dynamic Data Exchange are as follows:

interface
ddeack

ddeadvise

ddeadvisedatahandler

ddeexecute

ddei niti ate

ddenak

ddepoke

dderequest

ddestatus

ddeterminate

ddeunadvise

Sends an acknowledgment to a
ddeadvi se request. (S)

Requests notification of all changes to a
specified data item. (S)

Enables the event handler that will handle
d d e a d vis e message events. (DH)

Requests that another application execute
a command. (S)

Opens a DDE conversation with another
application. (S)

Sends a negative acknowledgment to a
ddeadvi se request. (S)

Sends a string of data to the application
at the other end of a DDE conversation.
(S)

Requests a value from another applica­
tion. (S)

Returns the status of the DDE conver­
sation. (F)

Terminates a DDE conversation. (S)

Cancels a previous d d e advis e request.
(S) •

CASL Programmer's Guide 5-4

Functional purpose of CASL elements

Device 	 The language elements that control interaction with a communications
device are as follows:interaction

connectrel i abl e 	 Contains the modem result string that in­
dicates a reliable, or error-free, connection.
(V)

dialmodifier 	 Defines the dialing modifier string used
to command the modem to dial. (V)

Note: Refer to Chapter 7, "Working with Terminal, Connection, and
File Transfer Tools," for an explanation of the connection tool. •

Error control 	 The following language elements help you control error conditions in
your scripts:

errcl ass Indicates the class of the last error. (V)

errno Indicates the type of the last error. (V)

error Indicates the occurrence of an error. (F)

trap Turns error trapping on and off. (CD)

File input/output The following language elements provide file input and output capa­

operations bilities:

backups Determines what is done with duplicate
files after a file transfer. (V)

capture Captures incoming text to a file. (S)

chd i r Changes to a different disk directory.
(S)

chmod 	 Changes file attributes. (S).

close Closes a disk file. (S)

copy Copies a file or group of files. (S)

curdir Returns the current disk directory. (F)

curdrive 	 Returns the current disk drive. (F).

Introducing the Programming Language 5-5

Functional purpose of CASL elements

definput

defoutput

delete

drive

eof

eol

exists

fileattr

filedate

filefind

filesize

filetime

fncheck

fnstrip

freefile

get

kermit

loc

mkd i r

open

put

read

read 1 ine

receive

Contains the default input file number.
(V)

Contains the default output file number.
(V)

Deletes disk files. (S)

Sets the current disk drive. (S).

Returns true if end-of-file is reached. (F)

Returns true if end-of-Iine is reached. (F)

Returns true if a file exists. (F)

Returns the attributes of a file. (F)

Returns the file date stamp. (F)

Locates files in the directory. (F)

Returns the file size. (F)

Returns the file time stamp. (F)

Checks the validity of a file name. (F).

Returns specified portions of a file name.

(F) •

Returns the next available file number.
(F)

Reads characters from a random access

file. (S)

Sends a command to the Kermit Command

Processor. (S)

Returns a file pointer position. (F)

Creates a new directory. (S)

Opens a disk file. (S)

Writes records to a random disk file. (S)

Reads text fields from a file. (S)

Reads text lines from a file. (S)

Initiates a file transfer. (S)

CASL Programmer's Guide 5-6

Host interaction

rename

rmdir

seek

send

upload

write

write 1 i ne

Functional purpose of CASL elements

Renames disk files. (S)

Removes a disk directory. (S)

Moves a file pointer to a specified posi­
tion. (S)

Initiates a file transfer to a remote com­
puter. (S)

Uploads an ASCII text file to the host.
(S)

Writes text fields to a file. (S)

Writes text lines to a file. (S)

The language elements that let you interact with another computer are as
follows:

breaklen

display

match

nextchar

nextline

online

press

reply

sendbreak

Specifies the length of a break signal.
(V)

Turns a terminal display on and off. (V)

Specifies the string found by the last wa i t
or wa t c h statement. (V)

Returns the next character from a com­
munications device. (F)

Returns the next line, delimited by a car­
riage return, from the communications
device. (F/S)

Returns true if a session is on line. (F)

Sends a series of keystrokes to the term­
inal module. (S)

Sends a string of text to the communica­
tions device. (S)

Sets the length of a break signal. (S)

Introducing the Programming Language 5·7

Functional purpose of CASL elements

track Watches for string patterns or keystrokes
while on line. (S)

wa it Waits for a string of text from the com­
munications device or for a keystroke.
(S)

wateh/endwateh Watches for one of several conditions to
occur. (S)

Mathematical The following language elements perform mathematical operations:
operations

abs

eksum

ere

i ntval

max

min

mkint

val

Returns the absolute value of a number.
(F)

Returns the checksum of a string. (F)

Returns the CRC of a string. (F)

Returns the integer value of a string. (F)

Returns the larger of two values. (F)

Returns the smaller of two values. (F)

Converts numeric strings to integers.
(F)

Returns the real (floating point) value of
a string. (F)

Printer control The language elements that control how data is printed are as follows:

footer

header

lprint

printer

Defines the footer used when printing.
(V)

Defines the header used when printing.
(V)

Sends a string of text to the printer. (S)

Indicates whether to send screen output
to the printer. (V)

5·8 CASL Programmer's Guide

Functional purpose of CASL elements

Program flow 	 The following language elements provide program flow control in your
scripts:control

case/endcase

chain

do

end

exit

for/next

freetrack

func/endfunc

gosub/return

goto

halt

if/then/else

1 abe 1

new

perform

proc/endproc

quit

Performs statements based on the value
of a specified expression. (S)

Passes control to another script. (S)

Starts another script and waits until it

returns control. (S)

Ends a script. (S)

Exits a procedure. (S)

Performs a series of statements a specified

number of times, usually while changing

the value of a variable. (S)

Returns the value of the lowest unused

track number for the current session. (F)

A function declaration. (D)

Transfers program control to a subroutine.

(S)

Transfers program control to a label or ex­

pression. (S)

Stops a script and its related parent and

child scripts. (S)

Controls program flow based on the value

of an expression. (S)

Denotes a named reference point in a

script. (S)

Begins a new communications session.

(S)

Calls a procedure. (S)

A procedure declaration. (D)

Closes a session window. (S)

Introducing the Programming Language 5-9

Functional purpose of CASL elements

repeat/unti 1

return

terminate

t -j Illeout

trace

track

wait

watch/endwatch

while/wend

Repeats a statement or series of state­
ments until a specified condition is true.
(S)

Returns a value from a function. (S)

Terminates the Crosstalk application. (S)

Returns the status of the most recent wa i t
or wa t c h statement. (V)

Turns tracing on and off. (S)

Watches for string patterns or keystrokes
while on line. (S)

Waits for a string of text from the com­
munications device or for a keystroke.
(S)

Watches for one of several conditions to
occur. (S)

Performs a statement or group of state­
ments as long as a specified condition is
true. (S)

Script and The language elements that help you manage sessions and scripts are as
follows:session

management
activate

activatesession

active

activesession

assume

bye

Activates the Crosstalk window by

moving the focus to it. (S)

Makes the specified session active. (S)

Makes Crosstalk the active application.

(F)

Indicates the session that is active. (F)

Controls the way the CASL compiler
handles module variables for the Con­
nection, Terminal, and File Transfer
tools. (S)

Disconnects the current session. (S)

5·10 CASL Programmer's Guide

Functional purpose of CA$L elements

ca 11

compile

description

device

dirfil

do

downloaddir

genlabels

genl i nes

go

include

inscript

keys

load

name

netid

number

ontime

Initiates a connection for a communica­

tions session. (S)

Passes control to another script. (S)

Compiles a script. (S)

Defines a session. (V)

Specifies a connection device. (V)

Defmes the default directory used for

transfers and captures. (V)

Starts another script and waits for it to

return control. (S)

Defmes a different directory to be used for

transfers and captures. (V)

Specifies whether to include or exclude

label infornlation in a compiled script.

(CD)

Specifies whether to include or exclude

line information in a compiled script.

(CD)

Initiates a connection to a communica­

tions device. (S)

Includes an external file in a compiled

script. (CD)

Checks for labels in a script. (F)

Specifies the Keymap file for the current

session. (V)

Starts a session. (S)

Contains the name of the current ses­

sion. (F)

Contains the network identifier for a ses­

sion. (V)

Contains the phone number for the current

session. (V)

Indicates how long a session has been

on line. (F)

Introducing the Programming Language 5-11

Functional purpose of CASL elements

password

patience

p rotoco 1

quit

redial count

redi alwait

run

save

script

scriptdesc

session

sessname

sessno

startup

terminal

terminate

trace

userid

Contains the password for the current ses­

sion. (V)

Specifies the amount of time to wait for

an answer from the host. (V)

Specifies a file transfer protocol. (V)

Closes a session window. (S)

Specifies the number of redial attempts.

(V)

Specifies how long to wait before at­

tempting to redial. (V)

Starts another application. (S)

Saves the current session parameters.

(S)

Specifies the name of the script file to

use for the current session. (V)

Defines a script description. (CD)

Returns the session number of the current

session. (F)

Returns the name of the session identified

by a specified session number. (F)

Returns the session number of a specified

session. (F)

Contains the name of the script to run at

start-up. (V)

Specifies the terminal emulation to use.

(V)

Terminates the Crosstalk application.
(S)

Turns tracing on and off. (S)

Contains the user account name for a

session. (V)

5·12 CASL Programmer's Guide

Functional purpose of CASL elements

String The following language elements perform string operations:

operations
arg

bitstrip

count

dehex

delete

destore

detext

enhex

ens tore

entext

extract

hex

hms

inject

insert

instr

i ntval

1eft

1 ength

Returns command line arguments. (F)

Removes bits from strings. (F)

Returns the number of occurrences of one

string within another string. (F)

Converts ASCII strings in hexadecimal

format to binary. (F)

Returns a string with characters removed.

(F)

Converts strings of printable ASCII char­
acters back to embedded control-character
form. (F)

Converts 7-bit ASCII character strings to
binary. (F)

Converts a binary string to a string of
ASCII characters in hexadecimal forn1at.
(F)

Converts strings with embedded control
characters into strings of printable ASCII
characters. (F)

Converts a string of binary data to a string
of 7-bit ASCII characters. (F)

Extracts characters from a string. (F)

Converts an integer to a hexadecimal

string. (F)

Returns a string in hours, minutes, and

seconds format. (F)

Changes some characters in a string. (F)

Adds characters to a string. (F)

Looks for a substring in a string. (F)

Returns the integer value of a string. (F)

Returns the left portion of a string. (F)

Returns the length of a string. (F)

Introducing the Programming Language 5-13

Functional purpose of CASL elements

lowcase

mid

mkstr

null

pack

pad

quote

right

slice

str

strip

subst

upcase

val

winstring

Changes a string to all lowercase charac­

ters. (F)

Returns a middle portion of a string. (F)

Converts an integer to a string. (F)

Returns true if a string has zero length.

(F)

Removes duplicate characters from a

string. (F)

Adds extra characters to a string. (F)

Returns a string enclosed in quotation

marks. (F)

Returns the right portion of a string. (F)

Breaks out portions of a string. (F)

Converts a number to string format. (F)

Returns a string with certain characters

removed. (F)

Returns a string with certain characters

changed. (F)

Changes a string to all uppercase charac­

ters. (F)

Returns the real (floating point) value of

a string. (F)

Reads a string from a window. (F)

Type conversion The following language elements let you convert data from one type to

operations another:

asc Returns the ASCII value of a string. (F)

binary Converts a string to a binary number.
(F)

bitstrip 	 Strips bits from strings. (F)

chr 	 Returns a single-character string for an
ASCII value. (F)

5-14 CASL Programmer's Guide

Functional purpose of CASL elements

class

dehex

detext

enhex

entext

hex

intval

mkint

mkstr

octal

str

val

Returns the class type of a single-character
string. (F)

Converts ASCII strings in hexadecimal
format to binary. (F)

Converts 7-bit ASCII character strings to
binary. (F)

Converts a binary string to a string of
ASCII characters in hexadecimal format.
(F)

Converts a string of binary data to a string
of 7 -bit ASCII characters. (F)

Converts an integer to a hexadecimal
string. (F)

Returns the integer value of a string. (F)

Converts numeric strings to integers.

(F)

Converts an integer to a string. (F)

Converts a decimal integer to an octal

integer. (F)

Converts a number to string format.

(F)

Returns the real (floating point) value of
a string. (F)

Window control 	 The following language elements control the window size and how data
is input and displayed in a window:

activate 	 Activates the Crosstalk window by
moving the focus to it. (S)

activatesession Makes the specified session active. (S)

active Makes Crosstalk the active application.
(F)

activesession Indicates the session that is active. (F)

Introducing the Programming Language 5-15

Functional purpose of CASL elements

alert

choice

cl ea r

dialogbox/enddialog

hide

hideallquickpads

hidequickpad

input

loadquickpad

maximize

message

minimize

move

print

restore

show

showallquickpads

showquickpad

size

tabwidth

Creates simple dialog boxes for display

on the screen. (S)

Contains the value of the pushbutton that

dismissed a dialog box. (V)

Clears a window. (S)

Creates more complex dialog boxes for

display on the screen. (S)

Reduces a session window to an icon.

(S)

Hides all of the QuickPads. (S)

Hides a QuickPad™. (S)

Accepts input from the screen. (S)

Activates a QuickPad. (S)

Enlarges the Crosstalk window to full­

screen size. (S)

Displays a message in the information
line on the screen. (S)

Reduces the Crosstalk window to an
icon. (S)

Moves the Crosstalk window to a new

location on the screen. (S).

Displays information on the screen. (S)

Restores the Crosstalk window to its

original size. (S)

Redisplays a session window. (S)

Displays all of the QuickPads. (S)

Displays a QuickPad. (S)

Changes the size of a window. (S).

Specifies the number of spaces a tab
character moves the cursor. (V)

5-16 CASL Programmer's Guide

Functional purpose of CASL elements

unloadallquickpads

unloadquickpad

winchar

wins i zex

winsizey

wi nstring

xpos

ypo s

zoom

Closes all of the QuickPads. (S)

Closes a QuickPad. (S)

Reads a character from a window. (F)

Returns the horizontal size of a window.

(F)

Returns the vertical size of a window. (F)

Reads a character string from a window.
(F)

Returns the horizontal location of the
cursor. (F)

Returns the vertical location of the cursor.
(F)

Enlarges a session window to the size of
the Crosstalk application window. (S)

Miscellaneous
elements

The following are general purpose language elements:

alarm

dosversion

environ

false

freemem

i nkey

off

on

pop

review

stroke

Sounds an alarm at the terminal. (S)

Returns the operating system version
number. (F).

Returns environment variables. (F).

Sets a variable to logical false. (C)

Returns the amount of available memory.
(F)

Returns the value of a keystroke. (F)

Sets an item to logical false. (C)

Sets an item to logical true. (C)

Discards a return address from the stack.

(S)

Defines the size of the review buffer. (V)

Waits for the next keystroke from the

keyboard. (F)

Introducing the Programming Language 5·17

Functional purpose of CASL elements

systime Indicates how long the current session has
been active. (F)

true Sets a variable to logical true. (C)

version Returns the Crosstalk version number.
(F)

winversion Returns the Windows version number.
(F) •

CASL language elements have a specific format and use. To learn how
to structure and implement each element, tum to Chapter 6, "Using the
Programming Language."

5-18 CASL Programmer's Guide

Information provided for CASL elements

Information provided for CASL elements

The following items are described for each CASL language element:

Language element
name

Format

Example

The element name is shown in large bold type­
face below a line that extends the width of the
page.

A paragraph that describes the purpose of the
element follows the name.

This section shows the format for the language
element.

Where applicable, components are explained in
more detail. Compatibility information is also
provided where appropriate. For detailed infor­
mation about compatibility issues, refer to
Chapter 8, "Compatibility Issues."

Note: For a description of the notation used
in the format, see Chapter 2, "Understanding
the Basics of CASL." •

In this section, you find an illustration of how
you can use the language element in your script.

An explanation of the example follows the il­
lustration.

CASL Programmer's Guide 6-2

abs (function)

abs

Use a bs to get the absolute value of a number.

Format

x = abs«expression»

express i on must be a real or signed integer. The result returned by
the a b s function is always a positive number.

Examples

positive_number = abs(negative_number)

In this example, a b s assigns the absolute value of the contents of
nega t i ve_n umbe r to the variable called pos it i ve_n umbe r.

if abs(net worth) > 5 then alarm

In this example, the script sounds an alarm if the absolute value of the
n et_wo rt h variable is greater than 5.

Using the Programming Language 6-3

activate

activate (statement)

Use acti vate to make the Crosstalk window the active window.

Format

activate

When you use this statement, the focus is moved from the active
window to the Crosstalk window, making the Crosstalk window
the active one.

TIns function is not applicable for Crosstalk Mark 4.

For related information, see the act i vat e s e s s ion statement and
the act i ve and act i v e s e s s ion functions.

Example

activate

CASL Programmer's Guide 6-4

activatesession

activatesession

(statement)

Use act i vat e s e s s ion to make the specified session active.

Format

activatesession <sessionid>

When you use this statement, the session identified by 5 e5 5 ion i d

becomes active.

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0

do not support this function.

For related information, see the act i vat e statement and the act i ve

and act i vesess i on functions.

Examples

activatesession sessA

In this example, session A becomes active.

activatesession sessno("ABBS")

In this example, act i va tes e s s ion activates the session named ABBS

whose session number is returned by the s e s s n 0 function.

Using the Programming Language 6-5

active

active (function)

Use act i ve to check whether Crosstalk is the active window.

Format

x = active

This function returns t rue if Crosstalk is the active window. (The
active window is the application that receives input from the keyboard.)
It returns fa 1se if another application has the focus. Note that you can
store the return value in an integer even though it is a boolean data type.

For Crosstalk Mark 4, act i ve returns an integer indicating the
currently active communications session.

For related information, see the act i vat e and act i vat eses s ion
statements and the act i v e s e s s ion function.

Example

if active then reply "I'm it!"

In this example, are ply is sent to the connected system if act i ve is
true.

CASL Programmer's Guide 6-6

activesession

activesession (function)

Use act i v e s e s s ion to check which session is active.

Format

x = activesession

This function returns the number of the active session.

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0
do not support this function.

For related information, see the act i vate and act i va teses s ion

statements and the act i ve function.

Example

x = activesession
if sessname(x) = "CSERVE" then
{

print "CSERVE is active."

In this example, the script displays a message if the session returned by
the sessname function is CSERVE.

Using the Programming Language 6·7

add

add (statement)

Use add to append text to the capture file.

Format

add [<string>] [{, I;} [<string>]] ... [;]

s t r i ng is a string or a string expression that should be added to the
capture file. It is added to the file just as if it had been received at the
communications port.

Use the comma (,) if you want a tab character between strings. If two
or more commas are together, two or more tabs are added. For example,
if you use 3 commas in succession, 3 tab characters are added. Use a
semicolon (;) to suppress the tabs.

The a dd statement normally adds a carriage-retumlline-feed (CR/LF)
character after the last string. To suppress the CRlLF, add a semicolon
after the last string.

For related information, see the cap t u restatement.

Examples

add "This was captured on " + date + ...
" at " + time(cursecond)

In this example, the script adds the message T his was cap t u red 0 n,
the current date, the word "a t " , the current time, and a CR/LF to the
capture file.

add xferfi 1 e, xferdate, xferwho;

In this example, the script adds the contents of the user-defined varia­
bles xferfi 1 e, xferdate, and xferwho, separated by tabs, to the
capture file. The eR/LF is suppressed because the statement ends with
a semicolon.

CASL Programmer's Guide 6-8

alarm

alarm (statement)

Use a 1 arm to make the terminal sound an alarm.

Format

alarm [<integer>]

This function is useful for getting the user's attention.

integer can be any integer between 0 and 12; values out of range are
ignored. "0" is the default alarm used when no argument is specified.

Table 6-1 shows possible in t eger values and their corresponding
alarm sound.

Table 6-1. Alarm sounds

Integer Sound
value description

o Short beep
1 Close Encounters of the Third Kind
2 3 beeps
3 DK's music
4 4-note "toot"
5 Beethoven's Fifth
6 "Twilight Zone"
7 Dirge
8 "The Deaconess of Detroit"
9 "Popeye the Sailor Man"
10 Fanfare
11 "Up" sound
12 "Down" sOlmd

Versions of Crosstalk for Windows older than 2.0 do not allow an argu­
ment and beep only once.

Using the Programming Language 6·9

alarm

Examples

alarm 1

In this example, the terminal plays the "Close Encounters of the Third
Kind" theme.

if not exists("BBS.DAT") then alarm

In this example, the ex i s t s fUnction is used to determine the existence
of a file. If the fIle does not exist, the script sounds an alarm.

for i = 0 to 12
print "alarm II.

alarm i
wait 1 second

next

In this example, the terminal sounds all of the alarms, with a pause of 1
second between each alarm.

6-10 CASL Programmer's Guide

alert (statement)

alert

Use ale rt to display a dialog box that allows choices to be made.

Format

al ert <string>, <buttonl> [, <button2> ...
[, <button3> [, <button4>]]] [, <str_var>]

The ale r t statement displays a dialog box that prompts the user for
input, or notifies the user of some important occurrence.

A text message defined by s t ring is centered in the dialog box. The
defined pushbuttons are displayed along the bottom of the dialog box.
but ton 1 through but ton4 is the text to display in the pushbutton.
You can use ok and ea nee 1, which are predefined keywords, as push­
button arguments; you do not need to enclose them in quotation marks.
The maximum length of a pushbutton name is 10 characters. Push­
buttons are displayed from left to right.

If you use the 0 k keyword, ale r t creates an OK pushbutton in the
dialog box and associates the ENTER key with this pushbutton. If you
use the e a nee 1 keyword, ale r t creates a Cancel pushbutton in the
dialog box and associates the ESC key with this pushbutton.

s t r_ va r is a previously defined string variable that causes ale r t
to display an edit box in which the user can enter text. The edit box
appears between the text message string and the pushbuttons in the
dialog box.

You can examine the variables that display or store user information
after the ale r t statement has executed. The system variable, Choi ce,
contains a value between 1 and 4 that corresponds to the pushbutton
used to exit the dialog box. For example, if buttonl is chosen,
c hoi c e is set to integer 1. Note that s t r_ va r is not updated if the
Cancel pushbutton is used to exit the dialog box.

Using the Programming Language 6-11

alert

Crosstalk nonnally makes the first letter of the pushbutton name an
accelerator. You can defme a different accelerator by placing an amper­
sand (&) ahead of the desired letter. Ifyou use variables for the push­
button names, make sure the OK and Cancel pushbuttons are last; if
the last item is a variable, it is used for a text box.

Crosstalk Mark 4 uses the ale r t command to modify the attributes of
a text window. Crosstalk for Windows and Crosstalk for Macintosh do
not implement text windows; therefore, these applications use this state­
ment in a different way, as explained earlier.

For related infonnation, see the d i a log box ... end d i a log statement.

Examples

string username

alert "Please enter your name:", ok, username
al ert "You entered: " + username, ok

In this example, the script displays a dialog box that prompts the user
to enter a name. The name that is entered is stored in the variable
username. A second dialog box displays the contents of username.

if not exists(filename) then
{

alert "File not found", "Try again", ok, cancel
if choice = 1 then goto get_fname

In this example, the script displays a dialog box that tells the user an
invalid file name has been entered. If the user clicks the "Try again"
pushbutton, the script branches to its g e t_ f name label.

6-12 CASL Programmer's Guide

arg (function)

arg

Use a rg to check the command-line argument(s) at script invocation.

Format

x$ = arg[«integer»)]

a r 9 with no arguments (or an argument of zero) returns all of the argu­
ments that follow the name of a script in the cha i n or do statement.
It can also return everything that was entered in the "Script Arguments"
edit box on the Run dialog box, which is accessed from Crosstalk's
Action pull-down and in the arguments edit box for defining logon
scripts for the session.

a r 9 (1) through a r 9 (n) return the individual elements of the argu­
ment, as separated by commas.

For related information see the c h a i n and do statements.

Examples

scriptl.xws
do "script2", "barkley"

script2.xws:
fname = argO)
if arg(l) = "barkley" then ...

In this exanlple, the first script uses the do statement with the argument
bar k1ey to start the second script as a child script. The second script
assigns the value in a r 9 (1) to the user variable f name. Then it tests
whether the first argument is bar k1e y .

Using the Programming Language 6-13

arg

menu.xws
do" LOG IN", "my use rid", "my pas s w 0 r d "

login.xws
reply arg(1)
wait for "password:"
reply arg(Z)

In this example, the do statement is used to run the script file LOG IN.
LOG I N reads its arguments and sends them to the host with the re ply
statement.

6·14 CASL Programmer's Guide

ase

asc (function)

Use as c to convert the first character of a string to its corresponding
ASCII value.

Format

x = ascC<string»

5 t r i n9 can be a string constant or expression of any length. When the
statement is executed, x contains the ASCII value of the first character
in the string. If 5 t r j n9 is not null, the value returned is in the range
of 0-255. If 5 t r in 9 is null, (has no length), as c returns a-I.

Examples

sixty_five = asc("A")

In this example, as c returns the ASCII value of the character" A" in
s i xty_fi ve.

seventy = ascC"For pity's sake")

In this example, as c returns the value of the character" F," which is the
first character of the string "F 0 r pity 's s a k e," in the variable
seventy.

x = asc(mid(thestring, 2, 1»)

In this example, as c converts the second character of the s t r i n g" and
returns the result in x.

Using the Programming Language 6·15

assume

assume (statement)

Use ass u m e to control the way the CASL compiler handles module
variables for the Connection, Tem1inal, and File Transfer tools.

Format

assume <module> <filename>
L <module> <filename>]

The Connection, Terminal, and File Transfer tool module variables are
not part of Crosstalk's "vocabulary" unless the tools are loaded. The
ass ume statement tells the compiler which tools will be loaded.

The module variables that are a part of the ass u m e statement are avail­
able only when the script is compiled. To make the variables available
at run time, the specified tool(s) must be loaded for the session running
the script.

Valid modu I e types are de vic e, pro to col, and t e r min a 1 .
fi I ename, which must be enclosed in quotation marks, is the name
of the tool file you want to be active while the script is compiled.

You can specify multiple tools with one ass u me statement; however,
you should ass u m e them only when the script needs them.

Versions of Crosstalk for Windows older than 2.0 do not support this
statement.

Example

assume device "DCAMODEM"

In this example, the script tells the compiler to assume the tool type
d e vic e with the name DCA MOD EM.

6-16 CASL Programmer's Guide

backups

backups (module variable)

Use b a c k ups to determine whether to keep or discard duplicate files
during file transfers.

Format

backups = {on I off}

If b a c k ups is a n and an existing file is received or edited, the old file is
renamed with a .BAK extension. If a backup file already exists, it is
deleted.

If b a c k ups is off and an existing file is received or edited, the old
copy of the file is deleted.

Example

backups = off

In this example, b a c k ups is turned off.

Using the Programming Language 6-17

binary

binary (function)

Use bin a r y to convert an integer to a string, in binary format.

Format

x$ = binary«integer»)

The bin a r y function retums a binary string that represents the value of
in tege r. The string can be 8, 16, or 32 bytes long, depending on the
value of in t e 9 e r. Integer values and their corresponding binary string
lengths are shown in Table 6-2.

Table 6·2. Integer values and their binary string lengths

Integer Binary
value string length

0-255 8

256-65,535 16

65,536-2,147,483,647 32

Example

bin num = binary(some_num)

In this example, the value of the variable some_num is converted to its

binary form, and the new value is stored in the variable b i n_n urn.

6·18 CASL Programmer's Guide

bitstrip (function)

bitstrip

Use bit s t rip to strip certain bits from a string.

Format

x$ ~ bi tstri pC <stri ng> [, <mask> J)

bit s t rip produces a new string that is the result of performing a bit­
wise and of each character in s t r in 9 with ma s k. Refer to Chapter 2,
"Understanding the Basics of CASL," for an explanation of the bitwise
and operation.

ma skis an integer bitmap value that defaults to 127 (07Fh), thus strip­
ping the high order bit from each byte in s t r in g. Some word proces­
sors, such as WordStar™, set the high bit in certain characters to indi­
cate various conditions such as special formatting. Stripping the high
bit makes such files readable, but it is not a replacement for a true con­
version program. A mask of 05Fh (95 decimal) converts lowercase
letters to uppercase, but it also changes other characters.

Because ma skis a bitmap, it must be in the range of 0-255 (decimal);
values in the range of 0-127 are the most useful.

For related information, see the lowe as e and up e as e functions.

Examples

readable_string ~ bitstripCWordStar_line)

In this example, bit s t rip strips the high-order bit of each byte of the
string WordSta r _1 i ne and returns the result in readabl e_stri ng.

reply bitstripCWordStar_line)

In this example, bit s t rip strips the high-order bit of of each byte of
the string Wo r d S tar_1 i ne and the result is sent to the host with the
rep 1y statement.

all_upease ~ bitstripC"abe", 5Fh)

In this example, the letters "a be" are converted to "ABC."

Using the Programming Language 6-19

blankex

blankex (system variable)

Use b1 a n k e x to substitute a string for a blank line during text uploads.

Format

blankex ~ <string>

Many infoll11ation services interpret a blank line sent by an on-line user
to mean "end of transmission." An example of this is the Compu­
Serve® Forum software, which requires that you enter a period C.) to
place a blank line in a message. To substitute a string for a blank line,
use the b1an ke x system variable.

The most likely character to use for b1an ke x is a space, but some
services will interpret even that to be a blank line. For those services,
use a period or other character.

Examples

blankex ~

The variable b1an kex is set to a period.

blankex ~ " "

The variable b1an ke x is set to a single space.

6-20 CASL Programmer's Guide

breaklen

breaklen (module variable)

Use b rea k 1en to set the length of a break: signal.

Format

breaklen = <integer>

This variable sets the duration of the break signal sent to the host.
in t e g e r is in milliseconds and the range is 10 through 5,000.

For related information, see the sen d b re a k statement.

Example

assume device "DCAMODEM"

breaklen = 100

In this example, the script sets the break length to 100 milliseconds
(.1 seconds).

Using the Programming Language 6-21

bye

bye (statement)

Use bye to end a connection (hang up).

Format

bye

This statement immediately disconnects the current communications
session and also disconnects the modem connection.

For related information, see the qui t statement.

Example

wait for "Logged off" : bye

In this example, the script waits for the phrase "Logged off" and then
disconnects the session and the modem connection.

6-22 CASL Programmer's Guide

call (statement)

call

Use cal 1 to load new settings into the current session and then
establish a connection.

Format

call <string>

The cal 1 statement loads new settings from the session file named in
s t r in g. If the session file does not exist, an error occurs.

If you do not include a path, the search is limited to the current direc­
tory.

Versions of Crosstalk for Windows older than 2.0 prompt the user for a
string when no argument is specified. This statement now displays an
error. Also, the Crosstalk Mark 4 version of the ca 11 statement allows
arguments to the start-up script for the specified session. This is not
supported for the Windows or Macintosh products.

For related information, see the bye, loa d, and qui t statements.

Example~

1abel OoAga in
call "CSERVE"
if not online then goto OoAgain

In this example, the script loads new settings from a session file called
CSER VE and attempts to establish a connection. If the session is not
on line, the got 0 statement branches to the label 00A 9 a in.

card_nameS="CompuServe"

call card nameS

In this example, the variable ca rd_name is set to the session name
"CompuServe" and then it is started.

Using the Programming Language 6-23

capchars

capchars (function)

Use c a pc h a r s to find out the number of characters in the capture file.

Format

x = capchars

cap c h a r s checks the number of characters currently in the capture file
and returns an integer.

For related information, see the cap f i 1e function and the cap t u r e
statement.

Example

if capchars >= 10000 then capture off

In this example, cap t u r e is turned 0 ff if there are more than 10,000
characters in the capture file.

6-24 CASL Programmer's Guide

capfile (function)

capfile

Use cap f i 1 e to fmd out the name of the current capture flle, if one is
open.

Format

x$ = capfile

The cap f i 1 e function returns the name of the current capture file. A

null string is returned if cap t ur e is set to 0 f f .

For related information, see the cap t urestatement.

Example

print capfile

In this example, the name and path of the capture file are printed on the
screen.

Using the Programming Language 6-25

capture

capture (statement)

Use cap t u r e to control the capture of incoming data.

Format

capture [{new I to}] <filename>

capture {on 	 I pause I toggle I / I off}

The cap t u restatement controls whether data capture is active at any
particular time. The capture facility is available to collect data coming
in from the communications port. Data is captured in the directory spe­
cified for capture files. This directory can be specified by setting the
di rfi 1 and downl oaddi r system variables (see di rfi 1 and
down loa dd i r later in this chapter).

The capture options are described in Table 6-3.

Table 6-3. Capture options

Option 	 Description

new 	 Turns cap t u r e on, and specifies the name of a file in
which to capture the incoming data. If the file al­
ready exists, it is deleted before the new data is added
to the file. If ba c kups is on, the old file is renamed
to .BAK, thus preserving the contents of that file.
The cap f i 1e function returns the file name. If you
use cap t u r e new without an argument, an error
occurs.

to 	 Turns cap t u r e on, and specifies the name of the file
in which to capture incoming data. If the file already
exists, the newly captured data is appended to the end
of the file. You can check the specified file name
with the cap f i 1 e function.

continued

6·26 CASL Programmer's Guide

capture

Table 6-3.

Option

on

pause

toggle

/

off

Capture options (cont.)

Description

Turns cap t u r e on if it was off. If cap t u r e is
turned on after being off, CASL synthesizes a capture
file name using the name session setting and the cur­
rent date (the month is a single digit: valid digits are
1-9 for January to September and A-C for October to
December). For example, a file captured from the
MCIMAIL session on January 1 is MCI.101; an entry
captured on December 21 is MCI.C21.

Suspends data capture. Data already captured is
retained in the buffer. You can restart cap t u r e with
the cap t u reo n or cap t u ret 0 9 9 1 e commands, or
terminate it with the cap t u reo ff command.

Causes cap t u r e to toggle 0 n if it was in 0 f f or
pa use state; if cap t u r e was 0 n, tog 91e changes
the state to p a use.

This is an alternative to the tog 91e option. If you
need to toggle capture often, assign the following
script to a function key:

capture /

Stops data capture and closes the file.

Versions of Crosstalk for Windows older than 2.0 do not support the
to option.

Note: You can control capture using your Crosstalk application
in the following ways:

• 	 Choose Session from the Action pull-down and then choose Start
Capture.

• 	 Choose the Capture icon from the QuickBar. •

Using the Programming Language 6-27

capture

For related information, see the cap f i 1 e and cap c h a r s functions and
the 9 r a b statement.

Examples

capture on

In this example, the script will begin capturing data.

capture new "vutext.doc"

In this example, data is captured in a new file called VUTEXT. DOC. Any
previous file named "VUTEXT.DOC" in that directory is deleted, unless
ba c kups is 0 n .

6-28 CASL Programmer's Guide

case ... end case

case ... endcase

(statements)

Use cas e ... end cas e to perform statements based on the value of a
specified expression.

Format

case <expression> of
<7ist of va7ues> <statement group>
<7ist of va7ues> : <statement group>

[default <statement group>]
endcase

cas e lets you take a variety of actions based on the value of a particular
expression. expres s i on can be any type of expression or variable.
7is t 0 f va 7ues is a list of expected values for expres s i on and
must match the data type of ex pre s s ion. The values can be constants
or expressions and must be separated by commas if you use more than
one value on a logical line.

s tat eme nt g r 0 up is a series of statements to perform if one of the
items in 7 is t 0 f va 7u e s matches the current expression. After the
associated s ta tement group has been performed, the script continues
to execute at the point after the end cas e statement (unless, of course,
control was transferred somewhere else with ago t 0 or agosub state­
ment).

defaul t and its associated statement group describe a statement or
group of statements to perform if none of the other values match. If
you include de f a u 1 t, be sure it is the last item in the list. end cas e
denotes the end of the cas e/ end cas e construct.

You can nest case ... endcase statements.

Versions of Crosstalk for Windows older than 2.0 do not support these
statements.

For related information, see the gosub, goto, if ... then ... el se,
and watch ... endwatch statements.

Using the Programming Language 6-29

case ... endcase

Examples

1abel ask_agai n
print "Please choose a number (0-4): "
input choice
print
case choice of

0, 4 end
1 goto choose_speed
2 goto main_menu
3 goto save_setup
default goto ask_again

endease

In this example, cas e examines the value of the integer variable
choi ceo If ehoi ce is 0 (zero) or 4, the script ends. If choi ce
has a value between 1 and 3, the script branches to the appropriate
label. If c hoi c e is not 0 (zero) through 4, the de f au 1 t action is
taken. If none of the conditions were met (assuming a default was not
provided), the script would continue execution at the statement follow­
ing the end cas e.

case leftCdate, 5) of
"08/12" print "Today is Aaron's birthday!"
"07/04" print "Why are you here today?"
"10/31" alarm 6 : print "Boo!"

endcase

This example shows that you can use cas e with any type of expres­
sion. The actions taken in this example depend on the date.

6-30 CASL Programmer's Guide

chain (statement)

chain

Use c ha into compile and run a script.

Format

chain <filename> [, <args>]

a r 95 represents an optional argument list that contains the individual
arguments to be passed to the other script. Individual arguments must
be separated by commas.

c h a i n compiles and runs a script source (.xws) file if there is no com­
piled version of the script, or if the date of the source file is more cur­
rent than the date of the compiled version. Otherwise, c h a i n runs the
compiled version of the script. Script names do not require an exten­
SIOn.

Note: The script that issues a c h a instatement ends and is removed
from memory; therefore, control cannot be passed back to it. •

Versions of Crosstalk for Windows older than 2.0 allow a label to be
supplied in parentheses. This is no longer allowed.

For related infonnation, see the a r 9 function and the do statement.

Example

chain "menu", "argl", "arg2"

In this example, the script chains to a script called MEN Uand passes the
script 2 arguments.

Using the Programming Language 6·31

chdir

chdir (statement)

Use c h d i r to change the current disk directory.

Format

chdir <string>

s t r j ng must be an expression containing a valid directory name. The

current working directory is set to the new value. This does not change

the current drive designation.

Versions of Crosstalk for Windows older than 2.0 reset the current

directory when the script ends. The new directory is now preserved.

Note: You can also use the abbreviation cd for this statement. •

For related information, see the d r i ve statement.

Examples

chdir "C:\XTALK"

In this example, the directory is changed to X TAL K.

chdir dirname

In this example, the directory is changed to the directory name stored in
the script's di rname variable.

6-32 CASl Programmer's Guide

chmod

tWin) chmod (statement)

Use chmod to change the attributes of a file.

Format

chmod <filename> [, <attribute>]

fi 7ename must be a string expression containing a valid file name,
which may contain drive and path specifiers.

at t rib ute is optional. If it is specified, it must be an integer ex­
pression containing a valid file attribute. If at t rib ute is not spe­
cified, the file is set to "normal" attributes.

The attribute is specified as a bitmap, with the bits having the values
shown in Table 6-4. As with any bitmap, values are added together for
multiple conditions.

Table 6-4. Bitmap values for the chmod statement

Hex Dec Attribute/Meaning

Olh 1 A read-only file.

02h 2 A hidden file. The file is excluded from direc­
tory searches.

04h 4 A system file. The file is excluded from direc­
tory searches.

08h 8 The volume name of the disk.

lOh 16 A subdirectory.

20h 32 An archive bit. This bit is set by DOS when­
ever a file has been written to and closed. It
indicates the file has been changed since it was
last backed up.

40h 64 Undefined and reserved by DOS.

80h 128 Undefmed and reserved by DOS.

Using the Programming Language 6-33

chmod

V 	Caution: Be very careful when you use chmod; you can cause files
to disappear from your directory list if they are hidden .•

Examples

chmod "XTALK.EXE", 1

In this example, the file, XT A L K. EX E, becomes read-only.

chmod "secret. fi 1", 3

In this example, the file, sec ret. f i 1 , becomes read-only and

hidden.•

6-34 CASL Programmer's Guide

choice

choice (system variable)

Use choi ce to check the value of the pushbutton that dismissed a
dialog box.

Format

n = choice

c hoi c e contains the value identifying the pushbutton used to exit a
dialog box.

Examples

di al ogbox 20, 50, 280, 100
defpushbutton 10,10,80,80, "Choice 1", ok
pushbutton 100, 10, 80, 80, "Choice 2", cancel
pushbutton 190,10,80,80, "Choice 3", ok

enddialog
print "Choice was "; choice

In this example, c hoi c e has a value of 1 if the Choice 1 (ok) push­
button is chosen, 2 if the Choice 2 (cancel) pushbutton is selected, or 3
if the Choice 3 (ok) pushbutton is chosen.

di al ogbox 20, 50, 280, 100
pushbutton 100,10,80,80, "Choice 1", cancel
pushbutton 190,10,80,80, "Choice 2", ok
defpushbutton 10,10,80,80, "Choice 3", ok

enddialog
pri nt "Choi ce was "; choi ce

In this example, c hoi c e has a value of 1 if the Choice 1 (cancel) push­
button is chosen, 2 if the Choice 2 (ok) pushbutton is selected, or 3 if
the Choice 3 (ok) pushbutton is chosen. Note that in both of these
examples, the pushbuttons are displayed in the same locations in the
dialog box.

Using tile Programming Language 6·35

chr

chr (function)

Use c hr to get a single character string defined by an ASCII value.

Format

x$ = chr«integer»)

c hr returns a 1-byte string that contains the character with the ASCII
value contained in integer.

in t e g e r is a decimal number that is converted to its Modulo 255
value; therefore, it is in the range of 0-255.

Examples

cr = chr(l3)

In this example, the variable c r is set to ASCII value 13, which is
a carriage return.

reply chr(3)

In this example, the script sends ASCII value 3 to the host.

6-36 CASL Programmer's Guide

cksum (function)

cksum

Use c ks um to get an integer checksum for a string of characters.

Format

x = cksum(string»

c k sum returns the arithmetic checksum of the characters contained in
5 t r in g. 5 t r i n g can be any length. You can use this function to
develop a proprietary file transfer protocol, or to check the integrity of
a string transferred between two systems using a non-protocol transfer.

For related information, see the ere function.

Examples

check = cksum(what_we_90t)

In this example, the checksum value of the what_we_90t variable is
stored in the check variable.

if cksum(data_in) <> cksum(data_out) then alarm

In this example, the script sounds an alarm if the checksum of the
d a t a invariable is not the same as the checksum of the d a t a _ 0 u t
variable.

Using the Programming Language 6-37

class

class (function)

Use c 1ass to get the Crosstalk class value for a single-character string.

Format

x = class«string»

c 1 ass returns the "class number" bitmap of the first character in
string.

The bitmap value returned indicates the class(es) in which the first char­
acter in the string falls. Classes define such groupings as capital letters
(A-Z), decimal digits (0-9), and hexadecimal digits (0-9 plus A-F or
a-f). Table 6-5 lists class groupings.

Table 6-5. Class groupings

Hex Dec Class contents

01h 1 White space (space, tab, CR, If, ff, bs, nUll)

02h 2 Uppercase alpha (A-Z)

04h 4 Lowercase alpha (a-z)

08h 8 Legal identifier ($, %, ~

lOh 16 Decimal digit (0-9)

20h 32 Hexadecimal digit (A-F, a-f)

40h 64 Delimiters: space, comma, period, tab, (, /, \, :, ;,

<, =, >,!
80h 128 Punctuation: !-\, :-@, [_", {-­

A character may fall into more than one class: the comma, for example,
is both a delimiter and a punctuation mark, and returns a c 1 ass value of
OCOh or 192 decimal.

Example

x = class(a_char) : if x = 1 then ...

In this example, a_c ha r is a white space if x is 1.

6·38 CASL Programmer's Guide

clear (statement)

clear

Use c 1 ear to clear the terminal screen.

Format

clear [window] [, line] [, eow] [, bow] ...
[, eol] [, bol]

If no option is specified, the entire window is cleared and the cursor
moves to the top left comer of the window. If an option is specified,
the cursor remains in place. Table 6-6 explains the options.

Table 6-6. Options for the clear statement

Option Explanation

wi ndow Clears the entire window.

1 i n e Clears the line on which the cursor is located.

eow Clears from the cursor to the end of the window.

bow Clears from the cursor to the beginning of the window.

eol Clears from the cursor to the end of the current line.

bo 1 Clears from the cursor to the beginning of the current line.

Examples

clear bow

In this example, the script clears the session window from the cursor

back to the beginning of the window.

clear window

In this example, the script clears the entire session window.

USing the Programming Language 6·39

close

close (statement)

Use c los e to close an open data file.

Format

close [if <filenum>]

c los e ends access to an open file. If f i len u m is not given, all open
files are closed. Note that all open files are closed when the script that
opened them terminates.

The if symbol must precede the file number.

For related information, see the open statement.

Example

close

In this example, all open files are closed.

6-40 CASL Programmer's Guide

cis

cis (statement)

The c 1 s statement, which is a synonym for the c 1 ear statement, is
supported only for backward compatibility. Refer to c 1 ea r earlier in
this chapter.

Using the Programming Language 6-41

cmode

cmode 	 (system variable)

Use cmode to control the capture mode.

Format

cmode = {"normal" I "raw" I "visual"}

The capture buffer is available to collect data coming in from the com­
munications port. The cmode system variable controls the appearance
of the captured data through its options, which are outlined in Table 6-7.

Table 6-7. Options for the cmode variable

Option 	 Description

nor mal 	 The data is captured in the order received, but with ter­
minal control sequences removed, producing generally
readable text that can be used by other programs or
scripts. In this mode, the backspace character erases
the last character captured, and CR and LF characters
are paired appropriately.

raw 	 All data is captured as received, without removal ofter­
minal control characters.

vis u a 1 	 Data is captured as it looks on the screen; however, due
to terminal control sequences, it may be in a different
order than the one in which it was received. Data is
passed to the buffer when the screen is cleared or when
lines are scrolled off the screen. Data that is selectively
erased by the host cannot be captured.

Example

cmode = "raw"

In this example, cmod e is set to " raw". All data will be captured as
received, without removing terminal control characters.

6-42 CASL Programmer's Guide

compile

compile (statement)

Use campi 1e to compile a script file.

Format

compile <filename>

This statement causes the specified script to be compiled. The compiled
script file is saved in the same directory where the source script is found.

Example

campi 1 e "MENU"

In this example, the script tells the compiler to compile a script called
MENU.

Using the Programming Language 6-43

connected

connected (function)

The connected function, which is a synonym for the on 1 i ne func­
tion, is supported only for backward compatibility. Refer to 0 n 1 i n e
later in this chapter.

6-44 CASL Programmer's Guide

connectreliable

connectreliable

(module variable)

Use con n e c t r eli a b 1e to determine if there is a reliable, or error-free,
connection.

Format

x = connectreliable

con n ec t re 1 i a b 1e is t rue if the modem connection is reliable,
fa 1 s e if it is not.

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0
do not support this variable.

For related information, see the ass u me statement.

Example

assume device "DCAMODEM"
if connectreliable then
{

assume protocol "DCAXYMDM"
protocol = "DCAXYMDM"
protomodel = "YMODEM/G"

In this example, the script tells the compiler to assume the module type
de vic e with the name 0CAM ODE M. If this device provides an error-free
connection, the script assumes the module type pro t 0 col with the
name DCAXYMDM and then sets two variables to the appropriate values.

Using the Programming Language 6-45

copy

copy (statement)

Use copy to copy a file or group of files.

Format

copy [some] <filespeefrom>, <filespeeto»

fj 7espeefrom must be a legal file name (full path names and wild
cards are permitted). fj 7espee t 0 specifies the new drive-path-file
name for the copy of the file and defaults to the current directory.

If you specify some, the user must approve each file before it is copied.

Versions of Crosstalk for Windows older than 2.0 do not support the
copy statement.

Examples

copy "menu.xts", "menu2.xts"

In this example, men u . x t s is copied to men u1 . x t s.

copy "*.xts", "*.bak"

In this example, the script makes a copy of each file with the . x t s
extension and gives the copied files a . ba k extension.

copy some "*.xts", "A:"

In this example, the script copies all files with the . x t s extension to
drive A, but confirmation is requested of the user before each individual
file is copied.

6-46 CASL Programmer's Guide

count (function)

count

Use co u n t to determine the number of occurrences of a character within
a string.

Format

x = count«string1), <string2»)

co u nt returns the number of times any of the characters in 5 t r i n9 2
occur in 5 t r i n91. This function can take the place of the ins t r
function in a counting loop to determine how many times your script
must take some future action.

This function is case-sensitive.

For related information, see the ins t r function.

Examples

x = count("sassafras", Os")

In this example, co un t returns the number of times the letter "s" occurs
in the string. The result is 4.

x = countC"sassafras", "sa")

In this example, co u nt returns the number of times the letters "s" and
"a" occur in the string. The result is 7.

Using the Programming Language 6-47

ere

ere (function)

Use c r c to determine the cyclical redundancy check value for a string.

Format

x = crc«string> [, <integer>])

x is returned as the c r c of 5 t r j ng. The c r c starts with a value of
o(zero) unless a starting value is given in in t ege r.

As with the c k sum function, you can use c r c to develop a proprietary

file transfer protocol or to check the integrity of a string.

For related information, see the c ksum function.

Examples

x = crc("Crosstalk")

In this example, x is assigned the crc value of the string C r 0 sst a1k.

x = crc(text line)

In this example, x is assigned the crc value of the t e x t_l i n e variable.

6-48 CASL Programmer's Guide

curday (function)

curday

Use cur day to find out the current day of the month.

Format

x = curday

cur day returns the current day of the month. The returned value is
always in the range of 1-31.

Examples

x = curday

In this example, x is set to the current day of the month.

if curday = 15 then gosub pay_bills

In this example, control passes to the subroutine pay_b i 11 s ifthe
current day is day 15.

Using the Programming Language 6-49

curdir

curdir (function)

Use curd i r to check the name of the current directory.

Format

x$ = curdir[«string>l]

cu rd i r returns the current directory of the drive specified by 5 t ring.
If you do not specify 5 t r i ng, cur d i r returns the directory of the
current drive. cur d i r returns a null string if the specified drive is not
available.

For related information, see the curd r i ve function.

Examples

where we are = curdir

In this example, cur d i r stores the name of the current directory in the
where we are variable.

whats_on_a = curdir("a:"l

In this example, cur d i r stores the name of the current directory for
drive A: in the what son a variable.

6·50 CASL Programmer's Guide

curdrive

"Win I curdrive (function)

Use cur d r i veto find out the current default drive.

Format

x$ = curdrive

curd r i ve returns a 2-character string consisting of the letter of the
current default drive followed by a colon.

For related information, see the cur d i r function.

Examples

what we are on = curdrive

In this example, curd r i ve stores the letter of the current drive in the
wh at_we_a re on variable.

if curdrive > "e;" then

In this example, the script takes some action if the letter of the current
drive is greater than C (D, E, F, and so on) .•

Using the Programming Language 6-51

curhour

curhour (function)

Use cur h 0 u r to get the current hour in a 24-hour format.

Format

x = curhour

cur h 0 u r returns an integer value containing the current hour, in the
range of 0-23.

Examples

x = curhour

In this example, cur h 0 u r sets the variable x to the number for the

current hour.

if curhour = 23 then chain "CALLBBS"

In this example, the script chains to a script called CALLBBS if

curhou r is set to 23.

6-52 CASL Programmer's Guide

curminute

curminute (function)

Use curmin ute to get the current minute.

Format

x = curminute

curmin ute returns an integer containing the current minute, in the
range of 0-59.

Examples

x = curminute

In this example, x is set to the current minute.

if curminute = 30 then ...

In this example, the script tests whether the current minute is equal to

30.

Using the Programming Language 6-53

curmonth

curmonth (function)

Use cur m 0 nth to get the number of the current month.

Format

x = curmonth

cur m 0 nth returns an integer value containing the current month, in
the range of 1-12.

Examples

x = curmonth

In this example, x is set to the current month.

if curmonth = 12 then capture "OECEMBER.OAT"

In this example, the script captures data in the 0 E C EM B E R . 0 A T file if
the current month is 12.

6-54 CASL Programmer's Guide

cursecond

cursecond (function)

Use cur sec 0 n d to get the current second.

Format

x = cursecond

cur sec 0 n d returns an integer value containing the current second, in
the range of 0--59.

Examples

x = cursecond

In this example, x is set to the current second.

if cursecond = 30 then ...

In this example, the script tests whether the current second is equal to

30.

Using the Programming Language 6·55

curyear

curyear (function)

Use cur yea r to find out the current year.

Format

x = curyear

cur yea r returns an integer value containing the current year.

Examples

x = curyear

In this example, x is set to the current year.

if curyear = 1992 then capture "DECI992.DAT"

In this example, data is captured in the 0 E C19 9 2 . 0 A T file ifthe current
year is 1992.

6-56 CASL Programmer's Guide

cwait

cwait (statement)

Use cwa i t to control ASCII text uploading by pacing individual
characters.

Format

cwait {none I echo I delay <integer>}

cwa i t (character wait) controls text uploads by defining the condition to
be met before a character can be sent to the host computer. The options
for cwa it are explained in Table 6-8.

Table 6-8. Options for the cwait statement

Option 	 Explanation

non e 	 Do not wait after each character. Send each character as
fast as possible. This allows the fastest uploads.

e c ha 	 Wait until the host sends back the character just trans­
mitted, then send the next character. This method is
slow, but it is the best choice when sending files to
host systems that cannot accept data at full speed.

de 1ay 	 Wait integer milliseconds before sending the next
character. Use this when the host does not echo the
characters uploaded but cannot accept text at full speed.
The maximum number that can be entered is 9999
(9.999 seconds). Note that in GUI environments, the
delay time may actually be greater than the value
specified.

You can use cwa it in conjunction with the 1 wa it statement to control
the speed of text uploads to host computers. Many computers expect to
receive input at about 80 words per minute (wpm) from a human typist,
not at the 3,000 wpm (at 2,400 bps) speed that text is uploaded from a
computer.

Using the Programming Language 6-57

cwait

Only one cwa i t setting can be in effect at anyone time.

Use cwa it only when you are on line; however, you can set the par­

ameters while on line or off line.

For related information, see the 1 wa it and wa it statements.

Examples

cwa it echo

In this example, the script waits for transmitted characters to be echoed

by the host.

cwait del ay 3

In this example, the script waits at least 3 milliseconds (.003 seconds)

between each character.

6-58 CASL Programmer's Guide

date (function)

date

Use date to return a date string.

Format

x$ = date[«integer»)]

This function works two ways. First, if in t e 9 e r is not specified or
has a zero value, date returns a string containing the current system
date. The returned string is in the format appropriate for the country
where the computer is operating, for example, mm/dd/yy for the U.S.A.
and dd/mm/yy for most European countries.

In the second way, in t e9e r specifies the number of days elapsed since
January 1, 1900. date returns the date string for that day. This second
option is most useful for converting the results of the f i 1e d ate func­
tion to a "normal" string.

Note: If you want to check for a specific date, use the curday,
c urmo nth, and c u rye a r functions .•

For related information, see the f i 1ed a te , cu rd ay, c u rmo nth, and
curyea r functions.

Examples

x = date(31354)

In this example, the script sets x to "11/04/85".

if right(date(filedate("XTALK.EXE")), 2) > "87" then

This seemingly complex line is actually doing something fairly simple.
First, it gets the file date of the XTALK.EXE file using the f i 1e date
function, converts that to standard date format using the date function,
and then uses the rig h t function to get the 2 rightmost characters. If
those 2 characters are a number greater than 87, some action is taken.

Using the Programming Language 6·59

definput

definput (system variable)

Use de fin put to select a default file number for input.

Format

definput = <fi7enum>

fi 7en u m must be an integer expression. de fin put lets you specify
a default file number for all file input operations that follow the
defi nput declaration. seek, get, read, and read 1i ne assume
the file number specified by de fin put if no explicit file number is
provided.

The combination of the freefi 1e function and the defi nput variable
can produce file manipulation modules that can make subsequent coding
easier and more flexible.

This variable is valid only for files opened in i n put or ran d 0 mmode.

For related information, see the freefi 1e function and the get, open,
read, read 1i ne, and seek statements.

Example

fileno = freefile
open input "f.dat" as #fileno
definput = fileno

This example uses the f r e e fi 1 e function to get the next free file
number, opens a file with the open statement, and then assigns the
file number to the de fin put system variable. Subsequent file op­
erations (for example, read) for this file need not specify the file
number.

6-60 CASL Programmer's Guide

defoutput

defoutput (system variable)

Use defoutput to select a default file number for output.

Format

defoutput = <fi7enum>

fi 7enum must be an integer expression. defoutput lets you specify
a default file number for all file output operations that follow the
defoutput declaration. put, wri te, and wri te 1i ne assume the
file number specified by de f 0 u t put if no explicit file number is
provided.

This variable is valid only for files opened in output or random mode.

For related information, see the open, seek, put, wri te, and wri te
1 i ne statements.

Example

fileno = freefile
open output "f.dat" as #fileno
defoutput = fileno

This example uses the f r e e fi 1e function to get the next free file
number, opens a file with the open statement, and then assigns the
file number to the de f 0 u t put system variable. Subsequent output
operations (for example, wri te) for this file need not specify the file
number.

Using the Programming Language 6-61

dehex

dehex (function)

Use de hex to convert an en hex string back to its original format.

Format

x$ = dehex«string»

de hex converts a string of ASCII characters in hexadecimal format back
to a string of binary data.

Since each byte in 5 t ring is a 2-byte hexadecimal representation, the
string returned by de hex is half as long as 5 t r i ng.

Like entext and detext, enhex and dehex are complementary
functions designed to permit the exchange of binary information over
communications services that allow only 7 -bit transfers; many of the
electronic mail systems allow the transfer of only 7-bit ASCII infor­
mation.

Binary data strings that have been converted with en hex require de hex
to restore the 8-bit binary format.

For related information, see the detext, enhex, and entext func­
tions.

Examples

program_line = dehex(sendable)

In this example, de hex converts the ASCII hexadecimal string
sendabl e to binary and returns the result in program_l i ne.

spread_sheet_line = dehex(nextline)

In this example, de hex returns the binary equivalent of next 1 i n e in
spread_sheet_line.

6-62 CASL Programmer's Guide

delete (statement)

delete (statement)

Use the de 1ete statement to delete files from the disk.

Format

delete [noask] <filespec>

del e t e removes a file from the disk. f i I e spe c must be a valid
file specification, which can contain drive and path specifiers. If
fi Iespec contains wild cards, the user is asked to confirm each file
fitting the file specification.

Use no ask to suppress user intervention.

Examples

delete "scriptl.xws"

In this example, the file s c rip t 1 . xws is deleted.

input f$: delete f$

In this example, the script accepts the file name entered by the user and

then deletes the file.

Using the Programming Language 6-63

delete (function)

delete (function)

Use the de 1ete function to remove characters from a string.

Format

x$ = delete«string> [, <start> [, <length>]])

del e t e returns s t r i n 9 with len 9 t h characters removed beginning at
the character represented by s tar t. If len 9 this not specified, one
character is removed. If s tar t is omitted, the deletion starts at the first
character position in s t ring.

start must be in the range 1 <= start <= length(string).

If s tar t + len 9 this greater than 1 eng t h (s t r in g), the leftmost
s tar t -1 bytes are returned.

Example

dOLname = delete("Fixxxdo", 3, 3)

In this example, the script deletes 3 characters, starting at position 3,
from the string Fi xxxdo. The result is "Fido."

6-64 CASL Programmer's Guide

description

description (system variable)

Use des c rip t ion to read or set the description of the current session.

Format

description = <string>

des c rip t ion sets and reads the descriptive text associated with the
current session. Only 40 characters are displayed. You can set the
description to a null string (" ").

For related information, see the name function.

Example

description = "Crosstalk Communications BBS"

In this example, the script sets des c rip t ion to the indicated string.

Using the Programming Language 6-65

destore

destore (function)

Use des tor e to restore strings converted with the ens tor e function
back to their original form.

Format

x$ = destore«string»

des tor e converts strings of printable ASCII characters,which have
been converted with ens tore, back to their original, embedded control
character form.

Control characters in caret notation such as I\G, are converted back to
control characters, in this case a Ctrl-G (bell) character. The vertical bar
(I) is translated to a Ctrl-M (CR).

des tor e does not convert a caret preceded by a backquote character C);

however, the backquote character is discarded since it is no longer needed

for protection. Therefore, 'I\G becomes I\G.

You must have created 5 t ring with en s to reo

For related information, see the ens tor e function.

Example

In this example, des tor e converts the string pas s w 0 r d back to its
original form and returns the result in 1 i ne_to_s how_user.

6-66 CASL Programmer's Guide

detext (function)

detext

Use detext to convert an entext string back to its original form.

Format

x$ = detext«string»

This function works in tandem with the en t ext function to provide a
method of transferring 8-bit data over 7 -bit networks. en t ext takes
binary data and converts it to normal 7-bit ASCII characters (the result
may even be readable); detext takes the entext data and converts it
back to its original form.

You must have originally converted 5 t r i n 9 with en t ext.

For related information, see the en t ext function.

Example

convtd_text = detext(ntxtd_string)

In this example, detext converts ntxtd_s t ri ng from 7-bit ASCII
characters to 8-bit binary form and returns the result in convtd_text.

Using the Programming Language 6-67

device

device (system variable)

Use dev ice to read or set the connection device for the current session.

Format

device = <string>

The de vice variable specifies the communications device for the
current session. Table 6-9 lists the applicable devices.

Table 6-9. Connection devices

Device
name

DCASERlL*
or

Serial TooH

DCAMODEM *
or

Apple Modem
TooH

DCANASl*

DCAl NTl4 *

Sub-models (use the
devmodel variable)

(None)

(None)

(None)

(None)

Functionality

Loads the serial
connection tool.

Loads the modem
connection tool.

Loads the Novell®
NASI connection tool.

Loads the INT 14
connection tool.

* Windows environment
t Macintosh environment

After setting this variable, use the ass u m e statement to gain access to
the device variables.

Note: To set the equivalent parameter using your Crosstalk applica­
tion, choose Connection from the Settings pull-down .•

Versions of Crosstalk for Windows older than 2.0 do not support this
variable.

6-68 CASL Programmer's Guide

device

For related information, see the ass ume statement and the p rotoco 1
and t e r min a 1 system variables.

Example

assume device "DCAMODEM"
device "DCAMODEM"
port = 1

This example shows how to load the modem connection tool and set the
communications port to COMl.

Using the Programming Language 6-69

dialmodifier

dialmodifier (module variable)

Use d i a 1mod if i e r to set the dialing modifier string.

Format

dialmodifier = <string>

d i a 1mod i fie r changes the way Crosstalk dials for each session. The
maximum length of this variable is 16 characters.

You can use this variable only with Hayes® or Hayes command­
compatible modems (those that use the "AT" command set).

For versions of Crosstalk for Windows older than 2.0, this variable was
called mod i fi e r.

Example

dialmodifier = "MO"

In the example, d i a 1mod i fi e r is set to "MO". Crosstalk inserts the
dialing modifier in the dialing prefix. If the dialing prefix is "ATDT",
when the modem is dialed, the modem sends out "ATMODT".

6-70 CASL Programmer's Guide

dialog box ... enddialog

dialogbox ... enddialog (statements)

Use di a 1 ogbox ... endd i a log to create custom dialog boxes.

Format

dia10gbox <x,y,w,h> [, caption]
[< d e f pus h butt 0 n x, y, W, h, s t r i ng [, 0 Pti 0 n s] >]
[<pushbutton x, y, W, h, string [, options]>]
[< 1 t ext x, y, W, h, s t r i ng>]
[<ctext x, y, W, h, string>]
[<rtext x, y, W, h, string>]
[<edittext x, y, W, h, in it_text, str_resulLvar

[, options]>]
[< rad i obutton x, y, W, h, s tr i ng, resu I L va r

[,options]>]
[<checkbox x, y, W, h, texLstr, resulLvar

[,options]>]
[<groupbox x, y, w, h, title>]
[<listbox x, y, w, h, comma_string,

inLresulLvar [, options]>]

[<1 i stbox x, y, W, h, string_array,

inLresulLvar [, options]>]

enddia10g

This statement is useful for designing a user interface for your scripts.
Using the d i a log b 0 xlend d i a log construct, you can create dialog
boxes that are easy to use and work like standard dialog boxes.

All variables used in a dialog box must be defined before the
d i a log b 0 xlend d i a log construct. The values assigned to variables
for radi obutton, checkbox, and 1 i stbox are used to set the initial
value of these dialog items. For r a d i 0 butt 0nand c h e c k box, setting
the boolean variable res u I L va r to t rue selects it, fa 1 s e does not.
For 1 i s t b ox, setting the integer variable in Lresui L va r deter­
mines which item in the list box is highlighted. The range is limited
by the number of items in the list. You can use cap t ion to define a
title for the dialog box.

Using the Programming Language 6-71

dialog box ... enddialog

Dialog items

You can examine the variables after the d i a log box/en dd i a 1og
construct to determine the choices made by the user. The system var­
iable c hoi c e contains the value that corresponds to the pushbutton
used to exit the dialog box. For example, if the first pushbutton is
chosen, c hoi c e is set to 1 (one). Note that no variables are updated
if the Cancel pushbutton is used.

Unless otherwise specified, Crosstalk defines the first letter of a push­
button or prompt-text string as an accelerator. Placing an ampersand
(&) in a string used for the text allows you to define your own accel­
erator. The letter after the ampersand becomes the accelerator.

defpus hbutton, 1text, ctext, rtext, edi ttext,
radi obutton, pushbutton, checkbox, groupbox, and 1 i stbox
are known as dialog items.

x and y for d i a 1 og box are the pixel coordinates for the window. wand
h are the width and height of the dialog box.

The x, y, W, and h for dialog items are the same, but work within the
dialog box created with the d i a log b0 x/end d i a log construct. A
horizontal unit is 1/4 of a system font character; a vertical unit is 1/8 of
a system character font. The origin of x and y is 0,0, which is the top
left corner of the dialog box.

de f pus h but ton is a special type of pushbutton. It is the default
pushbutton, so it has a bold border. You would normally use
de f pus h butt 0 n to display the dialog's OK pushbutton. In es­
sence, this pushbutton is "pushed" when the user presses ENTER. See
pus h butt 0 n for more information.

pus h but ton displays a choice a user can make to exit a dialog box,
such as OK, CANCEL, SETTINGS, and so on. Any dialog box must have
at least one pushbutton. If there is only one, use the de f pus h but ton
dialog item. When the user exits the dialog box, the variable c hoi c e
is assigned the number of the pushbutton used to exit the dialog box.
For instance, if the second pushbutton is chosen, c hoi c e is set to 2,
or if the fourth pushbutton is selected, c hoi c e is set to 4. The script
can then check c hoi c e to take appropriate action.

The width should be the length of (5 t ring * 4) + 10. The height
is usually 14.

6-72 CASL Programmer's Guide

dialogbox ... enddialog

1text (left text), rtext (right text), and ctex t (center text) display
text and define its justification in the dialog box. The width should be
4 times the length of 5 t r j ng. The height is usually 8.

e d itt ext displays an edit box for user input. The string entered in
the edit box is returned in 5 t r_resu 7eva r. Precede ed i ttext
with 1 text, rtext, or ctext to display a prompt for the edit box.
The width of the text box should be at least 4 times the maximum
length of the string the user may enter. The height is usually 12.

r a d i 0 but ton displays a round radio or option button that is chosen
when clicked. Radio buttons are usually found in groups of several,
horizontally placed in a dialog box. The first r a d i 0 but ton in a
group must have the tab s top 9 r 0 u p option set, or the arrow keys
may not work properly in the dialog box. The first dialog item used
after a group of r a d i 0 but ton definitions must also have the
tab s top 9r 0 u p option, so that the operating environment knows
where one group ends and the next one begins. res u 7 C va r is t rue
if the radio button is selected, fa 1 s e if not. You must examine
resu 7eva r for each ra di obutton defined until you find one that
is set to t rue.

The width of a r a di 0 but ton is generally the length of (5 t r in g *
4) + 10. The height is generally 10.

checkbox displays a square box, which is checked or unchecked as
the user clicks on the item. After the user exits the dialog box,
re 5 u I C va r is true or false depending on whether the check box
was checked or not.

The width of a c h e c k box should be at least the length of
(text_str * 4) + 10. The height is usually 12.

9 r 0 U Pbox draws a box for a group of dialog items yet to be defined.
The title string appears in the upper border of the box. Dialog item
definitions for this box should follow.

Using the Programming Language 6-73

dialog box ... enddialog

Dialog item
options

1 i s t box displays a list box containing the comma-delimited strings in
comma_s t rj 179. The number of the list box item chosen is returned in
j 17 L res u I L va r. Zero is returned if no item was chosen.

The width of a list box should be at least 4 times the length of the
longest string in comma_s t r j 179. The height should be 8 times the
number of items from comma_s t r i 179 that you want to display at one
time. The height of the list box is limited by the height of the dialog
box.

If an array of strings (5 t r in9_a rray) is specified for 1 i s t box instead
of a comma_s t r i 179, an array is displayed. Note that the array must
be single dimensional with an alternative lower boundary of 1 (one).

The width of a list box should be at least 4 times the length of the
longest string in 5 t r j 17 9_a r ray. The height should be 8 times the
number of items from 5 t r j 17 9_ar ray that you want to display at one
time.

tabstop, tabstop group, focus, ok, and cancel are options for
some of the dialog items, which include defpus hbut ton,
pushbutton, edi ttext, radi obutton, checkbox, and 1 i stbox.

tab s top defines the dialog items to which you can tab if the user is
using the keyboard rather than the mouse.

tab s top g r 0 up marks the beginning or end of a group of radio
buttons. Radio buttons are generally a group of horizontally placed
buttons. Use the TAB key to get to the first button in the group, then
use the arrow keys to move from one button to the next. Pressing TAB
again takes you to the next group (the next dialog item outside the radio
button group).

focus defines where to place the focus (cursor) for the dialog box. If
this is not used, the focus is set at the first tab s top in a dialog box.

6-74 CASL Programmer's Guide

dialogbox ... enddialog

ok is for a pus h butt 0 n only. This identifies the pushbutton to as­
sociate with the ENTER key. In general, you use this option only with
defpushbutton.

can eel is for a pus h but ton only. This identifies the pushbutton to
associate with the ESC key.

Note: This statement supports dialog box comments and flow control
of the logic related to displaying a dialog box. Versions of Crosstalk
for Windows older than 2.0 do not support these features. Crosstalk
Mark 4 does not support this statement. •

For related information, see the ale r t statement.

Examples

di al ogbox 61, 20, 196, 76
1text 6, 4, 148, S, 'About ca 11 i ng CompuServe ' +

'directly ... '

ltext 6, 24, 176, 8, 'When setti ng up Crosstal k ' + ...

'to call CompuServe'
ltext 6,36,188,8, 'Directly, you must leave' + ...

'the NetID field blank.'

defpushbutton SO, 56, 36, 14, 'Ok', tabstop

enddialog

This example displays a simple dialog box that provides some informa­
tion for the user. The user can read the text and choose OK when ready
to continue.

/*

Dialog box example

*/

string edit$

bool ean check1, check2, check3,

boolean radio1, radio2

integer 1 i stl

string items[l:S]

label SampleDialog

check1 true true shows the check box selected

check2 true

check3 true

1 i stl 3 a 3 will highlight the 3rd item in

the list

radio1 true true will show the radio button

selected

Using the Programming Language 6-75

dialogbox ... enddialog

radio2 = false false shows that the radio button is
not selected

items[l] "Item1 " array elements 1 through 8
items[2] "Item2"
items[3] "Item3"
items[4] "Item4"
items[5] "ItemS"
items[6] "Item6"
items[7] "Item7"
itel1ls[8] "IteI1l8"

dialogbox 34, 23, 253, 125
ltext 4, 4, 86, 8, "Dynamic Dialog"
groupbox 4, 18, 197, 52, "Crosstal k for Windows"
checkbox 12, 30, 154, 12, "Designed for the" + ...

"Windows environl1lent", check1, tabstop
checkbox 12, 42, 150, 12, "Incl udes a powerful " + ...

"script language", check2, tabstop focus
checkbox 12, 54, 170, 12, "Full Dynami c Data" +

"Exchange (ODE) support", check3, tabs top
1i stbox 4, 74, 72, 40, items, 1i stl, tabs top
ltext 87, 76, 44, 8, "Enter text:"
edittext 135, 76, 94, 12, "", edit$, tabstop
radiobutton 88, 91, 93, 12, "Radio Button 1",

radio1, tabstop group
radiobutton 88, 103, 93, 12, "Radio Button 2", radio2
defpushbutton 208, 22, 36, 14, "Ok", ok tabstop group

pushbutton 208, 39, 36, 14, "Cancel", cancel ...
tabs top

enddialog

This example produces a more complex dialog box that contains check
boxes, a list box, edit boxes, and radio buttons.

6-76 CASL Programmer's Guide

dirfil

dirfil (system variable)

Use d i r f i 1 to read or set the directory used for transfers and captures.

Format

di rfi 1 = <string>

d i r f i 1 checks or sets the directory used for file transfers and data
capture.

The Crosstalk installation program creates d i r f i 1 for transfers and
captures. The default path for Windows users consists of the directory
where the XTALK.INI file is located and the Crosstalk FIL directory.
For example, if XTALK.lNI is in the \XT ALK directory, the d i r f i 1
setting is \XTALK\FIL. The default path for Macintosh users consists
of the Download Files folder in the folder where the Crosstalk applica­
tion is located.

This variable is not supported for Crosstalk Mark 4.

For related information, see the down 1oa dd i r system variable.

Examples

dirfil = "c:\xtalk\fil"

In this example, d i rfi 1 is set to C:\XTALK\FIL directory.

if exists(dirfil+("\TEST.DAT")) then ...

In this example, the script tests whether the file TEST.DAT exists in
the d i r f i 1 directory.

Using the Programming Language 6-77

display

display (system variable)

Use dis P 1 a y to enable or disable the display of incoming characters.

Format

display = {on I off}

dis play controls the display of incoming characters. If dis play is
off, then incoming information is not displayed.

Characters sent to the screen with the pr i nt statement are considered
incoming characters, and are not displayed if dis play is 0 ff.

dis play is active only while the script that is using it is running.

For related information, see the pr i nt statement.

Example

wait for "Password:"
display = off
reply password
display = on

In this example, the script waits for the "P ass w0 r d : " prompt from the
host. When the prompt is received, dis play is turned off, the contents
of the system variable pas s w 0 r d are sent to the host, and dis P 1 a y is
turned back on.

6-78 CASL Programmer's Guide

cb

do (statement)

Use do to compile and run a script.

Format

do <filename> [, <args>]

The do statement, like the c h a instatement, invokes another script and
passes control to that script. Unlike the script that uses the c h a i n
statement, however, the script issuing the do statement does not termi­
nate after it invokes the "child" script; rather, it waits until the other
script returns control.

args represents an optional argument list that contains the individual
arguments to be passed to the other script. Individual arguments must
be separated by commas.

When you use the do statement to invoke another script, the scripts
can exchange variable information. To pass a variable between scripts,
declare the variable as pub 1 i c in the invoking script and as ex te rna 1
in the invoked script.

do, like cha in, compiles and runs a script source (.xws) file if there
is no compiled version of the script, or if the date of the source file is
more current than the date of the compiled version. Otherwise, do
runs the compiled version of the script. Script names do not require
an extension.

Versions of Crosstalk for Windows older than 2.0 do not support this
statement.

For related information, see the a r 9 function and the c h a instatement.
Also refer to Chapter 3, "Declaring Variables, Arrays, Procedures, and
Functions," for information on public and external variables; and to
Chapter 4, "Interfacing with the Host, Users, and Other Scripts," for
more information about invoking other scripts.

Using the Programming Language 6·79

cb

Examples

do "SCRIPT2"

In this example, a script called SCRIPT2 is invoked as a child script.

do "SCRIPT2", "CSERVE"

In this example, the argument CSERVE is passed to SCRIPT2.

6-80 CASL Programmer's Guide

dosversion

dosversion (function)

Use do s ve r s ion to get the DOS version number.

Format

x$ = dosversion

do s ve r s ion returns the DOS version number as a string.

Example

if dosversion < "3.0" then
print "Incompatible version of DOS"

In this example, a message is displayed if the version of DOS is older
than 3.0 .•

Using the Programming Language 6-81

downloaddir

downloaddir (system variable)

Use dow nloa d d i r to read or set a directory other than the default
directory for transfers and captures.

Format

downloaddir = <string>

down loa d d i r checks or sets a directory that is different from the
d i r f i 1 directory for file transfers and data capture.

Normally transfers and captures are stored in the download directory spe­
cified by dow nloa d d i r. You can override the directory setting by set­
ting a different path in d i r f i 1. Note that some file transfer protocols
do not provide the opportunity to specify the path; these protocols are
autostart protocols, which immediately begin downloading the file. In
this case, the file is placed in the current directory, which, in general, is
not the same each time.

Versions of Crosstalk for Windows older than 2.0 do not support this
variable.

For related information, see the d i r f i 1 system variable.

Example

downloaddir = "a:\DATA\FILDAT"

In this example, down 1 oadd iris set to a:\DATA\FILDAT directory.

if exists(downloaddir+("\TEST.DAT")) then ...

In this example, the script tests whether the file TEST.DAT exists in
the downl oaddi r directory.

6-82 CASL Programmer's Guide

drive

[Win 1 drive (statement)

Use d r i veto change the default disk drive.

Format

drive <string>

s t r in g must be an expression representing a valid disk drive. The
default drive for all subsequent file operations will be set to the new
drive.

Examples

drive "A:"

In this example, the drive is changed to "A:"

drive dname$

In this example, the drive is changed to the value contained in the varia­
ble dna me $.•

Using the Programming Language 6·83

end

end (statement)

Use end to indicate the logical end of a script.

Format

end

end marks the logical end of a script. When an end statement is
encountered, the following occurs:

• 	 All variables associated with that script are discarded.

• 	 All files opened by that script are closed.

• 	 Execution of the script is terminated.

• 	 If the script was invoked by a parent script, execution continues in
the parent script.

Although it is a good programming practice to have an end statement
at the physical end of the script source code as well as at the logical end
of the source code, CASL accepts the physical end of the script as the
logical end if no end statement is found.

For related information, see the hal t, qui t, and t e r min ate state­
ments.

Example

if not onl i ne then end

In this example, the script ends if it is not on line.

6-84 CASL Programmer's Guide

enhex (function)

enhex

Use enhex to convert a string of binary data to a string of ASCII
characters in hexadecimal format.

Format

x$ = enhex«string»

enhex returns a string of ASCII characters that represent, in hexa­
decimal format, the data in s t r i ng.

Since each byte in s t r i ng is converted to a 2-byte hexadecimal
representation, the string returned by en hex is twice as long as
string.

Like entext and detext, enhex and dehex are complementary
functions designed to permit the exchange of binary information over
communications services that allow only 7-bit transfers (many of the
electronic mail systems allow the transfer of only 7-bit ASCII infor­
mation).

Binary data strings that have been converted with en hex require d e hex
to restore them to 8-bit binary format.

For related information, see the dehex, detext, and en text
functions.

Examples

sendable = enhex(program_line)

In this example, en hex converts the binary string pro 9 r a m_1 i n e to a
string of ASCII characters and returns the result in sen dab 1e.

reply enhex(spread_sheet_line)

In this example, the script sends the result of the en hex conversion to
the host.

Using the Programming Language 6-85

enstore

enstore (function)

Use enstore to convert strings that may have embedded control
characters into strings of printable ASCII characters.

Format

x$ = enstore«string»

In general, control characters are changed to caret-notation representa­
tion; that is, a Ctrl-G (bell) character is changed to J\G in the result.
When you use the resulting string in a string operation such as are ply
statement, the characters J\G are interpreted as Ctrl-G. The vertical bar
(I) is used to represent Ctrl-M (CR).

ens tor e uses the backquote character (...) to protect any existing carets
from later interpretation.

ens tor e is useful in script file management of passwords and other
strings that often contain embedded control characters.

Strings that have been converted with the ens tor e function can be
returned to their original form with the des tor e function.

For related information, see the des tor e function.

Examples

password = enstore("ALE" + chr(3»

In this example, the result of the ens tor e conversion is returned in
password.

reply enstore(line_input_by_user)

In this example, the script sends the result of the ens tor e conversion
to the host.

6-86 CASL Programmer's Guide

entext

entext (function)

Use en t ext to convert a string of binary data to a string of printable
ASCII characters.

Format

x$ = entext«string>l

Like enhex and dehex, en text and detext are complementary
functions designed to permit the exchange of binary information over
communications services that allow only 7-bit transfers; many of the
electronic mail systems allow the transfer of only 7-bit ASCII infor­
mation.

Binary data strings that have been converted to ASCII with en t ext
require the de t ext function to restore them to 8-bit binary format.
The algorithm used by en t ext changes three 8-bit characters to
four printable characters.

For related information, see the de hex, de t ext, and en hex functions.

Examples

sendable = entext(program_linel

In this example, the ASCII equivalent of the binary string
pro 9 r a m_1 i n e is assigned to sen dab 1 e.

reply entext(spread_sheet_linel

In this example, s pre a d_s he e t_l i n e is converted to ASCII
characters and then sent to the host.

Using the Programming Language 6-87

environ

IWin I environ (function)

Use en vir 0 n to obtain the value of a DOS environment variable.

Format

x$ = environ«string»)

en vir 0 n returns the value of a specified operating system environment
such as the path or the prompt.

5 t r i n g is not case-sensitive. A null string is returned if 5 t r i n g is
not found in the operating system environment.

Note: DOS environment variables must be set before you start Win­
dows. Refer to your DOS manual for instructions on setting these
variables.•

Example

string dpath
dpath = environ("PATH")

In this example, the path setting is placed in the script's dpat h

variable.•

6-88 CASL Programmer's Guide

e01

eof (function)

Use eof to determine whether the end-of-file marker has been reached.

Format

x = eof[«fi7enum)l]

eo f returns t rue if the file specified in f i 7 en u m is at the end of the
file. eo f returns fa 1 s e until the last record has been read; then it
returns true.

If f i 7en u m is not specified, the file number defaults to the de fin put
system variable.

In random files, eof returns true when the most recent get statement
returns less than the requested number of bytes. get does not read past
the end of the file.

In input (sequential) files, eof returns true when the most recent read
or rea d 1i n e statement reads the last record in the file. The contents
of the last record of a file depend on the method used to create it. Some
applications place a Ctrl-Z (ASCII 26 decimal) character at the end of
the file while other applications do not. Still other applications round
out the file to a length evenly divisible by 128, either by writing mul­
tiple Ctrl-Z characters or by writing a single Ctrl-Z followed by what­
ever was in the rest of the output buffer on the previous write.

For related information, see the defi nput system variable and the get,
rea d, and see k statements.

Using the Programming Language 6-89

ecf

Example

string name
while not eof

read name
print name

wend
end

This code fragment reads strings from an already opened sequential file
and prints them to the screen. When the end-of-file marker is reached,
the whi 1e/wend loop is terminated, and the script ends.

6-90 CASL Programmer's Guide

eol (function)

eol

Use eo 1 to determine if a carriage-returnlline-feed character, indicating
the end of a line, was part of the data read during the last rea d state­
ment.

Format

x = eol[(<filenum»]

eol returns t rue if the last rea d statement encountered a carriage­
returnlline-feed (CRILF) character.

fj 7enum is the file number assigned to the file when it was opened.
If f j 7en um is not specified, the file number defaults to the de fin put
system variable.

eol, like eo f, indicates the status of a data file following a read oper­
ation; eo 1 , however, works only on sequential input files, and reports
whether the most recent rea d statement read the last field in the line
(that is, encountered a CR/LF). Most applications use CR/LF to in­
dicate the end of a line.

When reading comma-delimited ASCII files with re a d statements,
use eo 1 to ensure alignment of the file reading commands with the
contents of the file, especially when the file in question was written
using another application. The example provided shows this technique.

For related information, see the de fin put system variable and the
rea d statement.

Using the Programming Language 6-91

eol

Example

string name
open input "names.dat" as 1
definput = 1
while not eof

read name

pri nt name;

while not eol

read name

pri nt .. and" name

wend
print

wend

In this example, a file with a file number of 1 (one) is opened for input.
The two whi 1e/we n d loops control the read operations. The outer loop
is set so that the file is read until the end-of-file marker is reached.
Within each read operation, the inner loop ensures that all of the data
through the end-of-line character is read and printed.

6-92 CASL Programmer's Guide

errclass

errclass (system variable)

Use err c1ass to check the type of the last error.

Format

x = errclass

err c1ass contains an integer reflecting the type of error that last oc­
curred. It is zero if no error has occurred. err c1ass is not cleared
when you check it. It remains unchanged until another error occurs.

For related information, see the err n0 system variable, the err 0 r
function, and the t rap compiler directive.

Example

trap on
send fname
trap off
if error then

case errclass of
45: goto file tran_err
26: goto call fail err
default: goto other err

end case

This example shows how to test for such things as file-transfer or call­
failure errors after a script executes a file transfer command.

Using the Programming Language 6-93

errno

errno (system variable)

Use err n0 to check the specific type of the last error.

Format

x = errno

err n0 contains an integer reflecting the error number, within the
err c1ass, for the error that last occurred. It is zero if no error
occurs. err n0 is not cleared when checked. It remains unchanged
until a different error has occurred.

For related information, see the err c1ass system variable, the err 0 r
function, and the t rap compiler directive.

Example

trap on
send fname
trap off
if error then El = errclass : E2 = errno

In this example, error trapping is turned on, a file transfer is attempted,
and trapping is turned off. If an error occurred, E 1 is set to the value in
err c1ass and E 2 is set to the value in err no.

6·94 CASL Programmer's Guide

error (function)

error

Use err 0 r to check for the occurrence of an error.

Format

x = error

err 0 r reports the occurrence of an error. It returns t rue if an error
occurred and fa 1s e if no error occurred. err 0 r is reset each time it
is tested. If you want to continue to trap errors throughout the execu­
tion of the script, e r ro r must be cleared out (tested) after each error
occurs.

When you use err 0 r with the t rap compiler directive, you can direct
program flow to an error handling routine.

err 0 r merely indicates that there has been an error. errc 1 ass and
errn0 specify which error has occurred. err c 1 ass and err n0 are not
cleared when tested.

Note: Fatal run-time errors cannot be trapped. _

For related information, see the err c 1 ass and err n0 system variables
and the t rap compiler directive.

Example

trap on
compile "zark"
trap off
if error then print "compile failed"

In this example, error trapping is turned on and the script requests that
zark be compiled. Then error trapping is turned off. If an error oc­
curred, the script prints an error message.

Using the Programming Language 6-95

exists

exists (function)

Use ex i s t s to determine whether a file or subdirectory exists.

Format

x = exists«string»

ex i s t s returns true if the file specified in 5 t r in9 exists, and false if

it does not. Use ex i s t s only to check for files and subdirectories. It

does not work for root directories.

5 t r i n9 must be a legal file specification, and can contain drive speci­

fiers, path names, and wild-card characters.

For related information, see the f i 1 e a tt r function.

Examples

print exists("XTALK.EXE")

In this example, either true or false is displayed, depending on the

existence of the file Xl A L K . EX E.

if exists("C:\BIN") then
print "BIN directory!"

In this example, a message is displayed if the directory BIN exists on
the C drive.

if not exists(dat_file) then goto dat_error

In this example, the script branches to the label d a t_e r r 0 r if the
d a t_ f i 1 e does not exist.

6-96 CASL Programmer's Guide

exit

exit (statement)

Use ex it to exit from a procedure.

Format

exit

When an ex i t statement is encountered, the procedure returns control to
the statement following the one that called it.

For related information, see the c ha in, do, and en d statements and the
pro c ... end pro c procedure declaration.

Example

proc test takes integer x
if x < 1 then exit
print x; " seconds remaining."

endproc

In this example, the procedure t est is called with the argument x. If x
is less than 1, the procedure returns control to the statement following
the one that called it. Otherwise, a message is displayed and then the
procedure returns control when endproc is executed.

Using the Programming Language 6-97

extract

extract (function)

Use ext rae t to return a string of characters that is removed from
another string.

Format

x$ = 	 extract«string, wild [, where_int]»

extract is, essentially, the opposite of the stri p function; it returns
the characters s t rip discards from a string.

wi I d can be either a string of the characters you want to return from
5 t r in g or it can be an integer bitmap of the Crosstalk character
class(es) containing the characters you want returned. (See the c 1 ass
function earlier in this chapter for a list of classes.) Each character in
wi I d is considered independently, and wi 7d is case-sensitive.

where_ i nt is an integer, with the following meanings:

o 	 Extract all occurrences in 5 t r i ng of any character in wi 7d.

1 	 Extract from the right side, stopping at the first occurrence of a
character not in wi 7d .

2 	 Extract from the left side, stopping at the first occurrence of a
character not in wi 7d .

3 	 Extract from both the right and left sides, stoppihg on each side
at the first occurrence of a character not in wi 7d .

ext rae t is quite useful in analyzing lines read from word-processing
text files, for counting leading zeros, and for editing user-entered strings.

Examples

print extract("0123456", "0",2)

In this example, the script displays "0."

print extract("Sassafras", "as", 0)

In this example, the script displays" ass a as."

6-98 CASL Programmer's Guide

false

false (constant)

Use fa 1 s e to set a boolean variable to logical false.

Format

x = false

fa 1s e is always logical false. fa 1s e, like its complement, t rue,
exists as a way to set variables on and off. If fa 1 s e is converted to an
integer, its value is 0 (zero).

For related information, see the true, on, and off constants.

Example

done = false
while not done

wend

In this example, the statements in the w hi 1e/we n d construct are
repeated until done is true.

Using the Programming Language 6-99

fileattr

fileattr (function)

Use f i 1e a tt r to return an attribute bitmap that describes the file's
attributes.

Format

x = fileattr[«fi7ename»)]

If f i 7en ame is used, f i 1e a tt r returns the attributes of the file
specified in fi 7ename.

If f i 7en am e is not used, f i 1e a tt r returns the attributes of the last
file found by the f i 1e fin d function.

The bitmap returned is the total of the possible attributes shown in
Table 6-10.

Table 6-10. Bitmap values for the fiJeattr function

Hex Dec 	 Attribute meaning

Olh 1 	 A read-only Windows file or a locked Macintosh
file.

02h 2 	 A hidden Windows or Macintosh file. The file is
excluded from directory searches.

04h 4 	 A Windows system file. The file is excluded from
directory searches. Note that this is not applicable
for the Macintosh.

08h 8 	 The volume name of a Windows or Macintosh disk.

10h 16 	 A Windows directory or a Macintosh folder.

20h 32 	 A Windows or Macintosh archive bit. This bit
indicates the file has been changed since it was last
backed up.

6-100 CASL Programmer's Guide

fiieattr

fi 7ename must be a legal file specification. Path names are permitted;
wild cards are not permitted. Some attribute bit combinations, though
theoretically possible, may not be supported by your operating system.

For related information, see the c hmod statement and the f i 1efin d
function.

Example

print fileattr("xtalk.exe")

In this example, the script displays the attribute for the file
xtalk.exe.

Using the Programming Language 6-101

filedate

filedate (function)

Use f i 1 e d ate to return the date, in elapsed-day format, that the
operating system assigned to a file.

Format

x = filedate[«fi7ename»]

If f i 7en ame is used, f i 1 e d ate returns the date of the file specified in
fi 7ename.

If f i 7en ame is not used, f i 1 e d ate returns the date of the last file
found by the f i 1 e fin d function.

To simplify the comparison of file ages, the date is returned as an inte­
ger in elapsed-day format, giving the age of the file in days since the
first day of January, 1900. To convert this to month-day-year format,
use the d ate function.

fj 7ename must be a legal file specification. Path and drive specifiers
are permitted; wild cards are not permitted.

For related information, see the d ate and f i 1 eat t r functions.

Examples

print date(filedate("xtalk.exe"))

In this example, the script prints the date in day-month-year format.

file_age = filedate(file_string)

In this example, the date assigned to f i 1e_s t r i n 9 is returned in
fi 1e_age.

6·102 CASL Programmer's Guide

filefind (function)

filefind

Use fi 1efi nd to check a file name.

Format

x$ = filefind[«string> [, <integer>])]

f i 1efin d returns the full path name of a file matching the pattern
specified in 5 t ring. If 5 t ring is not used, fi 1efi nd returns the
name of the next file in the directory that fits the last file specification
given as 5 t r ing. If no such file is found, f i 1e fin d returns the null
string.

If both 5 t r i n9 and i nt e9e r are used, f i 1efin d returns the name of
the first file in the directory whose name matches 5 t r i n9 and whose
attribute bitmap equals in tege r. (See the f ilea tt r function earlier
in this chapter for a list of possible attributes.) Note that the volume
name attribute (08h or 8) is not supported.

5 t ring must be a legal file specification that can include drive speci­
fiers and path names as well as wild-card characters.

For related information, see the f i 1eat t r function.

Example

x = filefind("*.*")
while not null(x)

print x
x = filefind

wend

In this example, the script displays a list of files in the current directory.

Using the Programming Language 6·103

filesize

filesize (function)

Use fi 1es i ze to check the size of a file.

Format

x = filesize[Cfi7ename»]

If f i 7en ame is used, f i 1e s i z e returns the size of the file specified in
fi 7ename. If fi 7ename is not used, fi 1es i ze returns the size of
the file found by the most recent f i 1e fin d.

fi I ename must be a legal file specification that can contain drive spe­
cifiers and path names as well as wild-card characters.

For related information, see the f i 1 eat t rand f i 1 e fin d functions.

Examples

progsize = filesizeC"XTALK.EXE")

In this example, the size of XT A L K. EX E is returned in p rog s i z e.

print filesize

In this example, the script displays the size of the file found by the
most recent fi 1efi nd.

6-104 CASL Programmer's Guide

filetime (function)

filetime

Use fi 1et i me to determine the time a file was last updated, in seconds­
elapsed format.

Format

x = filetime[(fi7ename»]

If fi 7ename is used, fi 1et i me returns the time of the file specified in
fi 7ename. If fi 7ename is not used, fi 1et i me returns the time of
the file found by the most recent f i 1e fin d.

To facilitate file-age comparisons, f i 1e time is returned as an integer
indicating the number of seconds past midnight since the file was created
or last modified. To convert this to hours, minutes, and seconds, use
the time function.

fi 7ename must be a legal file specification. Drive specifiers, path
names, and wild-card characters are permitted.

For related information, see the f ilea t t r, f i 1e fin d, and time
functions.

Examples

print time(filetime("xtalk.exe"»

In this example, the time that the file was last updated is displayed as
hours, minutes, and seconds with AM or PM.

prog_age = filetime("xtalk.exe")

In this example, f i 1 e tim e returns the time the file was last updated in
prog_age.

USing the Programming Language 6·105

fncheck

[III fncheck (function)

Use f n c he c k to check the validity of a file name specification.

Format

x = fncheck«string»

f n c h e c k provides a quick way to parse file names. It returns a bitmap
indicating the presence or absence of various file name parts such as the
drive letter, path, name, file type extension, and wild cards.

The bitmap returned indicates which parts are present, as shown in Table
6-11.

Table 6-11. Bitmap values for the fncheck function

Hex Dec File name Attribute/Meaning

Olh 1 Drive Found a colon.

02h 2 Path Found a backslash.

04h 4 Extension Found a dot.

08h 8 Wildcard Found a question mark.

lOh 16h Wildcard Found an asterisk.

The bitmap values are added together for every part of a file name that is
found.

5 t r in 9 should be a legal file name for the results to be meaningful.

For related information, see the f \1 s t rip function.

Example

print fncheck(lon9_file_spec)

In this example, the various parts of the file name 10 n 9_ f i 1 e_s p e c
are displayed .•

6·106 CASL Programmer's Guide

fnstrip

[Win I fnstrip (function)

Use f n s t rip to return specified portions of a file name specification.

Format

x$ = fnstrip«strin~ specifier»)

f n s t rip provides a quick way to parse file names, breaking them
down into component parts like the drive letter, path, and name.

s t r i n9 can be made up of the drive, path, name, and extension, as
shown in the following example:

C:\xtal k\xtal k.exe

The parts of s t r in 9 that are returned are controlled by 5Pec i fie r,
according to the bitmap values shown in Table 6-12.

Table 6-12. Bitmap values for the fnstrip function

Hex Dec Portion Returned

OOh 0 Returns the full file name.

01h 1 Returns all except the drive designation.

02h 2 Returns the drive, file name, and extension.

03h 3 Returns the file name and extension.

04h 4 Returns the drive, path, and file name (no
extension).

OSh 5 Returns the path and file name (no extension).

06h 6 Returns the drive and file name (no extension).

07h 7 Returns the name only (no extension).

Add 8 to s p e ci fie r to have the string returned in all uppercase char­
acters; add 16 (decimal) to return the string in all lowercase characters.

Using the Programming Language 6-107

fnstrip

5 t r in9 should be a legal file name for the results to be meaningful.

For related information, see the f n c h e c k function.

Examples

print fnstrip(long_file_spec, 3)

In this example, the script displays the file name and extension.

progname = fnstrip(long_file_name, 7)

In this example, fn s t rip returns only the file name.

U_Case_ProgName = ...
fnstrip ("C:\XTALK4\xtalk.exe", 15)

In this example, f n s t rip returns the file name in uppercase charac­
ters.•

6-108 CASL Programmer's Guide

footer

footer (system variable)

Use foote r to define the footer used when printing from Crosstalk.

Format

footer = <string>

5 t r i ng can be any valid string expression. You can embed special

characters in the string to print the current date, the time, and so on.

Crosstalk Mark 4 does not support this variable.

For related information, see the he a d er system variables. Refer to

your Crosstalk user's guide for additional information on footers.

Example

footer = "Date: " + date

In this example, the word D ate: and the current date are assigned to
footer.

Using the Programming Language 6-109

for ... next

for ... next (statements)

Use fa r ... next to perform a series of statements a given number of
times while changing a variable.

Format

for <variab7e> = <startva7ue> to <endva7ue> ...
[step <stepva7ue>]

next [<variable>]

va ria b Ie can be any integer or real variable. You do not have to
declare the variable previously, but it is a good idea to do so.

startva Iue, endva Iue, and stepva 7ue are expressions; they can be
any type of numeric expression. 5 tar t va Iue specifies the starting
value for the counter and endva I ue specifies the ending value.

The statements in the for/next construct are performed until the next
statement is encountered. The value of 5 t e p val u e is then added to
va ria b 7e. (If you do not specify a step value, 1 is assumed.) Depend­
ing on whether 5 t e p val u e has a positive or negative value, one of the
following occurs:

• 	 If st ep va Iu e is greater than or equal to 0 (zero), and, if var ia b Ie
is not greater than en dv a7ue, the statements are repeated. However,
if 5 tar t v a 7ue starts with a value greater than en dv a7ue, the
statements are not performed at all .

• 	 If st ep va lue is less than 0 (zero), and if var ia b7 e is not less
than en dv aI ue, the statements are repeated. However, if
st ar tva I ue starts with a value smaller than en dv aI ue, the
statements are not performed at all.

V 	Caution: We recommend that you not change the value of
va ria b I e within the construct. This can produce erroneous results .•

6·110 CASL Programmer's Guide

for ... next

You can nest for /n ext constructs; that is, you can place one construct
inside another one. If you use nested constructs, be sure to use different
variables in each construct. In addition, make sure that a nested con­
struct resides entirely within another construct.

Versions of Crosstalk for Windows older than 2.0 do not support these
statements.

Examples

for i = 1 to 10
print i

next i

In this example, the i variable is incremented by 1 each time the
for /n ext construct is repeated. With each repetition, the value of
i is displayed on the screen.

for i = 10 to 1 step -1
print i

next i

In this example, the i variable is decremented by 1 each time the
for/next construct is repeated. With each repetition, the value of
i is displayed on the screen.

for i = 0 to 100 step 5
print i

next

In this example, the i variable is incremented by 5 each time the
for /n ext construct is repeated. With each repetition, the value of
i is displayed on the screen.

Using the Programming Language 6·111

for ... next

for i = 0 to 10
print "Times table for "; i
for j = 1 to 10

print, i; " times "; j; " is: "; * j
next
print

next

This is an example of nested for In ext constructs. Multiplication
tables for 1 *1 through 10*10 are printed. Indentation is used here to
show the relationship of the two constructs and for program readability.

6·112 CASL Programmer's Guide

freefile (function)

freefile

Use freefi 1e to get the lowest available file number for the current
session.

Format

x = freefile

f r e e f i 1e returns the number of the next available file number. It lets
you write general-purpose scripts that do not require a specific file num­
ber. This is particularly valuable in a script that may form part of sev­
eral other scripts.

The maximum number of file numbers available is 8. f r e e f i 1e
returns zero if no file number is available.

Always store the results of the f r e e f i 1e function in a variable, since
the value of the function will change every time a new file is opened.

For related information, see the de fin put system variable and the
c los e and 0 pen statements.

Example

f = freefile
open input "z.dat" as #f
definput = f

In this example, the first line uses the f r e e f i 1e function to retrieve
the next available file number and stores the number in the variable f.
The next line opens a file called z . d a t for input, and the last line saves
the value of f in de fin put.

Using the Programming Language 6-113

freemem

freemem (function)

Use freemem to find out how much memory is available.

Format

x = freemem

f r e em e m returns the amount of memory that is available at the time
the function is executed. The amount of available memory changes
depending on the activity of other applications.

Examples

print freemem

In this example, the script displays the amount of unused memory.

if freemem > 64k then ...

In this example, the script tests whether available memory exceeds
64KB.

6·114 CASL Programmer's Guide

freetrack

freetrack (function)

Use f r e e t r a c k to return the lowest unused track number for the
current session.

Format

x = freetrack

f r e e t r a c k returns the value of the next available track number. It lets
you write general-purpose scripts that do not require a specific track
number. This is particularly valuable in a script that may form part of
several other scripts.

You can have any number of t r a c k statements active at one time,
limited only by available memory. freetrack returns zero if no track
numbers are available.

Always store the results of the f r e e t r a c k function in a variable, since
the value of the function will change every time a new track is used.

For related information, see the t r a c k function and the t r a c k state­
ment.

Example

t1 = freetrack

track tl, space "system going down"

wait for key 27

if track(t1) then { bye: end}

In this example, the next available track number is assigned to t 1. The
t r a c k statement, using t 1, watches for the specified string. Its occur­
rence is tested with the t r a c k function.

Using the Programming Language 6·115

func ... endfunc

func ... endfunc (function declaration)

Use func ... endfunc to define and name a function.

Format

func <name> [([<type>] <argument> ...
[, [<type>] <argument>] ...)] returns <type>

endfunc

A function is similar to a procedure, but it returns a value. You must
declare the type of the return value within the function definition and
specify a return value before returning.

The arguments are optional. If arguments are included, you must use
the same number and type of arguments in both the function and the
statement that calls the function. The arguments are assumed to be
strings unless otherwise specified.

Any variable declared within a function is local to the function. The
function can reference variables that are outside the function, but not
the other way around.

Functions can contain labels, and the labels can be the target of
go sub ... ret urn and got 0 statements, but such activity must be
wholly contained within the function. If you reference a label inside
a function from outside the function, an error occurs.

You can nest functions at the execution level; that is, one function can
call another. However, you must not nest functions at the definition
level; one function definition cannot contain another function definition.

You can use forward declarations to declare functions whose definition
occurs later in the script. The syntax of a forward function declaration
is the same as the first line of a function definition, with the addition
of the forward keyword.

6-116 CASL Programmer's Guide

"fune ... endfune

Forward declarations are useful if you want to place your functions near
the end of your script. A function must be declared before you can call
it; the forward declaration provides the means to declare a function and
later define what the function is to perform.

The following format is used for a forward declaration:

func <name> [«arglist»] returns <type>
forward

Functions can be in separate files. To include an external function in a
script, use the inc 1udecompiler directive.

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0
do not support function declarations.

For related information, see the proc ... endproc procedure declaration
and the inc1u decompiler directive.

Examples

func calc(integer x, integer y) returns integer
if x < y then return x else return y

endfunc

In this example, the integers x and yare the function arguments. The
values of x and yare passed to the function when it is called. The func­
tion returns one or the other value depending on the outcome of the i f
the n e 1 s e comparison. If x is less than y, x is the return value; if x
is not less than y, the value of y is returned.

func ca 1 c (i nteger x, integer y) returns
integer forward

return_value = calc(3, 8)

func calc(integer x, integer y) returns integer
if x < y then return x else return y

endfunc

In this example, the function cal c is declared as a forward declaration.
Then the function is called.

Using the Programming Language 6-117

func ... endfunc

Note: For ease of programming, you do not have to supply the par­
ameters in the actual function definition if you use a forward declaration.
For instance, the foregoing example can also be written as follows:

fun c cal c (i n t e g e r x, i n t e g e r y) ret urn s ...
integer forward

return_value = calc(3, 8)

func calc
if x < y then return x else return y

endfunc •

6-118 CASL Programmer's Guide

genlabels

genlabels (compiler directive)

Use genl abel s to include or exclude label infomlation in a compiled
script.

Format

genlabels {on I off}

9e n 1abe 1s 0 ff tells the script compiler to suppress label information
in the compiled script. The resulting script is usually smaller if you
use this directive. The default for the directive is 0 n.

Note: You cannot use the goto @<expressjon> statement if your
script contains the 9 e n 1abe 1s 0 f f compiler directive .•

Versions of Crosstalk for Windows older than 2.0 do not support this
compiler directive.

For related information, see the 9 e n1 i n e s compiler directive.

Example

genlabels off

In this example, 9 e n 1abe 1s is set to 0 ff.

Using the Programming Language 6-119

genlines

genlines (compiler directive)

Use 9 e n1 i ne s to include or exclude line information in a compiled
script.

Format

genlines {on I off}

9 e n1 i ne s 0 ff tells the script compiler to exclude line information
from the compiled script. The default for the directive is 0 n.

Versions of Crosstalk for Windows older than 2.0 do not support this
compiler directive.

For related information, see the 9 e n1abe 1 s compiler directive.

Example

genlines off

In this example, 9 e n1 i ne s is set to 0 ff.

6-120 CASL Programmer's Guide

get

get (statement)

Use get to read characters from a random file.

Format

get [If <filenum>,] <integer>, <stringvar>

get reads in t e 9 e r bytes from the random file identified by f i len um,
and places the bytes read in the string variable 5 t r i n9 va r. If
fi Ienum is not provided, the script processor uses the value in
defi nput.

If the end-of-file marker is reached during the read,s t r i ngv a r may
contain fewer than integer bytes, and may even be null.

Each get advances the file I/O pointer by integer positions or to the
end-of-file marker, whichever is first encountered.

To use the get statement, you must open the file in ran d 0 mmode and
have already declared 5 t r i n 9 va r.

For related information, see the de fin put system variable, and the
open, put, and seek statements.

Example

proc byte_check takes one_byte forward
string one_byte

get /ffi 1 eno, 1, one_byte

while not eof(fileno)
byte_check one_byte
get /ffi 1 eno, 1, one_byte

wend

This code fragment reads an already opened random file 1 byte at a time
and calls a procedure to process the byte. This continues to happen
until the end-of-file marker is reached.

Using the Programming Language 6-1 21

go (statement)

Use 90 to establish communications with the host.

Format

90

90 establishes a connection to the host and runs a logon script, if the
session supports a logon script.

Note: To initiate this command using your Crosstalk application,
choose Connection from the Action pull-down and then choose
Connect. •

For related information, see the bye, call, loa d, and quit state­
ments.

Example

-- Let the user select the system
alert "Select Vax to call", "A", "S", "C", cancel
-- Load the specified profile
case choice of

1 load "vaxa"
2 load "vaxb"
3 load "vaxc"
defaul tend

endcase
Go online

go

This example shows how to use the case/endcase construct to handle
user input in the alert dialog box. If the cas e statement default option
is executed, the script ends. Otherwise, the script loads the appropriate
session and uses the 90 statement to establish a connection to the host.

6-122 CASL Programmer's Guide

gosub ... return

gosub ... return (statements)

Use gosub to transfer program control temporarily to a subroutine.
Use ret urn to return control to the calling routine.

Format

gosub <label>

<label>:

return

I abe I must be the name of a subroutine label. The subroutine must
end with are t urn statement.

Subroutines are helpful when you need to execute the same statements
many times in a script. You can use subroutines as many times as
needed, and you can use the go sub statement in a subroutine to pass
control to other subroutines. You can have up to 8 nested subroutines.

When ago sub statement is encountered, the script branches to I abe I.
When are t urn statement is encountered, program control returns to
the statement after the one that called the subroutine. A subroutine can
have more than one ret urn statement.

Subroutines can appear anywhere in a script, but it is a good program­
ming practice to put all of your subroutines together, usually at the end
of the script.

For related information, see the 9 oto, 1 a be 1, and pop statements.

USing the Programming Language 6-123

gosub ... return

Example

text = "Hello, there."

gosub print_centered

end

1abel pri nt_centered
1 = length(text)
if 1 = 0 then return
print at ypos, (80/2)-(length(text)/2), text
return

This example shows a subroutine called pri nt_cente red that
displays a string called tex t, centered on the screen in the default
window.

6-124 CASL Programmer's Guide

goto (statement)

goto

Use goto to branch to a label or expression.

Format

goto <label>

goto @<expression>

7abe I must be the name of a program label.

expres 5 i on can be any string expression that represents a label in the
script. If you specify an expression, you must precede the expression
with the 'at' sign (@), which forces the expression to be evaluated at run
time.

When a goto statement is encountered in a script, the script branches to
I a be I.

Note: If you use the got 0 @< expre 55 ion> form of this statement in
your script, you cannot use the 9 e n 1abe 1S 0 f f compiler directive .•

For related information, see the go sub .,. ret urn and 1 abe 1 state­
ments.

Examples

goto main_menu

In this example, the script branches to the label ma in_me nu.

goto @"handle_" + xvi_keyword

In this example, the script branches to the specified expression.

Using the Programming Language 6-125

grab

grab (statement)

Use g r a b to send the contents of a session window to the snapshot file.

Format

9 ra b

g r a b takes a snapshot of the current window, putting an image of the
screen in the snapshot file.

Example

grab

6-126 CASL Programmer's Guide

halt (statement)

halt

Use hal t to stop script execution.

Format

ha It

When a hal t statement is encountered in a script, the script is imme­
diately stopped. If there is a related parent script, it terminates also.

Note: To stop a script using your Crosstalk application, choose Stop
from the Script pull-down .•

For related information, see the end statement.

Example

if not online then halt

In this example, the script stops executing if it is not on line to the
host.

Using the Programming Language 6·127

header

header (system variable)

Use he ad e r to define the header used when printing from Crosstalk.

Format

header = <string>

s t r i ng can be a any valid string expression. You can embed special
characters in the string to print the current date, the time, and so on.

This variable is not supported by Crosstalk Mark 4.

For related information, see the f 0 0 t e r system variable. Refer to your
Crosstalk user's guide for more information on headers.

Example

header "Printed using the" + description ...
+ " entry."

In this example, the specified string is assigned to he a d e r.

6-128 CASL Programmer's Guide

hex (function)

hex

Use hex to convert an integer to a hexadecimal string.

Format

x$ = hex«integer»

hex returns a string giving the hexadecimal representation of in t e 9 e r.

If integer is between 0 (zero) and 65,535, the string is 4 characters

long; otherwise, it is 8 characters long.

Example

pri nt hex(32767)

In this example, the script displays the hexadecimal equivalent of

the integer 32,767.

Using the Programming Language 6-129

hide

hide (statement)

Use hid e to reduce a session window to an icon.

Format

hide

This statement reduces a Crosstalk session window to an icon.

For related information, see the show, mi n i mi ze, and ma xi mi ze
statements.

Example

hide

6-130 CASL Programmer's Guide

hideallquickpads

hideallquickpads (statement)

Use hid e all qui c k pad s to hide all of the QuickPads for the current
session.

Format

hidea11quickpads

This statement hides all of the QuickPads for the current session.

Note: The QuickPads for the session must already be loaded using the
loa dqui c k pad or loa dall qui c k pad s statement. •

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0
do not support this statement.

For related information, see the hid e qui c k pad, loa dqui c k pad,
1 oada11 qui ckpads, showal1 qui ckpads, and showqui ckpad
statements.

Example

hideallquickpads

Using the Programming Language 6·131

hidequickpad

hidequickpad (statement)

Use hid e qui c k pad to hide the specified session QuickPad.

Format

hidequickpad <string>

This statement hides the session QuickPad specified in s t ring.

Note: The QuickPad for the session must already be loaded using the

1oadqui ckpad or 1 oadall qui ckpads statement..

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0

do not support this statement.

For related information, see the hid eall qui c k pad s,

1oadqui ckpad, 1oadall qui ckpads, showall qui ckpads, and

showqui ckpad statements.

Example

hidequickpad "sessA"

In this example, the QuickPad identified as s e s s A is hidden.

6-132 CASL Programmer's Guide

hms

hms (function)

Use h m s to return a string in a time format.

Format

x$ = hms«integer [, time_type]»

h m 5 converts in t e9e r to a string in anyone of a number of time for­
mats. in t e9e r is a number expressed in tenths of seconds, the same
unit of time CASL uses for 5y s time and tic k.

time_type is a value that controls the format returned. It defaults
to zero.

Table 6-13 shows examples for hm5 (300011, t i me_ type) and
hms(101, time_type).

Table 6-13. Bitmap values for the hms function

Hex Decimal 30011 format 101 format

OOh 0 8:20:01.1 0:00:10.1

01h 1 8:20:01.1 10.1

02h 2 8:20:01 0:00:10

03h 3 8:20:01 10

04h 4 8h20m1.1s OhOm10.1s

OSh S 8h20m1.1s 1O.1s

06h 6 8h20m1s OhOmlOs

07h 7 8h20m1s lOs

For related information, see the sy s time function.

Using the Programming Language 6-133

http:8h20m1.1s
http:OhOm10.1s
http:8h20m1.1s

hms

Examples

print hms(300011)

In this example, the script displays the time.

print hms(systime, 6)

In this example, hms uses a decimal 6 value to control the format of the
value that is displayed.

6-134 CASL Programmer's Guide

if ... then ... else

if ... then ... else

(statements)

Use if ... the n ... e1 s e to control program flow based on the value of
an expression.

Format

if <expression> then

<statement group>

[else <statement group>]

expres s i on is required, and can be any type of numeric, string, or
boolean expression; or it can be a combination of numeric, string, and
boolean expressions connected with logical operators such as 0 r, and,
or not. expression must logically evaluate to either true or
fa 1 s e. Integers need not be explicitly compared to zero, but strings
must be compared to produce a t r uelfa 1 s e value. For example, the
following values evaluate logically to a t rue condition:

1
1 = 1
1 = (2-1)
"X" "X"
"X" = upcase("x")

The following conditions evaluate to a fa 1 s e condition:

o
1 - 1
1 = 2
"X" = "yn

the n specifies the statement to perform if the expression or combina­
tion of expressions is t rue. the n must appear on the same line as the
i f with which it is associated, as shown in the following example:

if done = true then
print "Done!"

Using the Prograrnrning Language 6-135

if ... then ... else

e 1s e specifies an optional statement to perform if the expression is not
true. Each e1s e matches the most recent unresolved if.

Blank lines are not allowed within a the n/e 1 s e statement group. If
you want to place blank lines in the the n/e 1 s e statement group (for
example, for the purpose of making the text more readable) use braces
(()) to enclose a series of statements.

Examples

label ask
integer user_choice
input user_choice
if user_choice = 1 then

print "Choice was 1." else
if 	user_choice = 2 then

print "Choice was 2." else goto ask

This example shows how to nest i f statements in other i f statements.

if 	choice = 1 then print "That was 1." : alarm

This example shows how to specify multiple statements after an i f
statement. In this case, the p r i n t and a1arm statements are performed
only if choi ce equals 1.

if 	choice=l or choice=2 then print "One or two."
if 	onl i ne and (choi ce=l) then pri nt "We're OK."
if 	x=l or (x=2 and y<>9) then

These three examples show how to specify multiple conditions in an i f
the n statement. If the order in which the conditions are evaluated is
important, use parentheses to force the order, as shown in the second and
third examples.

6-136 CASL Programmer's Guide

if ... then ... else

i f the n statements can become quite complex. To make them easier
to read, you can continue them over several lines by using braces to in­
dicate a series of statements. The following example shows how to use
braces:

if track(1) then
{

bye
wa it 8 mi nutes

call "megamail"

end

You can also use braces to denote the the n with which an e1s e should
be associated, as shown in the following example:

if x then { if Y then a } else b

Using the Programming Language 6-137

include

include (compiler directive)

Use inc 1 u d e to include an external file in your script.

Format

include <fi7ename>

inc1 u d e is a compile-time directive, normally used to include a
source file of commonly used procedures and subroutines in a script.
fi 7ename is required and must be the name of an existing file con­
taining CASL language eiements. For the Windows environment,
if a file extension is omitted, .XWS is assumed.

inc 1 u d e does not include the same file more than once during
compilation.

For related information, see the c ha i nand do statements, the
func ... endfunc function declaration, and the proc ... endproc
procedure declaration.

Example

include "myprocs"

In this example, the external file my pro c s is included in the script.

6-138 CASL Programmer's Guide

inject

inject (function)

Use i nj ect to return a string with some characters changed.

Format

x$ = inject«o7d_string, rep7_string [, integer]»

i nj e c t creates a new character string based on 0 7d_s t ri ng but
replacing part of 0 7d_s t r i n g with the characters in rep 7_s t r i ng,
beginning at the first character in in t ege r. The resulting string is
the same length as 07 d_s t ring. 07 d_s t ring is unchanged.

rep 7_s t ring is truncated if it is too long. If in t ege r is omitted,
the first character position is assumed.

07 d_stri ng cannot be null, and integer must be in the range of
1 <= integer <= length(07d_string).

Examples

print inject("XWALK.EXE", "T", 2)

In this example, the Win XWA L K . EX E is changed to a T and the result is
displayed.

dog_name = inject("xido", "F")

In this example, the x in xi d0 is changed to an F and the result is
stored in dog_name.

Using the Programming Language 6·139

inkey

inkey (function)

Use in key to return the value of a keystroke.

Format

x = inkey

in key tests for keystrokes "on the fly," that is, without stopping the
script to wait for a keystroke. This is particularly useful if you want to
check for a keystroke while performing other operations.

in key returns the ASCII value (0-255 decimal) of the key pressed for
the printable characters and a special Crosstalk stroke value for the arrow
keys, function keys, and special purpose keys. The keyboard keys and
their corresponding numbers are listed in Table 6-14.

Table 6-14. 	 Keyboard keys and their corresponding
numbers

Keyboard key Key number

F1 to F10 1025 to 1034

SHIFT-F1 to SHIFT-F10 1035 to 1044

CTRL-F1 to CTRL-F1 0 1045 to 1054

ALT-F1 to ALT-F10 1055 to 1064

t 1281

~ 1282

E­ 1283

-;. 1284

HOME 1285

END 1286

continued

6-140 CASL Programmer's Guide

inkey

Table 6·14. Keyboard keys and their corresponding
numbers (cont.)

Keyboard key Key number

PGUP 1287

PGDN 1288

INS 1297

DEL 1298

If no keystroke is waiting, in key returns zero. To clear the keyboard
buffer before testing for a keystroke, use the following code:

while inkey : wend

in key clears the keystroke from the keyboard buffer. If the key is im­
portant, store it in a variable, and then test the variable as shown in the
following example:

x = in key
if x <> 0 then

To make the user press the ESC key so the script can continue, use the
following example:

print at 0,0, "Press ESC";
while inkey <> 27
wend

Examples

if inkey then end

In this example, the script ends if any key is pressed.

while not eof(filel) and inkey <> 27 ...

In this example, a task is performed while the end-of-file marker has not
been reached and the ESC key is not pressed.

Using the Programming Language 6·141

input

input (statement)

Use input to accept input from the keyboard.

Format

input <variable>

va ria b I e is required, and can be any type of numeric or string
variable. You can use the backspace key to edit input.

Example

input username

In this example, the data in use rna me is accepted by the script.

6-142 CASL Programmer's Guide

inscript (function)

inscript

Use ins crip t to check the labels in a script.

Format

x = inscript«expression»)

i nscri pt uses expression to check for the presence of a particular
label in a script. The value returned is t rue if expre s s ion is a label
in the currently running script, fa 1 s e otherwise. ex pre s s ion must
be a string.

Note: The 9 e n 1 abe 1 s compiler directive must be 0 n for this func­
tion to be effective .•

For related information, see the 1 abe 1 statement.

Example

if inscript("HA_" + user_input) then ...

In this example, the script tests for the presence of the specified label.

Using the Programming Language 6-143

insert

insert (function)

Use ins e r t to return a string with some characters added.

Format

x$ = insert«old_string, insert_string [, integer]»

insert creates a new character string based on 07 d_str i ng by adding
the characters in i nserLs t ring at the in t ege r character position.
The length of the resulting string is the combined length of
o7d_stringand inserLstring. old_stringisunchanged.

If in t e 9 e r is omitted, the first character position is assumed.

07 d_s t ring cannot be null, and integer must be in the range of
1 <= integer <= length(old_string).

Examples

print insert("XALK.EXE", "T", 2)

In this example, the script inserts a T in the second position of
"X A L K . E XE" and displays the result.

dog_name = insert("ido", "F")

In this example, an F is inserted in the first position of "i do" and the
result is stored in dog_name.

6·144 CASL Programmer's Guide

instr (function)

instr

Use ins t r to return the position of a substring within a string.

Format

x = instr«string, sub_string [, integer]»

ins t r reports the position of 5 ub_s t ring in 5 t ring starting its
search at character i n t e9e r. If in t e9e r is not given, the search
begins at the first character. If 5 ub_s t ring is not found within
5 t ring, zero is returned.

instr("Sassafras", "a") returns 2

instr("Sassafras", "a", 3) returns 5

ins t r can be used within a loop to detect the presence of a character
you want to change to another character. The following code fragment
expands the tab characters, which some text editors automatically embed
in lines of text.

tb=chr(9)
t=instr(S, tb)
while t

s=left(S, t-l) + pad("", 9-(t mod 8)) + mid(S, Hl)

t=instr(S, tb)
wend

Examples

dOLplace = instr("Here, Fido!", "Fido")

In this example, the substring F i do is found in position 7 of the string
and the result is returned in dog _ P 1 ace.

if 	instr(fname, ".") = 0 then
fname = fname + ".XWS"

In this example, the script looks for the presence of the file extension
for f n am e. If an extension delimiter (.) is not found, the extension
is added.

Using the Programming Language 6·145

intval

intval (function)

Use i n t val to return the numeric value of a string.

Format

x = intval«string»

i n t val returns an integer; it evaluates 5 t r i n9 for its numerical
meaning and returns that meaning as the result. Leading white-space
characters are ignored, and 5 t ring is evaluated until a non-numeric
character is encountered.

The script language is quite flexible as to the number base (decimal or
hexadecimal) in question; terminate 5 t r i n9 with an "h" if it is hex, or
"k" if it is decimal (k is for kilo bytes, so lk = 1024).

A hexadecimal string cannot begin with an alphabetic character. If the
string does not start with a numeric character, place a 0 (zero) at the
beginning of the string.

The characters that have meaning to the i nt val function are: "0"
through "9", "a" through "f", "A" through "F", "h", "H", "b", "B", "0",
"0", "q", "Q", "k", "K", and "_".

For related information, see the va 1 function.

Example

num = intval(user_input_string)

In this example, use r_in put_s t r i n 9 is converted to an integer and
returned in num.

6-146 CASL Programmer's Guide

jump

jump (statement)

The jump statement, which is a synonym for the goto statement, is
supported only for backward compatibility. Refer to goto earlier in
this chapter.

Using the Programming Language 6-147

kermit

kermit 	 (statement)

Use ke rmi t to send a command to the Kermit Command Processor
(KCP).

Format

kermit <command>

command can be anyone of the following:

"get <filename>"
"send <filename>"
"finish"

The ke rm it statement sends one of three possible commands to the
KCP. fi Iename is the name of the file(s) to be sent or received; this
parameter is required only for the get and send commands.

get, sen d, and fi nish are the valid k e rm i t commands. Table
6-15 explains these commands.

Table 6-15. Commands for the kermit statement

Option 	 Explanation

get 	 Requests the specified file(s) from the host server. This
command is valid only when the host Kermit server is
active. fi Iename must be the name of an existing file
on the host system.

send 	 Sends the file(s) specified by filename to the host. You
can use wild-card characters to specify multiple files.

fin ish 	 Terminates the Crosstalk KCP and returns the host Kermit
server to its command state. For some hosts, it is neces­
sary to send a carriage return to enable the host to redisplay
its Kermit prompt.

6·148 CASL Programmer's Guide

kermit

Note: To access the KCP using your Crosstalk application, choose
File Transfer from the Action pull-down and then choose Command
Processor.•

Versions of Crosstalk for Windows older than 2.0 support additional
KCP commands. Crosstalk Mark 4 does not support this statement.

Examples

kermit "get memo.txt"

In this example, the ke rmi t statement uses the get command to
request the file memo. txt from the host.

kermit "send *.txt"

In this example, the k e r mit statement uses the sen d command to send
all files with a .txt extension to the host.

kermit "fi ni sh"

In this example, the k e r mit statement uses the fin ish command to
terminate the Crosstalk KCP and return the host KCP server to com­
mand state.

Using the Programming Language 6-149

keys

keys (system variable)

Use key s to read or set the Keymap file for the current session.

Format

keys = <string>

key s specifies the name of the Keymap file for the current session.
This file is created using the Keyboard Editor.

Versions of Crosstalk for Windows older than 2.0 do not support this
variable.

Example

if keys = "MYKEYS" then

In this example, the script tests whether the content of key s is
"MYKEYS."

6-150 CASL Programmer's Guide

label (statement)

label

Use 1 a be 1 to specify a named reference point in a script file.

Format

label <7abe7name>

7abe 7name can be made up of almost any printable characters.

Labels are used in scripts to provide a means of identifying a particular

line in a program.

Do not use reserved words or special charaCters as a label name.

For related information, see the got 0 and go sub ... ret urn state­
ments.

Example

1 abel ask
input user~choice
if user_choice = 1 then

print "Choice = 1."
return

In this example, the 1 abe 1 statement defines the location of the ask
subroutine.

Using the Programming Language 6-151

left

left (function)

Use 1 eft to return the left portion of a string.

Format

x$ = left«string [, integer]»

1eft returns the leftmost in t eger characters in 5 t ring. If in tege r
is not specified, the first character in 5 t ring is returned. If integer is
greater than the length of 5 t r i ng, then 5 t r i ng is returned.

For related information, see the mid, rig ht, and s 1 ice functions.

Examples

dog_name = left("Fidox", 4)

In this example, 1 eft returns "F i do."

print left(long_string, 78)

In this example, the first 78 characters of 10 ng_s t r i n 9 are displayed.

reply left(daLrec, 24)

In this example, the first 24 characters of dat_rec are sent to the host.

6·152 CASL Programmer's Guide

length (function)

length

Use 1 eng t h to return the length of a string.

Format

x = length«string»

CASL allows strings of up to 32,767 characters; therefore, 1 eng t h
always returns integers in the range of 0 <= 1eng t h (<5 t r i ng>)
<= 32767. 1eng t h returns zero if 5 t r i ng is null.

Examples

print length(dog_name), dog_name

In this example, the script displays both the length of the string
do g_n ame and the contents of the string.

if 	length(txt_ln) then reply txt_ln
else reply "-"

In this example, the script sends the contents of txt_l n to the host if
txt_1n contains data. Otherwise, the script sends a dash to the host.

Using the Programming Language 6·153

linedelim

linedelim (system variable)

Use 1 i ned eli mto define a string to be sent after each line of text in an
up loa d statement.

Format

linedelim = <string>

Most information services interpret a carriage return (CR) (ASCII
decimal 13) as meaning "end of line," and that character is the default
for 1 i nede 1 i m. Some applications, however, require a special char­
acter at the end of each line. When this is the case, you can assign a
special character to 1 i nede 1i m; Crosstalk will send that character
instead of a CR at the end of each line when uploading text.

The most likely character to use for 1 i n@del i m, other than a CR, is
either a Ctrl-C (ASCII decimal 3) or a line-feed (ASCII decimal 10).
1 i ned eli mcannot exceed 8 characters.

If you need to send a control character, use a caret ("), followed by the
character. For example, Ctrl·C would be entered as "c.

For related information, see the up loa d statement.

Example

lin@d@lim = chr(3)

In this example, 1 i ned eli mis set to a Ctrl-C.

6·154 CASL F'rogrammer's Guide

linetime

linetime (system variable)

Use 1 i net i me to control the maximum time to wait before uploading
the next line of text.

Format

linetime = <integer>

1in et i me is a fall-back parameterfor the 1 wa it statement and over­
rides the 1 wa it parameter if the 1 wa i t count, 1wa it echo, or
1wa i t pro m p t condition is not satisfied in in t eg e r seconds. The
maximum value of j nt ege r is 127.

If in t ege r is zero, or if 1wa i t is non e, 1 i net i me is disabled.

When integer seconds have elapsed since the last text line was sent,
the next line is sent regardless of the satisfaction of the 1 wa i t state­
ment.

This is most useful when sending long files over a questionable phone
line. For example, suppose 1 wa i t is set to pro m p t ":", and a long
text file is being uploaded to a host system. If, for some reason, one of
the":" characters gets lost coming back, Crosstalk will wait forever for
that colon character, unless 1 i net i me is set to some reasonable value,
like 10 seconds.

For related information, see the 1 wa it statement.

Example

linetime = 10

In this example, the maximum time to wait before uploading the next
text line is 10 seconds.

Using the Programming Language 6-155

load

load (statement)

Use loa d to load new settings into a session.

Format

load <string>

loa d is similar to the call statement, except that call attempts to
establish a connection while loa d does not.

For related information, see the call statement.

Examples

load "cserve"

In this example, the script loads new settings from a session file called
CSERVE.

string entry_name
entry_name = "source"
load entry_name

This example shows how to define a variable, set the variable to a
session name, and then load the session settings using the variable.

6-156 CASL Programmer's Guide

loadquickpad

loadquickpad (statement)

Use 1 oadqui ckpad to open and display a QuickPad for the current
session.

Format

loadquickpad <string>

This statement opens and displays the QuickPad specified in s t ring.

If the QuickPad is already open, the statement displays the QuickPad.

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0

do not support this statement.

For related information, see the un loa d qui c k pad statement.

Example

if online then
loadquickpad "apad"

In this example, the QuickPad named a pad is activated.

Using the Programming Language 6-157

loc

loc (function)

Use 1 0 c to return the position of the file pointer.

Format

x = loc[«filenum»]

10 c returns the byte position of the next read or write in a random file.

If fi I enum is not given, the default file number is assumed. You can

set the default file number by using the de fin put system variable.

This function is valid only for files opened in random mode.

For related information, see the de fin put system variable and the

ope nand see k statements.

Examples

print 10c(1)

In this example, the script displays the location of the input/output

pointer for file number 1.

if 10c(1) = 8k then
print "Eight kilobytes read."

In this example, the script prints the specified phrase if the file pointer
is 8 KB into the file.

6-158 CASL Programmer's Guide

lowcase

lowcase (function)

Use 1 owca se to convert a string to lowercase letters.

Format

x$ = lowcase«string»

10we a s e converts only the letters A-Z to lowercase characters; num­

erals' punctuation marks, and notational symbols are unaffected.

1owe as e is useful for testing string equivalence since it makes the

string case-insensitive.

For related information, see the up cas e function.

Examples

print "Can't find "; lowcase(fl_name)

In this example, the script displays a phrase that contains a file name in

lowercase letters.

if lowcase(passwordl ~ "secret" then ...

In this example, the script takes some action if the contents of

pa 5 5WO rd match "sec ret."

Using the Programming Language 6.159

Iprint

Iprint (statement)

Use 1 P r i nt to send text to the system printer.

Format

lprint [<item>] [{, I ;} [<item>]] ... [;]

7 P r in t can take any item or list of items, including integers, strings,
and quoted text, separated by semicolons or commas. item can be
either an expression to be printed, the EOP keyword, or the EOJ key­
word. If the items in the list are separated by semicolons, they are
printed with no space between them; if separated by commas, they are
printed at the next tab position. If no item is provided, a blank line
is printed.

A trailing semicolon at the end of the 1 p r i nt statement causes the
statement to be printed without a carriage return. This is useful when
you want to print something immediately after the statement on the
same line.

Text is buffered in a print spooler. EOP indicates that printing should
continue on another page. EOJ indicates the end of the print job; that
is, the print spooler can now send the data to the printer. If your script
ends without executing an 1 p r i ntEO J, the script processor executes
one for you.

Examples

lprint "This is being sent to the printer."

This example shows how to print a simple phrase.

lprint "There's no carriage return after this.";

This example shows how to suppress a carriage return.

6-160 CASL Programmer's Guide

Iprint

1pri nt "Current protocol is" ; protocol

This example shows how to print two phrases with no space between
them.

lprint "Hello, " , name$

This example shows how to print a phrase followed by an automatic tab
to name$.

Using the Programming Language 6-161

Iwait

Iwait (statement)

Use 1 wa 1 t to control ASCII text uploads by pacing lines.

Format

lwait {none I echo I prompt <charstring> I ...
count <integer> I delay <real or integer>}

1wa i t controls text uploads by defining the condition to be met before
the next line of text can be sent. The 1 wa i t parameters are explained in
Table 6-16.

Table 6-16. 	 Parameters for the Iwait statement

Parameter 	 Explanation

non e 	 Use this option with systems that are designed to accept
full-speed uploads, such as electronic mail systems, or
if you have used the cwa i t statement. Refer to cwa it
earlier in this chapter for a description of the statement.

e c hoUse this to wait until the host sends a carriage return
(CR) before sending the next line.

prompt 	 Use this to wait until the prompt string cha r5 t ring is
received from the host, and then send the next line. For
example, some systems send a colon (:) when they are
ready for the next line of text. In this case, you should
use 1 wa i t prompt ":" to tell Crosstalk to wait for the
colon. The maximum prompt length is 8 characters.

count 	 Use this to wait to receive j nteger characters from the
host, and then send the next line. This is useful when
sending text to systems that send a variable prompt
(such as a line number) before accepting the line of text.
The maximum value for j nt ege r is 255.

continued

6-162 CASL Programmer's Guide

Iwait

Table 6-16. Parameters for the Iwait statement (cont.)

Parameter Explanation

del ay Use this to wait integer (or rea 7) seconds before
sending the next line. This is most useful in cases
where the host system won't accept text at full speed
and doesn't send any type of prompt. The maximum
value for integeris25.

You can use one of these 1wa i t parameters with the 1i net i me system
variable to control the speed of text uploads to host computers. Note
that only one parameter can be in effect at anyone time.

The 1wa it statement is effective only when you are on line, but you
can set the parameters when you are on line or off line.

For related information, see the cwa it statement and the 1in et i me
system variable.

Examples

lwait echo

In this example, the script waits until the host sends a carriage return
and then it sends the next line of text.

lwait prompt n:n

In this example, the script waits until a colon (:) is received from the
host and then it sends the next line.

lwait count 3

In this example, the script waits until the host sends 3 characters before
sending the next line.

Using the Programming Language 6-163

match

match (system variable)

Use mat c h to check the string found during the last wa i t or wa t c h
statement.

Format

x$ = match

match returns the most recent string for which the script was watching
or waiting (up to 512 characters). For example, if the last wa it or
wa t c h was looking for a keystroke, mat c h returns the string value of
the key pressed.

Use mat c h only when you are on line.

For related information, see the wait and wa t c h ... end w ate h
statements.

Example

wait 1 minute for "Login", "ID", "Password"
case match of

"Login": reply logon
"IO": reply userid
"Password": reply password

endcase

In this example, the script waits up to 1 minute for the host to send a
prompt. The script then uses the cas e/ end cas e construct to determine
what response to send to the host.

6-164 CASL Programmer's Guide

max (function)

max

Use max to return the greater of two numbers.

Format

x = rnaxC<numberl>, <number2»

ma x compares two numbers and returns the greater of the two.

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0

support the ma x operator; they do not support the ma x function. This

version of CASL supports only the max function.

For related information, see the mi n function.

Example

integer a, b, C

a 1
b 2

C = maxCa, b)

In this example, the script declares three variables as integers and ini­
tializes two of them. Then it uses the rna x function to compare the
integers a and b and returns the greater of the two in c. The result is
c = 2.

Using the Programming Language 6·165

maximize

maximize (statement)

Use ma x i mi z e to enlarge the Crosstalk application window to full
screen size.

Format

maximize

This statement lets you maximize the Crosstalk application window to
its largest size. The ma x i m i z e statement performs the same function
as the Maximize option from the application window's Control menu.

Crosstalk Mark 4 does not support this statement.

For related information, see the mi n i mi ze, move, restore, and size
statements.

Example

maximize

6-166 CASL Programmer's Guide

message

message (statement)

Use me s sag e to display a user-defined message on the status bar of the
screen.

Format

message [<string>]

me s sag e without an argument returns the information line to system

control.

Crosstalk Mark 4 does not support this statement.

Examples

message "Logging in -- Please wait"

This me s sag e statement displays a simple message.

message "Today " + curday

This message statement displays a phrase as well as the current day.

USing me Programming Language 6-167

mid

mid (function)

Use mi d to retum the middle portion of a string.

Format

x$ = mid«string>, <start> [, <len>])

mid returns the middle portion of s t r j n 9 beginning at s tar t, and
returns 7en bytes. If 7en is not specified, or if s tar t plus 7 en is
greater than the length of s t ring, then the rest of the string is returned.

Examples

dog_name = mid("Here, Fido, here boy!", 7,4)

In this example, mi d returns "Fido" in dog_name.

if mid(fname, 2,1) = ":" then dv = left(fname, 1)

In this example, d v is assigned the first character in f n a me if the second
character in fname is a colon.

6-168 CASL Programmer's Guide

min

min (function)

Use mi n to return the lesser of two numbers.

Format

x = min«numberl>, <number2»

min compares two numbers and returns the lesser of the two.

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0
support the min operator; they do not support the min function. This
version of CASL supports only the min function.

For related information, see the ma x function.

Example

integer a, b, C
a 1
b 2

C = min(a, b)

In this example, the script declares three variables as integers and ini­
tializes two of them. Then it uses the min function to compare the
integers a and b and returns the lesser of the two in c. The result is
C = 1.

Using the Programming Language 6·169

minimize

minimize (statement)

Use 111 1rll mi z e to reduce the Crosstalk application window to an icon.

Format

minil111le

This statement lets you minimize the Crosstalk application window.
The min i mi ze statement performs the same function as the Minimize
option from the application window's Control menu.

Crosstalk Mark 4 does not support this statement.

For related information, see the ma x i mi ze, move, res tore, and size
statements.

Example

minimize

6-170 CASL Programmer's Guide

mkdir (statement)

mkdir

Use mkdi r to create a new subdirectory.

Format

mkdir <directory>

d ire c tory must be a string expression containing a valid directory
name.

An error occurs if d ire c tory or a file with the same name as the one
you have specified for the directory already exists.

Note: You can also use the abbreviation md for this statement. •

Examples

mkdir "C:\XTALK\FILE"

In this example, the script creates a directory called F I LE under the

C:\XTALK directory.

mkdir "FILE"

In this example, the script creates a subdirectory called F I L E under the

current drive and directory.

Using the Programming Language 6·171

mkint

mkint (function)

Use mkin t to convert strings to integers.

Format

x = mkint«string»

The mk i nt and mkst r functions are mirror-image conversion functions
that allow you to store 32-bit integers in 4-byte strings.

Use mkin t to convert strings to integers when you read the file.

Example

In this example, the get statement reads 4 bytes of data from the file
with file number if 1 and stores the bytes in a_s t r i ng. Then the
mkin t function converts the data in a _ s t r i n g to an integer and stores
the result in anum.

6-172 CASL Programmer's Guide

mkstr (function)

mkstr

Use mk s t r to convert integers to strings for more compact file storage.

Format

x$ = mkstr«integer»

The m kin t and m k s t r functions are mirror-image conversion functions

that allow you to store 32-bit integers in 4-byte strings.

Use mk s t r to convert integers to strings for compact storage in a file.

Examples

print mkstr(65), mkstr(6565), mkint("A")

In this example, m k s t r converts 65 and 6565 to strings and m kin t

converts"A" to its equivalent integer value.

put #1, mkstr(very_big_num)

In this example, the mk s t r function converts ve ry_b i 9_n u m to a

string, and the put statement writes the string to a file.

Using the Programming Language 6-173

move

IWin I move (statement)

Use move to move the Crosstalk window to a new location on the
screen.

Format

move <x>, <y>

This statement moves the Crosstalk window to the location specified by
x and y, in pixels. The range of coordinates depends on the video hard­
ware used.

For related information, see the max i mi ze, mi ni mi z e, re s to re, and
s i z e statements.

Examples

move 2, 30

This example shows how to move the window to column 2, row 30.

move x, Y

In this example, the script moves the window to the location defined by
the x and y variables.•

6-174 CASL Programmer's Guide

name

name (function)

Use name to get the name of the current session.

Format

x$ = name

name returns the name of the current session.

The name of the session appears on the session window Title Bar.

Example

if name = Reserve" then go

In this example, if the name of the session is CSERVE, dial the
l11odem.

Using the Programming Language 6-175

netid

netid (system variable)

Use net i d to read or set a network identifier for the current session.

Format

netid = <string>

net i d sets and reads the network address associated with the current
session. The net i d is limited to 40 characters and is optional.

Note: To set the equivalent parameter using your Crosstalk applica­
tion, choose Session from the Settings pull-down. Then choose the
General icon and modify the Network ID parameter. •

Example

netid = "CIS02"

In this example, net i d is set to the specified string.

6-176 CASL Programmer's Guide

new

new (statement)

Use new to open a new session.

Format

new [< fil ename>]

This statement opens the session specified in fj 7ename. If fj 7ename

is omitted, an untitled session is opened.

For related information, see the call and loa d statements.

Example

new "CSERVE"

Using the Programming Language 6·177

nextchar

nextchar (function)

Use n ext c h a r to return the character waiting at the communications
device.

Format

x$ = nextchar

next c h a r returns the character waiting at the communications device.
If no character is waiting, n ext c h a r returns a null string and process­
ing continues.

The n ext c h a r function dears the current character from the device;
if you want to retain the character, store it in a variable and then test
the variable.

Note that nex t ch a r returns a string, while in key returns an integer.

The following code uses the n €! x t c h a rand inkElY functions to get
characters from the device and the keyboard, respectively:

/* The terminal, assumes full duplex host. */
stri ng nchar
integer kpress
while kpress <> 27

nchar = nextchar
if not null (nchar) then pri nt nchar;

kpress = inkey

if kpress then reply chrCkpress);

wend

For related information, see the i n key and n ext 1 i n e functions.

Example

nchr = nextchar if null (nchrl th€m
gosub a_label

In this example, the script tests whether the next character is a blank;
if it is, control is passed to the subroutine iLl abe 1.

6-178 CASL Programmer's Guide

nextline (statement)

nextline (statement)

Use the n ext 1 i ne statement to get a line of characters from the
communications port.

Format

nextline <string> [, <time_expr> [, <maxsize>]]

next 1 i n e accumulates the characters, delimited by carriage returns, that
arrive at the communications port and returns them in the variable
string.

If a carriage return has not been received since the last next1 i ne, the
program accumulates characters until a carriage return is encountered,
the amount of time specified in t i me_expr is reached, or maxs i ze
characters have accumulated. When one of these conditions is met,
next 1 i n e returns the resulting string and processing continues. If
no characters have been received, next 1 i n e returns a null string.

t i me_exp r, which can be an integer or a real (t1oating point) number,
is the amount of time, in seconds, to wait for the next carriage return or
the next character. If t i me_expr is reached between the receipt of char­
acters, the characters accumulated to that point are returned and script ex­
ecution continues. You can use the time 0 U t system variable to deter­
mine if the value in t i me_exp r was exceeded.

t i me_expr can be any time expression. If t j me_expr is not speci­
fied, next 1 i n e waits forever to accumulate the number of characters
specified by ma x s i z e or until a carriage return is received.

maxs j ze is the number of bytes to accumulate before continuing if a
carriage return is not encountered. The default, and maximum, is 255
bytes. A line feed following a carriage return is ignored.

For related information, see the next c h a rand next 1 i n e functions
and the tim e0 ut system variable.

Using the Programming Language 6-179

nextline (statement)

Examples

nextline new_string

In this example, next 1 i n e waits for characters to come in from the
port and stores them in the script's new_s t r in g variable.

nextline big_string, 5.5, 100
if timeout then bye

In this example, next 1 i n e waits for up to 5.5 seconds for as many
as 100 characters or a carriage return. The nex t 1 i ne statement ter­
minates if the specified conditions are not met within the specified
5.5-second time period. The time 0 u t system variable is used to
determine whether or not next1 i n e timed out.

6-180 CASL Programmer's Guide

nextline

nextline (function)

(function)

Use the next1 i n e function to return a line of characters from the
communications port.

Format

x$ = nextline[«de7ay> [, <maxsize>])]

next 1 i n e looks for the receipt of a carriage return and then returns the
string of characters that have accumulated at the communications port.

If a carriage return has not been received since the last next 1 i ne, the
characters accumulate until a carriage return is encountered, the amount
of time specified in de 7ay is reached, or ma x 5 i z e characters have ac­
cumulated. The resulting string is then returned and processing con­
tinues. If no characters have been received, a null string is returned.

de 7ay is the amount of time to wait for the next carriage return or the
next character. If de 7ay is reached between the receipt of characters, the
characters accumulated to that point are returned and the script continues
executing.

The time specified in de 7ay is expressed in seconds and can be an
integer or real (floating point) number. The default is forever.

maxs i ze is the number of bytes to accumulate before continuing if a
carriage return is not encountered. The default is 255 bytes.

A line feed following a carriage return is ignored.

Versions of Crosstalk for Windows older than 2.0 do not support this
function.

For related information, see the next c ha r function, the time 0 u t
system variable, and the next1 i n e statement.

Using the Programming Language 6·181

nextline (function)

Examples

new_string = nextline

In this example, n ext 1 i ne waits for characters to come in from the
port and stores them in the script's new_s t r in g variable.

big_string = big_string + nextline(15, 1024)
if timeout then bye

In this example, next 1 i ne waits for up to 15 seconds between
characters for as many as 1,024 characters or a carriage return. The
next 1i n e function terminates if a carriage return is received, 1,024
characters are received, or 15 seconds elapses between characters. The
characters are accumulated in the variable bi g_s t r i ng.

6·182 CASL Programmer's Guide

null

null (function)

Use null to determine if a string is null.

Format

x = null (<5 t r j ng>)

nul 1 can be thought of as a simplified version of the 1 eng t h func~

!ion. 1eng t h returns the length of a string, but nul 1 indicates

whether 5 t r i ng is a null string. Null strings have no length or

contents.

nul 1 returns t rue if 5 t r i ng is nllll; otherwise, it returns fa 1s e.

The following code fragments can be thought of as having equivalent

meanings when testin~ the string a_string:

if null (Lstri ng) then , ..

if length(~_string) ~ 0 then ...

or

if length(a_string) then .,.

if not· null (a_s t r 1ng) t h€l n .. ,
if length(a_string)> 0 then ...

For related information, see the 1@ngt h function.

Example

pri nt null (" Fi do"), null("")

In this example, the n u 11 function displays false for "F i do" and true
fOf "".

Using the Programming Language 6.111:t

number

number (module variable)

Use numbe r to read or set the phone number for the current session.

Format

number = <string>

nu m b e r sets and reads the phone number associated with the current
session. The phone number is limited to 80 characters.

You can specify multiple telephone numbers by separating them with
a semicolon. All numbers are dialed until a connection is made. For
example, if numb e r is set to the value 1234567;1231111, Crosstalk
dials the first number, and if no connection is made, attempts to make a
connection using the second number, and so on. If no connection is
made, the process is repeated, starting again with the first number, and
continues until the numbers have been redialed red i ale 0 unt times.

For related information, see the red i a 1 cou nt module variable.

Examples

number = "5551212"

In this example, n u m b e r is set to 5551212.

if number = "5551212" then ...

In this example, some action is taken if number is 5551212.

6·184 CASL Programmer's Guide

octal (function)

octal

Us octa 1 to return a number as a string in octal format.

Format

x$ = octal«integer»)

oct a 1 returns a string containing the octal (base 8) representation of
integer. The string is 6 or 11 bytes long, depending on the value
of integer. Table 6-17 shows possible integer ranges and the cor­
responding byte length.

Table 6·17. Integer ranges for the octal function

Integer ranges Byte length

o to 65,535
65,536 to 2,147,483,647

6
11

Example

print octal (32767)

This example show how to print the octal equivalent of 32,767 decimal.

Using the Programming Language 6·185

off

off (constant)

Use off to set a variable to logical false.

Format

x = off

off is always logical false. off, like its complement on, exists as a

way to set variables on and off.

For related information, see the 0 n, fa 1 s e, and t rue constants.

Example

echo = off

In this example, e c h0 is set to off.

6-186 CASL Programmer's Guide

on (constant)

Use on to set a variable to logical true.

Format

x = on

on is always logical true. on, like its complement off, exists as a way

to set variables on and off.

For related information, see the off, fa 1 s e, and true constants.

Example

echo = on

In this example, the variable e c h0 is set to 0 n.

Using the Programming Language 6·187

online

online (function)

Use 0 n1 i ne to determine if a connection is successful.

Format

x = online

on 1i n e returns t rue or fa 1s e indicating whether the session is
on line to another computer. Some script statements and functions
(r eply, for example) are inappropriate unless you are on line when
they are executed. You can use 0 n 1 i n e to control program flow.

Examples

while online

In this example, the script performs some task while on line to the
host.

if not online then call session name

In this example, the script starts the session contained in
s e s s ion n a me if the session is not on line.

6-188 CASL Programmer's Guide

ontime (function)

ontime

Use ont i me to return the number of ticks (one tick is one tenth of a

second) this session has been on line.

Format

x = ontime

You can use ont i me to call accounting routines, random number

routines, and the like.

ont i me is set to zero when a connection is established and stops

counting when the session is disconnected.

Examples

print ontime

In this example, the script displays the value in 0 ntime .

if ontime/600 > 30 then ...

In this example, the script tests the result of a mathematical compu­

tation and takes some action if the result is true.

Using the Programming Language 6-189

open

open (statement)

Use 0 pen to open a disk file.

Format

open <mode> <filename> as #<filenum>

<mode> is one of the following:

{random I input I output I append}

Before a script can read from or write to a file, the file must be opened.
open opens fi Iename using fi Ienum for the activities allowed by
mode. The mode options are described in Table 6-18.

Table 6-18. Mode options for the open statement

Option 	 Description

ran d om 	 Allows input and output to the file at any location
using seek, get, put, and loc. If the file does not
exist, it is created.

i nput 	 Allows read-only sequential access of an existing file
using read for comma-delimited ASCII records and
rea d 1 i n e for lines of text. If the file does not
exist, a run-time error occurs.

output 	 Allows write-only sequential access to a newly created
file using wri te for comma-delimited ASCII records
and wr i tel i n e for lines of text. If the file exists, it
is deleted and a new one is created.

append 	 Allows write-only sequential access to a file using
wr i t e for comma-delimited ASCII records and wr i t e
1 i n e for lines of text. If the file exists, the new data
is appended to the end of it; otherwise, a new file is
created.

6-190 CASL Programmer's Guide

open

fi 7ename can be any legal unambiguous file specification; drive spe­
cifiers and paths are allowed, but wild cards are not.

fi 7enum must be in the range 1 <= fi 7enum <= 8. For maximum
script flexibility, use the f r e e f i 1 e function to get the number of an
unused fi 7enum.

You can open a file in only one mode at a time.

For related information, see the following:

f reef i 1e [unction
get statement
10 c function
put statement
rea d statement
rea d 1i n e statement
see k statement
wr i t e statement
wr i tel i n e statement

Examples

open random "PATCH.OAT" as #1

In this example, the script opens PATCH.DAT in random mode with a
file number of 1.

filenol = freefile
open input some_file as #filenol

In this example, the f r e e fi 1e number is assigned to f i 1en 01, and
then the file in so m e_ f i 1 e is opened for input with the file number
stored in fi 1enol.

USing the Programming Language 6-191

pack

pack (function)

Use pac k to return a condensed string.

Format

x$ = pack«string> [, <wild> [, <integer>]])

pac k returns s t r i n9 with duplicate occurrences of the characters in
wi 7d compressed according to the value of in t e 9 e r. in t e 9 e r
defaults to zero; wi 7d defaults to a space.

in t e9 e r specifies how consecutive characters in 5 t r i n9 are treated.
The following integer values are valid:

o All consecutive characters in s t r in9 are compressed to a single
occurrence of the first character that appears.

1 Only identical consecutive characters in s t r j n9 are compressed.

For example, pack("aabcccdd", "abc", x) returns the following
values depending on the value of x:

if x 0, pack returns "add"
if x = 1, pack returns "abcdd"

Example

pack("HELLO WORLD!", "L", 1)

In this example, "HELO WORLD!" is returned because the two L's in
HELLO are compressed to one L.

6-192 CASL Programmer's Guide

pad (function)

pad

Use pad to return a string padded with spaces, zeros, or other characters.

Format

x$ = pad«orig_str, 7en_int [, pad_str ...
[, where_int]]»

pad replaces a host of other functions in conventional programming
languages. It can expand, truncate, or center 0 r i g_s t r to length
7 en_ i nt by adding multiple occurrences of pad_s tr on one or both
sides as directed by where_ i nt.

pad is essentially the opposite of the s t rip function, which removes
certain characters from a string.

The default for p a d_ s t r is a space, and the default for w her e_ i ntis
1 (one). This places the padding on the right side of the new string.

whe re_ i nt has the following meanings:

1 Pads on the right side.
2 Pads on the left side.
3 Pads on both sides, centering 0 r i g_s t r in a field 7 en_ i nt

characters long.

If 7en_ i nt is shorter than 1ength (ori g_str), ori g_str is
returned, truncated to 7 en_ i nt characters with the truncation occurring
on the right side of the string.

Using the Programming Language 6·193

lad

Examples

p r i n t pad (" Hi", 6); pad (" Hi", 6, "~"); ...
pad (" Hi", 4, "+", 2)

In this example, the first pad function adds 4 spaces to the right of
"H i " to expand the string to 6 characters. The second pad function
adds 4 dashes to the right of "H i " to expand the string to 6 characters.
The third pad function adds 2 plus signs to the left of "H i " to expand
the string to 4 characters. The result is displayed on the screen.

cntrd_string = pad(''He1101'', 78, "*",3)

In this example, the pad function centers "H e11 0 1 " between two sets
of 36 asterisks and returns the result in en t r d_s t r i n g.

6·194 CASL Programmer's Guide

password

password (system variable)

Use pa s swo rd to read or set a password string for the current session.

Format

password = <string>

pas s w 0 r d sets and reads the password associated with the current
session. The password is limited to 40 characters.

Note: To set the equivalent parameter using your Crosstalk applica­
tion, choose Session from the Settings pull-down. Then choose the
General icon and modify the Password parameter .•

Examples

password = "PRIVATE"

This example shows how to set the password.

print password

This example shows how to print the password.

reply password

This example shows how to send the password to the host.

Using the Programming Language 6-195

patience

patience (module variable)

Use pat i en ce to control the amount of time to wait for an answer.

Format

patience = <integer)

pat i en c e controls the length of time Crosstalk waits for the host to
answer. Ifthe appropriate carrier tone is not reported by the modem in
in t ege r seconds after the dialing process was initiated, Crosstalk
hangs up the telephone. The maximum value for in t e g e r is 999.

red i a 1count, pa t i en ce, and red i a 1wa it control the process of
dialing, waiting for carrier, and waiting to redial. Redialing is inde­
pendent of and transparent to scripts.

In the United States and other countries with similar telephone systems,
a pat i en c e setting of 30 will generally prove reliable, striking a good
balance between waiting too long and hanging up too soon. If you are
calling internationally, are using private telephone network services, or
are in a location served by some types of older telephone equipment,
you may need to set pat i en ce to 45 seconds or 60 seconds.

Most modems have a similar setting, and default to a 30-second wait
period. pat i en c e controls the amount of time Crosstalk waits for a
call, not the amount of time the modem will wait. Check your modem
documentation for information on modifying the wait-for-carrier time.

Government or telephone authority regulations may specify the mini­
mum or maximum amount of time that you can allow a telephone to
ring. It is your responsibility to adhere to the appropriate regulations
concerning telephone use in your locality.

For related information, see the red i a 1 co u n t and red i a 1wa it
module variables.

Example

patience = 30

In this example, pat i en c e is set to a 30-second wait time.

6-196 CASL Programmer's Guide

perform

perform (statement)

Use per for mto call a procedure.

Format

perform <procedurename> [<arglist>]

pe r form is an alternate method of calling a procedure. It is like a for­
ward declaration and a call, all in one. Its use is optional. Use it to
call procedures when they are located near the end of the script.

procedurename is the name of the procedure that is called. argl i st
is a list of arguments that can be passed to the procedure. arg lis t
must contain the same number and types of arguments and in the same
order as specified in the procedure declaration. Be sure to separate the
arguments with commas.

Versions of Crosstalk for Windows older than 2.0 do not support this
statement.

For related information, see the pro C ... end pro C procedure
declaration.

Example

perform some_proc

In this example, the procedure identified by some_proc is called.

Using the Programming Language 6-197

pop

pop (statement)

Use pop to remove a return address from the go sub return stack.

Format

pop

You can use pop in a subroutine to alter the flow of control. pop
removes the top address from the gosub return stack so that a sub­
sequent ret urn statement returns control to the previous go sub
rather than the calling 9 0 sub.

When you use the pop statement, the logic of your script becomes
somewhat obscure; therefore, use the statement only on those occasions
where it cannot be avoided.

If the return stack is empty when the pop statement is encountered, an
"underflow" error occurs.

For related information, see the go sub ... ret urn statements.

Example

pop

6·198 CASL Programmer's Guide

press (statement)

press

Use press to send a series of keystrokes to the terminal emulator.

Format

press [<string> [, <string>] ...] [;]

Normally, pres s sends special keys that are dependent on the type of
terminal in use. For example, the following statement simulates the
pressing of the HOME key.

press "<Home>"

If you are using a VT™ 100 terminal, the VT100 codes for the HOME key
are sent.

s t ring is a string expression containing the keys to be sent. To sup­
press the trailing carriage return, use a semicolon at the end of the state­
ment.

Note: Enclose special key names in angle brackets: "<Fb" rather
than "Fl." Characters in the string that are not enclosed in angle
brackets are sent as plain text characters. If you need to send one
of the unnamed keys such as Ctrl-7, place the key number inside
the angle brackets. (See the ink ey function earlier in this chapter
for a list of key numbers. You can access a key map for the term­
inal you are using from the Crosstalk Keyboard Editor.).

The difference between pre s s and rep 1y is subtle. rep 1y always
sends its output directly to the communications device while pre s s
passes its output through the terminal emulator, just as if you had
pressed a key on the keyboard. rep 1y does not honor any special
key codes that are part of the terminal emulator; pre s s does honor
such key codes.

This statement is valid only when you are on line.

Versions of Crosstalk for Windows older than 2.0 do not support this
statement.

For related information, see the rep 1y statement.

Using the Programming Language 6-199

press

Examples

keys_out = "<up><left>" : press keys_out;

In this example, the special keys up and 1 eft are assigned to the
variable keys_out, which is sent using the press statement.

press "Crosstal k";

In this example, the script sends the string Crosstalk without a trailing
carriage return.

press "<8>"

In this example, the script sends a backspace, which is represented by
the number 8.

6·200 CASL Programmer's Guide

print

print (statement)

Use p r i n t to display text in a window.

Format

print [<item>] [{, I ;} [<item>]] ... [;]

<item> is one of the following:

{<expression> I at <row>, <co7>}

The keyword a t specifies a position in the window; if it is omitted,
printing begins at the current cursor position.

The j t ems can be any expression or list of expressions, including
integers, strings, and quoted text, separated by semicolons or commas.
If the items in the list are separated by semicolons, they are printed with
no space between them. If the items are separated by commas, they are
printed at the next tab position. If no expression is provided, a blank
line is printed.

A trailing semicolon at the end of the pr i nt statement causes the item
to be printed without a carriage return. This is useful when you want to
print something immediately after the statement on the same line, or
when printing on the last line of a window.

pr i nt can be abbreviated as "?".

Note: If a script sets dis play to 0 ff, P r i n t statements do not
display text in the window .•

For related information, see the dis play statement.

Using the Programming Language 6-201

print

Examples

pri nt "Current protocol is" ; protocol

In this example, the script prints the text "Current protocol is "
followed by the name of the selected protocol.

pri nt "Thi sis all pri nted on the ";
print "same line."

In this example, the script prints the text on a single line.

print date, timer-I)

In this example, the script prints the date and the current time, with the
time starting at the next tab stop.

6-202 CASL Programmer's Guide

printer

printer (system variable)

Use p r i nt e r to send screen output to the printer.

Format

printer = {on off}I

p r i n t e r turns printing 0 n or 0 ff. When p r i n t e r is 0 n, Crosstalk
sends the stream of characters coming from the communications port to
the system printer.

Note that Crosstalk's VT102, VT52, and IBM® 3101 emulations have
the ability to turn the printer on or off upon receipt of a command
sequence from a host. In this case, the printer is controlled automat­
ically and does not need to be turned on by a script or the user.

Example

pri nter = off

This example shows how to turn printing off.

Using the Programming Language 6·203

proc ... endproc

proc ... endproc (procedure declaration)

Use proc ... endproc to define and name a procedure.

Format

proc 	 <name> [takes [<type>] <argument>
[, [<type>] <argument>] ...]

endproc

A procedure is a group of statements that can be predefined in a script
and later referred to by name. Procedures can take a number of argu­
ments; the arguments are optional. If arguments are included, you must
use the same number and type of arguments in both the procedure and
the statement that calls the procedure. The arguments are assumed to be
strings unless otherwise specified.

name is the name given to the procedure. It must be a unique name.

t a ke s is optional and describes a list of arguments that are passed to
the procedure.

end pro c terminates the procedure. If you want to leave a procedure
before the end pro c, use the ex i t statement to return control to the
calling routine.

Any variable declared within a procedure is local to the procedure. The
procedure can reference variables that are outside the procedure, but not
the other way around.

Procedures can contain labels, and the labels can be the target of go sub
... ret urn and got 0 statements, but such activity must be wholly con­
tained within the procedure. If you reference a label inside a procedure
from outside the procedure, an error occurs.

You can nest procedures at the execution level; that is, one procedure
can call another. You must not nest procedures at the definition level;
one procedure definition cannot contain another procedure definition.

6-204 CASL Programmer's Guide

proc ... endproc

You can use forward declarations to declare procedures whose definition
occurs later in the script. The syntax of a forward procedure declaration
is the same as the first line of a procedure definition, with the addition
of the forward keyword.

Forward declarations are useful if you want to place your procedures near
the end of your script. A procedure must be declared before you can call
it; the forward declaration provides the means to declare a procedure and
later define what the procedure is to perform.

The following format is used for a forward declaration:

proc <name> [takes <arg7ist>] forward

You can also use the per for m statement to call a procedure that is not
yet declared.

Procedures can be in separate files. To include an external procedure in a
script, use the inc 1 u decompiler directive.

Versions of Crosstalk for Windows older than 2.0 do not support the
procedure declaration.

For related information, see the fun c ... end fun c function declaration;
the exit, gosub ... return, goto, and perform statements; and the
inc 1 u decompiler directive.

Examples

proc logon takes string username,
string logon_password
watch for

"Enter user 10:" reply username
"Enter password:" reply logon_password
key 27 exit

endwatch
endproc

In this example, use rna me and 1 og on_pa s swo rd are the procedure
arguments. The values of use rna me and log a n_p ass war d are passed
to the procedure when it is called. The procedure watches for the appro­
priate prompts from the host and responds with one or the other of the
arguments. If the ESC key is received, the procedure exits to the calling
routine.

Using the Programming Language 6-205

proc ... endproc

proc logon takes string username, string ...
logon_password forward

logon "John", "secret"

proc logon takes string username,
string logon_password
watch for

"Enter
"Enter
key 27

endwatch

user 10:"
password:"

reply
reply
exit

username
logon_password

endproc

In this example, the procedure logon is declared as a forward declaration.
Then it is called.

Note: For ease of programming, you do not have to supply the par­
ameters in the actual procedure definition if you use a forward declar­
ation. For instance, the foregoing example can also be written as
follows:

proc logon takes string username,
string logon_password forward

logon "John", "secret"

proc logon
watch for

"Enter user 10:" reply username
"Enter password:" reply logon_password
key 27 exit

endwatch
endproc •

6-206 CASL Programmer's Guide

protocol

protocol (system variable)

Use pro t 0 col to set or read the protocol setting.

Format

protocol = <string>

pro t 0 col checks or changes the protocol to use for file transfers.

s t r j ng can be one of the file transfer protocols listed in Table 6-19.

Table 6-19. File transfer protocols

Protocol Sub-models (use the
name protomodel variable) Functionality

DCAXYMDM * XMODEM 	 Loads the XMODEM/
or XMODEM/CRC YMODEM tool. The

DCA XYMODEM XMODEMIlK default is
TooH XMODEM/G XMODEM/CRC.

YMODEM/BATCH
YMODEM/G

DCACSERV* (None) 	 Loads the CompuServe
or B file transfer tool.

DCA CServeS
TooH

DCAZMDM * (None) 	 Loads the ZMODEM
or tool.
DCA ZMODEM
TooH

DCAKERMT* (None) Loads the Kermit tool.
or

DCA KERMIT
Toolt

* Windows environment
t 	 Macintosh environment

continued

Using the Programming Language 6-207

protocol

Table 6-19. File transfer protocols (cant.)

Protocol Sub-models (use the
name protomodel variable) Functionality

DCAIND* (None) LoadstheI~$FILE

or tool.
DCA IND$FILE
Toolt

DCAXT ALK* (None) Loads the Crosstalk XVI
tool.

DCADART* (None) Loads the Crosstalk
or DART tool.

DCA DART
Toolt

* Windows environment
t Macintosh environment

Note: To set the equivalent parameter using your Crosstalk applica­
tion, choose File Transfer from the Settings pull-down .•

For related information, see the ass u m e statement and the de vic e and
t e r min a1 system variables.

Examples

assume protocol "DCAXYMDM"
protocol = "DCAXYMDM"
protomodel = "YMODEM/BATCH"

In this example, the DCAXYMDM file transfer tool is loaded with the
YMO DEM I BA TC H sub-model specified.

pri nt protocol

In this example, the script prints the current protocol selection.

if protocol = "DCAXYMDM" then ...

In this example, the script takes some action if the protocol selected is
DCAXYMDM.

6-208 CASL Programmer's Guide

put (statement)

put

Use put to write characters to a random file.

Format

put [iI<fi7enum>,] <string>

put writes s t r i n 9 to the random file specified by f i 7en um.

1en gt h (s t ring) is the number of bytes written to the file. fi 7enum

must be an open random file number.

If the end-of-file marker is reached during the write, the file is extended.

Each put advances the file I/O pointer by 1 eng t h (s t r in g) positions.
The put statement does not pad s t r i n9 to a particular length (to pad
the string, you must use the pad function), nor does it add quotation
marks, carriage returns, or end-of-file markers.

You must open the file in ra ndom mode.

For related information, see the de f 0 u t put system variable, the pad
function, and the open and seek statements.

Examples

put ill, some_stri ng

In this example, the script writes s ome_s t r i n 9 to a file with a file
number of 1.

put ifofi 1enol, pad (rec, reel en)

In this example, r e c is padded on the right with spaces to expand the
string to r e c_l eng t h characters, and then r e c is put to the file
designated by fi 1enol.

Using the Programming Language 6-209

quit

quit (statement)

Use qui t to close a session window.

Format

quit

This statement ends a Crosstalk session. Unlike the termi nate state­
ment, qui t does not end the Crosstalk application, even if you use the
statement to end the last or only active session.

Note: To perform the same function using your Crosstalk application,
choose Close from the session window's System menu .•

For related information, see the t e r min ate statement.

Example

quit

6·210 CASL Programmer's Guide

quote (function)

quote

Use quote to return a string enclosed in quotation marks.

Format

x$ = quoteC<string»

quo t e analyzes 5 t r in 9 and returns it enclosed in quotation marks to
make it compatible with the type of comma-delimited ASCII sequential
file input/output used by many applications.

quote encloses any string that contains a comma in double (")
quotation marks.

5 t r i n9 cannot contain both single and double quotation marks.

Example

print quoteC"Hello, world!")

In this example, the phrase He 1 1 0, w0 r 1 d! is enclosed in double
quotation marks when it is displayed on the screen.

Using the Programming Language 6-211

read

read (statement)

Use rea d to read data from a sequential disk file.

Format

read [1f<filenum>,] <string_var_7ist>

The read statement operates only on files opened in input mode.

fi 7enum must be an open input file number. If fi 7enum is not sup­
plied, the default input file number, which is stored in defi nput, is
assumed.

The read statement reads lines containing comma-delimited fields
of ASCII data. Each rea d puts fields into the members of
5 t r in g_ va r_ 7is t until either all of the members have had values
assigned, or the end-of-file marker is reached. Quotation marks are
automatically stripped. When end-of-line is reached, it is treated as
a comma (delimiter).

To use the rea d statement, you must have previously defined all
members of string_var_7 ist.

For related information, see the de fin put system variable and the
open and read 1i ne statements.

Example

read 1ffi 1 enD, al pha, beta, gamma

In this example, the rea d statement uses file number Nf i 1enD to read
fields of ASCII data into the variables alp ha, bet a, and g a rnm a.

6-212 CASl Programmer's Guide

read line

read line (statement)

Use read 1 i ne to read data from a sequential disk file.

Format

read line [1f<fi7enum>,J <string_var>

Like the rea d statement, the rea d 1 i n e statement operates only on
files opened in i n put mode.

fi 7enum must be an open input file number. If fi 7enum is not sup­
plied, the default input file number, which is stored in d ef in put, is
assumed.

The rea d 1 i n e statement reads lines of text from files. Each rea d
1 i n e puts in 5 t r ing_ va r all the text read, up to the next carriage­
return/line-feed (CRLF) character or a maximum of 255 characters,
whichever comes first. If the end-of-file marker has already been
reached, 5 t r in g_ va r is null.

To use the read 1 i ne statement, you must have previously declared
string_var.

For related information, see the de fin put system variable and the
ope nand rea d statements.

Example

read line Ifl, some_text

In this example, the rea d 1 i n e statement uses the file number if 1 to
read a line of text into the variable some text.

Using the Programming Language 6-21 3

receive

receive (statement)

Use recei ve to receive a file from another computer.

Format

receive <filename>

r e c e i ve tells Crosstalk to begin receiving a file or group of files from
the computer at the other end of the connection. fi 7ename is the name
of the file to be received. The file is saved using the same name and is
placed in the directory defined for transfers. (See the d i r f i 1 and
down loa dd i r system variables earlier in this chapter for details.)

The way recei ve works depends on the protocol you use. For ex­
ample, some protocols such as DART understand how to request in­
formation from the host while other protocols such as XMODEM
require user intervention to request data.

Note that if the selected protocol is CompuServe B, fi 7ename is not
required.

An error occurs if the statement is executed while you are not on line.

Note: To start receiving files using your Crosstalk application, choose
File Transfer from the Action pull-down and then choose Receive
Files(s).•

For related information, see the sen d statement and the d i r f i 1 and
dow nloa d d i r system variables.

Examples

receive

In this example, r e c e i ve requests a file using the CompuServe B
protocol.

6-214 CASL Programmer's Guide

receive

receive "B:ERNIE"

In this example, r e c e i ve requests a file called ERNIE from the remote
system's drive B.

receive fname

In this example, r e c e i ve requests the file with the name assigned to
the fname variable.

receive "ERNIE"

In this example, r e c e i ve requests a file using the name ERNIE.

Using the Programming Language 6·21 5

redialcount

redialcount (module variable)

Use red i ale 0 u n t to control the number of times a telephone number
is redialed.

Format

redial count = <integer>

red i ale 0 u n t controls the number of times a busy or unanswered
telephone number is redialed. The number is attempted in t ege r
plus one time before dialing is discontinued. The maximum number
for integer is 99. A redi a 1 count of zero means the number is
dialed one time. Redialing is independent of and transparent to scripts.

Government or telephone authority regulations may specify the maxi­
mum number of times an automated device can dial a single telephone
number. In the United States, the Federal Communications Commis­
sion (FCC) has set this maximum at 15. The limit in Canada is 10.
It is your responsibility to adhere to the appropriate regulations con­
cerning telephone use in your locality.

For related information, see the red i a 1wa i t and pat i en c e module
variables.

Example

redial count = 9

In this example, dialing is attempted 10 times.

6·216 CASL Programmer's Guide

redialwait

redialwait (module variable)

Use red i a 1wa it to control the amount of time between redials.

Format

redialwait = <integer>

red i a 1wa it controls the length of time Crosstalk waits before
attempting to redial a busy or unanswered telephone number. If the
number dialed is busy or goes unanswered, Crosstalk waits in t e g e r
seconds before trying again unless the value of the red i ale 0 U n t
module variable has been reached. The maximum number for
in t ege r is 99. Redialing is independent of and transparent to
scripts.

Check your government or telephone authority regulations to learn
if there is a minimum amount of time that can elapse between con­
secutive attempts to connect with a single telephone number.

For related information, see the red i ale 0 U n t and pat i en ce module
variables.

Example

redialwait = 30

In this example, the script waits 30 seconds before attempting to redial a
phone number.

Using the Programming Language 6-217

rename

rename (statement)

Use rename to rename a file.

Format

rename [some] <o7dname>, <newname>

This statement renames a file. 07 dname must be the name of an ex­
isting file and can contain wild cards. If some is specified, the user is
prompted to verify each file before it is renamed.

Examples

rename "TEST.XWS", "MAIL.XWS"

In this example, the script renames the existing file TESTXWS to
MAIL.XWS.

renall1e FNAMEl, FNAME2

In this example, the script renames the file in the F N AM El variable to
the name in the FNAME2 variable.

6-218 CASL Programmer's Guide

repeat ... until

repeat ... until

(statements)

Use rep eat ... un til to repeat a statement or series of statements
until a given condition becomes true.

Format

repeat

until <expression>

rep eat lets you repeat a group of statements until some condition
occurs. un til specifies the condition that terminates the repeat
condition. express i on can be any boolean, numeric, or string
expression.

The loop is executed once before ex pre s s ion is checked. If

expres s i on is false, the loop is repeated until expression is true.

The repeat/unt i 1 construct is a good alternative to the wh i 1e/wend
construct in those instances where a loop must be executed at least once
before its terminating condition is tested.

For related information, see the whi 1e ... wend statements.

Examples

x = 0

repeat

x = x + 1

print x

until x = 100

In this example, the script prints numbers from 1 to 100.

Using the Programming Language 6-219

repeat ... until

string guess
print "Guess how to get out of here:"
repeat

input guess
until guess = "Good Bye!"

This example shows how a script can prompt the user to enter a string
and repeat the prompt until the correct string (Good Bye!) is entered.

6-220 CASL Programmer's Guide

reply

reply (statement)

Use rep 1 y to send a string of text to the communications device.

Format

reply [<string> [, <string>] ...] [;]

rep 1 y sends one or more strings of text directly to the communications
device. s t r j ng is a string expression containing the text to be trans­
mitted.

rep 1 y sends a carriage return after it sends s t r j ng. To suppress this
action, use a semicolon at the end of the statement. If you use the
statement without an argument, it sends only a carriage return.

Use this statement only when you are on line.

For related information, see the pre s s statement.

Examples

reply "Hello!"

In this example, the script sends Hello!

reply userid + " " + password
or
reply userid, " ", password
or
reply useri d;
reply " ".,
reply password

In this example, the script sends the user ID, a space, and the password.

reply chr(3);

In this example, the script sends a I\C to the host.

Using the Programming Language 6·221

request

request (statement)

The request statement, which is a synonym for the recei ve
statement, is supported only for backward compatibility. Refer to
r e c e i ve earlier in this chapter.

6·222 CASL Programmer's Guide

restore

restore (statement)

Use restore to restore the Crosstalk application window to its
previous size.

Format

restore

The res tore statement is functionally equivalent to choosing the

Restore option from the application window's Control menu.

Crosstalk Mark 4 does not support this statement.

For related information, see the rna x i rni ze, min i rni ze, rna ve, and

s i z e statements.

Example

restore

Using the Programming Language 6-223

return

return (statement)

Use return to exit a function or to return from a subroutine.

Format

return [<expression>]

When the ret urn statement is used to exit a function, it returns a
value. ex pre s s ion is the return value.

When ret urn is used in a subroutine, the statement does not return a
value.

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0
support only the return from a subroutine.

For related information, see the fun C ... end fun c function declaration
and the gas u b ... ret urn statements.

Examples

func calc_largest (integer nurnl,
integer num2) returns integer

if nurnl > nurn2 then return nurnl

el se return num2

endfunc

In this example, the function compares 2 numbers to determine which is
larger and returns that number.

6-224 CASL Programmer's Guide

return

integer i
gosub count to 10
end
1abel counLto_10

for i = 1 to 10
print

next
return

In this example, the script calls a subroutine to display the numbers
1 to 10. Note that the ret urn statement does not return a value in
this example.

Using the Programming Language 6-225

rewind

rewind (statement)

Use rewi nd to move the next-character pointer backwards in the capture
buffer.

Format

rewind <integer>

Crosstalk maintains a pointer to the position in the capture buffer where
the next character should be stored. r e win d provides the means to
move this pointer backwards integer characters if you want to over­
write information in the buffer.

This statement is effectively the opposite of the add statement, which
lets you add strings of data to the capture buffer.

Versions of Crosstalk for Windows older than 2.0 do not support this
statement.

For related information, see the add statement.

Example

rewi nd 8

In this example, the pointer in the capture buffer is moved back 8
characters.

6-226 CASL Programmer's Guide

right (function)

right

Use rig h t to return the right portion of a string.

Format

x$ = rightC<string [, integer]»

rig h t returns the rightmost in t e ge r characters in 5 t r in g. If
in t ege r is not specified, the last character in 5 t r i ng is returned. If
integer is greater than the length of 5 t ring,s t ring is returned.

Examples

dog_name = rightC"Hey, Fido", 4)

In this example, rig h t returns "F i do" in dog_name.

print rightClong_string, 78)

In this example, the last 78 characters in 1ong_stri ng are printed to
the screen.

Using the Programming Language 6·227

rmdir

r m d i r (statement)

Use rmd i r to remove a subdirectory.

Format

rmdir <directory>

di rectory must be a string expression containing a valid directory
name. If the directory name exists and contains no files or directories,
it is removed. If it does not exist or if it contains files or subdirectories,
an error occurs.

Note: You can also use the abbreviation rd for this statement. •

Examples

rmdir "C:\XTALK\TMP"

In this example, the rmd i r statement removes the TMP subdirectory.

rmdir some dirname

In this example, rmd i r removes the directory contained in

some_di rname.

6-228 CASL Programmer's Guide

run (statement)

run

Use run to run another application.

Format

run <pathname>

This statement starts another application. Crosstalk and the new appli­
cation run concurrently.

In a Windows environment, if the application name is supplied without
a path, the application program file must reside in the DOS path. If the
application resides elsewhere, it must be preceded by the path to the
program.

Examples

run "NOTEPAD.EXE"

In this example, the application NOTEP AD.EXE is run.

run "D:\APPS\CLOCK.EXE"

In this example, the application CLOCK.EXE, which is located in the
APPS directory on drive D, is run.

Using the Programming Language 6·229

save

save (statement)

Use s a veto save session parameters.

Format

save [<name>]

name is optional. If provided, it must be a valid file name for your
operating environment. If name is not provided, the current name is
used.

This statement saves all of the information associated with the session
currently in use, induding the phone number and description. If the
session is untitled when this statement is executed, Crosstalk creates
a session profile with the current settings and names it TEMP.XWP
for the Windows environment or Temp Session for the Macintosh
environment.

Examples

save

In this example, the script saves the session settings using the current
name.

save "Source"

In this example, the script saves the session settings using the name
provided.

6-230 CASL Programmer's Guide

script

script (system variable)

Use s c rip t to specify the name of the logon script file used by the
current session.

Format

script = <filename>

s c rip t specifies the name of the script file to use for the current
session. fi I ename must be a valid file name for your operating
environment.

Examples

script = "CSERVE"

In this example, the session script is set to CSERVE.

if script = "MCIMAIL" then ...

In this example, some action is taken if the script for the session is
named MCIMAIL.

Using the Programming Language 6-231

scriptdesc

scriptdesc (compiler directive)

Use scri ptdesc to specify a description for a script.

Format

scriptdesc <string>

The s crip t des c compiler directive defines descriptive text for a script.
s t ring can be up to 40 characters in length.

When the script is added to the Script pull-down and to the Open dialog
box, the s c rip t des c text appears next to the appropriate script
name.•

Versions of Crosstalk for Windows older than 2.0 do not support this
directive.

Example

scriptdesc "Login script for the VAX system"

In this example, s c rip t des c is set to the specified string.

6-232 CASL Programmer's Guide

secno (function)

secno

Use sec n0 to return the number of seconds since midnight.

Format

x = secno [(<hh>, <mm>, <55»]

sec n0 returns the number of seconds since midnight.

You can get the number of seconds that have elapsed since midnight for

any given time by passing the hours, minutes, and seconds of that time

as hh, mm, and 55.

Examples

print secno

In this example, the elapsed seconds since midnight are printed.

print secno(14, 2, 31)

In this example the script prints the elapsed seconds since midnight for

the time 2:02:31 PM.

Using the Programming Language 6·233

seek

seek (statement)

Use see k to move a random file input/output pointer.

Format

seek [1f<fi lenum>,] <integer>

seek moves a random file input/output pointer to character position
in t e g e r. The next file get or put action commences at that point.
(Note that the first byte in a file is character position zero.) in t eg e r
is the number of bytes from the beginning of the file, not the current
location. (See the 1 oc function earlier in this chapter for more infor­
mation.)

see k does not move the pointer beyond the end-of-file marker.

Each get or put advances the input/output pointer by the number of
bytes read or written. If the records in a random file are of fixed length
and each get reads one record, reading the file backwards requires that
after each get you must seek backwards two records.

You must open the file in ran d0 mmode to use this statement.

For related information, see the get, open, and put statements and the
lac function.

Examples

seek 1fI, 0

In this example, the pointer is positioned at the beginning of the file.

seek 1fI, rec_len * rec_num

In this example, see k moves the I/O pointer to the position that results
from multiplying the record length by the record number.

6-234 CASL Programmer's Guide

send (statement)

send

Use sen d to transfer a file or group of files to another computer.

Format

send <fj 7ename>

sen d initiates a file transfer to another computer. f i 7en ame is the
name of the file to send, and can be a full path name.

The operation of this command is dependent on the file transfer protocol
in use. If you are using the Crosstalk, DART, YMODEM/Batch,
ZMODEM, or Kermit protocols, the send statement can send multiple
files. If you are sending multiple files, you can specify a wild-card file
name in fj 7ename.

The XMODEM and XMODEM/lk protocols do not allow you to send
more than one file at a time.

This statement is valid only when you are on line.

Note: To send a file using your Crosstalk application, choose File
Transfer from the Action pull-down and then choose Send File(s) .•

For related information, see the r e c e i ve statement.

Examples

send "B:ERNIE"

In this example, the sen d statement sends the file ERNIE from drive B
on the sending computer to the other computer.

send some fname

In this example, the sen d statement sends the file assigned to
some fname.

Using the Programming Language 6-235

send break

sendbreak (statement)

Use sen d b rea k to send a break signal to the host.

Format

sendbreak

This statement sends a break signal to the host. Break signals are often
interpreted by host systems as a "cancel" signal, and they usually stop
some action.

The length of the break signal is controlled either by the Break Length
setting in the Connection Settings dialog box, which you can access
by choosing Connection from the Settings pull-down, or by the
b rea k 1en module variable setting.

This statement is valid only when you are on line.

For related information, see the b rea k1en module variable.

Example

sendbreak

6-236 CASL Programmer's Guide

session

session (function)

Use s e s s ion to find out the current session number.

Format

x = session

The s e s s ion function returns the session number of the current
session, which mayor may not be the active session. The active
session is defined as the session that is currently using the keyboard
or is waiting for keyboard input. The current session is the one in
which the script is running.

To determine if the script currently running is the active session, test
both the act i v e s e s s ion and the s e s s ion functions.

Versions of Crosstalk for Windows older than 2.0 do not support this
function.

For related information, see the act i ve s e s s ion function.

Example

if activesession session then
reply "The current session is the" + ...

"active session."

In this example, the s es s i on and act i v es e s s i on functions are
compared to find out if the active session is the current session.

Using the Programming Language 6-237

sessname

sessname (function)

Use s e s s n a me to find out the name of another session.

Format

x$ = sessname«integer»

s e s s n ame returns the name of the session represented by in t e ge r. If

there is no session with that number, a null string is returned.

You can use this function to find out what sessions are running con­

currently.

Versions of Crosstalk for Windows older than 2.0 do not support this

function.

For related information, see the s e s s n0 function.

Example

print sessname(l), sessno(sessname(l))

In this example, the script displays the name and number of the session
identified by the integer 1.

6·238 CASL Programmer's Guide

sessno (function)

sessno

Use s e s s n 0 to find out the session number of a specified session.

Format

x = sessno[(string»]

s e s s n 0 returns the number of the session whose name is s t r in g. If
there is no session with that name, 0 (zero) is returned. If you do not
specify an argument, s e s s n 0 returns the number of open sessions.

As with the s e s s n a me function, you can use this function to find out
what sessions are running concurrently.

Versions of Crosstalk for Windows older than 2.0 do not support this
function.

For related information, see the sessname function.

Example

if 	sessno ("CSERVE") then
print "A CompuServe session exists."

In this example, the script displays a message if one of the currently
open sessions is CSERVE.

Using the Programming Language 6·239

show

show (statement)

Use show to redisplay a Crosstalk session window.

Format

show

This command redisplays a Crosstalk session window that was pre­
viously reduced to an icon with the hid e statement.

Example

show

6-240 CASL Programmer's Guide

showallquickpads

showallquickpads (statement)

Use show all qui c k pad s to show all of the QuickPads that are loaded
for the current session.

Format

showa11quickpads

This statement displays all of the QuickPads that were previously hid­
den.

Note: The QuickPads for the session must already be loaded using the
loa dqui c k pad or loa dall qui c k pad s statement. •

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0
do not support this statement.

For related information see the hid e all qui c k pad s, hid e qui c k pad,
1 oada11 qui ckpads, 1oadqui ckpad, and showqui ckpad state­
ments.

Example

showa11 qui ckpads

Using the Programming Language 6-241

showquickpad

showquickpad (statement)

Use s howq ui c kpa d to show the specified QuickPad for the current

session.

Format

showquickpad <string>

This statement displays the QuickPad specified in s t ring.

Note: The QuickPad for the session must already be loaded using the
loa dqui c k pad or loa dall qui c k pad s statement. •

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0
do not support this statement.

For related information see the hi dea 11 qui c kpa ds, hi dequ i c kpad,
1 oada11 qui ckpads, 1oadqui ckpad, and showa11 qui ckpads
statements.

Example

showquickpad "sessA"

In this example, the QuickPad identified as s e s s A is displayed.

6-242 CASL Programmer's Guide

size

IWin I size (statement)

Use size to change the size of the Crosstalk application window.

Format

size <x>, <y>

This statement changes the size of the Crosstalk application window.

The window can be made larger or smaller than its current size.

x and yare the horizontal and vertical size, in pixels.

The s i z e statement performs the same function as the Size option

(ALl-F8) from the application window's Control Menu.

The range of coordinates is determined by the resolution of the display
adapter and monitor in use.

For related information, see the rna x i m i ze, rni n i mi z e, move, and
restore statements.

Example

size 200,350

In this example, the application window is resized to be 200 pixels wide
and 350 pixels high .•

Using the Programming Language 6-243

slice

slice (function)

Use s 1 ice to return portions of a string.

Format

x$ = s 1ice (<s t r i ng, in t eg e r ...
[, de7in_str [, where_int]]»

s 1 ice breaks out portions of strings. s t r i ng is divided into sub­
strings as delineated by occurrences of de 7i n_s t r. de 7i n_s t r
can specify more than one delimiter (for example, ";:"); it defaults to
a space.

The substring in in t e ge r position is returned.

where_ in t specifies where the function is to begin its analysis in
string.

Examples

sub_string = slice("alpha beta gamma", 2)

In this example, s1 ice returns "beta."

print slice("alpha, beta, gamma", 2, ",")

In this example, "beta" is displayed on the screen.

sub_string = slice("alpha, beta gamma.delta", 3,",.")

In this example, s 1ice returns" delta."

6-244 CASL Programmer's Guide

startup

startup (system variable)

Use s tar t u p to read or set the name of a script to run when Crosstalk
is started.

Format

startup = <string>

s tar t upsets or reads the name of the script you want to run auto­
matically whenever a new session is started. If s tar t u p is null, no
script is run at start-up time. s t r i ng must be a valid file name for
your operating environment.

Examples

startup = "AUTOEXEC"

In this example, a script called AUTOEXEC is run when Crosstalk is
started.

startup

In this example, s tar t u p is null, so no script is run when Crosstalk
is started.

Using the Programming Language 6-245

str

str (function)

Use s t r to convert a number to string format.

Format

x$ ~ str«number»)

The s t r function is the opposite of the val and i n t val functions in
that it converts numbers to strings. number can be a real (floating
point) number or an integer. s t r does not add any leading or trailing
spaces.

For related information, see the i n t val and val functions.

Examples

print 2 : print str(2) : print length(str(2))

In this example, the script displays 3 lines. The first line contains the
integer 2. The second line contains the string that results from con­
verting integer 2 to a string. The last line contains the length of the
string displayed in line 2.

reply str(shares_to_buy)

In this example, the script sends the string equivalent of
shares_to_buy to the host.

integer counter
string items[lO]

for counter ~ 1 to 10
items[counterJ ~ "item" + str(counter)
print items[counter]

next

In this example, the script declares counter as an integer and items as
an array of 10 strings. The for In ext construct is used to display the
individual elements in the array.

6-246 CASL Programmer's Guide

strip (function)

strip

Use s t rip to return a string with certain characters removed.

Format

x$ = strip«string [, wi7d [, where_int]]»

s t rip removes unwanted characters from strings. It is essentially the
opposite of the pad function, which pads a string with spaces, zeros,
or other characters.

wi 7d can be either a string of characters you want to remove from
5 t ring or an integer bit-map of the Crosstalk character class(es)
containing the characters you want removed. (Refer to the c 1 ass
function earlier in this chapter for additional information.) The
default for wi 7d is a space.

where_ i n t has the following meanings:

o Strip out all occurrences in 5 t r i n9 of any character in wi 7d.
This is the default.

1 Strip from the right side, stopping at the first occurrence of a
character not in wi 7d.

2 Strip from the left side, stopping at the first occurrence of a
character not in wi 7d.

3 Strip from both the right and left sides, stopping on each side at
the first occurrence of a character not in wi 7d.

s t rip is quite useful in removing "junk" characters from lines read
from word-processing text files, for removing leading zeros, and for
cleaning up user -entered strings.

For related information, see the c 1 ass and pad functions.

Examples

print strip("0123456", "0",2)

In this example, the script displays "123456."

Using the Programming Language 6-247

strip

print strip("Sassafras", "as", 0)

In this example, the script prints "ff."

reply strip(strip(user_resp, junk, 0), " ",3)

In this example, the script first strips out "junk" from use r _r e s p
and then strips leading and trailing spaces from what remains of
use r _ res p. The result is sent to the host.

6·248 CASL Programmer's Guide

stroke (function)

stroke

Use stroke to wait for the next keystroke from the keyboard.

Format

x = stroke

s t r 0 k e is similar to the inke y function, but s t r 0 k e stops the script
to wait for a keystroke and returns the value of the keystroke. The value
retumed is the ASCII value of the key pressed for the printable charac­
ters (0-127 decimal) and special keystrokes such as the arrow keys,
function keys, and special-purpose keys. (See the in key function
earlier in this chapter for a list of appropriate keys and their corres­
ponding numbers.)

Versions of Crosstalk for Windows older than 2.0 do not support this
function.

Example

print "Press a key to see its value"; : print stroke

In this example, the script prints a message followed by the value of the
key that was pressed.

Using the Programming Language 6-249

subst

subst (function)

Use sub s t to return a string with certain characters substituted.

Format

x$ = subst«string, old_str, new_str»

For each character in 0 I d_s t r that subs t finds in 5 t ring, it
substitutes the corresponding character in new_s t r.

Example

print subst("alpha", "a", "b")

In this example, the script prints "blphb."

6·250 CASL Programmer's Guide

systime

systime (function)

Use sy s time to return the number of ticks Crosstalk has been active.

Format

x = systime

s y s tim e returns the number of ticks the Crosstalk application has been
active. One tic k is one tenth of a second. You can use s y s tim e in
delay loops, random number routines, and the like.

Examples

print systime

In this example, the value in sy s time is displayed.

if systime mod 100 = 0 then ...

In this example, the script takes some action if the value of sy s t -j me
divided by 100 is zero.

Using the Programming Language 6-251

tabex

tabex (system variable)

Use tab e x to control the expansion of tabs to spaces.

Format

tabex = {on off}
I

tabex determines whether Crosstalk sends outgoing tab (ASCII decimal
9) characters as spaces during ASCII text uploads.

If tab e x is 0 n, Crosstalk expands a file's tab characters to 8 spaces.

This is most useful when uploading a file containing tab characters to a
host computer that does not understand what tab characters are.

Example

tabex = off

In this example, tab characters are not expanded to spaces.

6-252 CASL Programmer's Guide

tabwidth

tabwidth (module variable)

Use t a bw i d t h to determine the number of spaces a tab character moves
the cursor.

Format

tabwidth = <integer>

This variable determines the number of spaces the cursor is moved when
the tab character is received. in t ege r can be any number from 1 to 80.
The default is 8.

Crosstalk Mark 4 does not support this variable.

Example

tabwidth = 15

In this example, tabwid this set to 15 spaces.

Using the Programming Language 6-253

terminal

terminal (system variable)

Use te rmi na 1 to read or set the name of the terminal emulation
module used by the session.

Format

t e r min a1 = <5 t r i ng>

t e r min a1 specifies the name of the terminal emulation to use for the
current session. 5 t r in 9 can be one of the terminal emulations found
in Table 6-20.

Table 6-20. Terminal emulations

Emulation Sub-models (use the Functionality in
name termmodel variable) the tool

DCADEC* VT52, VTl02, VT220, Loads the DEC® tool.
or VT320 The default is VT102.

DCA DEC
Toolt

DCAANSI* (None) Loads the ANSI.SYS
or tool.

DCA ANSIPC
Toolt

DCAVIDTX* (None) 	 Loads the CompuServe
or 	 Vidtex ™ tool.
DCA VIDTEX
TooH

DCATTY* (None) Loads the generic TTY
or tool.

DCA TTY

TooH

* Windows environment
t 	 Macintosh environment

continued

6·254 CASL Programmer's Guide

terminal

Table 6-20. Terminal emulations (cont.)

Emulation Sub-models (use the Functionality in
name termmodel variable) the tool

DCAI BM * (None) Loads the IBM 3101 tool.
or

DCA IBM3101
Toolt

DCAFTTRM * (None) Loads the IBM FITERM
or tool.

DCA FTTERM
TooH

DCAWYSE* WYSE 50, WYSE 50+, Loads the WYSE TM emu-­
or WYSE 60, lation and its sub-emula­

DCA WYSE ADDS VIEWPOINT, tions. The defmdt is
Toolt HAZELTINE 1500, WYSE60.

PC ­ TERM,
TELEVIDEO 912,
TELEVIDEO 920,
TELEVIDEO 925

DCAHP700* (None) Loads the HP® 700/94
or tool.

DCA HP700/94
Toolt

* Windows environment
t Macintosh environment

Note: To set the equivalent parameter using your Crosstalk applica­
tion, choose Terminal from the Settings pull-down .•

For related information, see the assume statement and the dey; ce and
pro toe 0 1 system variables. Refer to your Crosstalk user's guide for
more information on terminal emulation.

Using the Programming Language 6-255

terminal

Examples

assume terminal "DCAWYSE"
terminal = "DCAWYSE"
termmodel = "WYSE 50"

This example shows how to load the DCA WY S E terminal tool with W Y S E
50 emulation.

print terminal

This example shows how to print the current terminal emulation
selection.

terminal = "DCAIBM"

In this example, terllli nal is set to IBM 3101 terminal emulation.

string term_type

term_type = terminal
if term_type <> "DCAIBM" then

terminal = "DCAIBM"

In this example, the value in t e rill ina 1 is assigned to the string
te rlll_ty pe. te rm_type is then tested to determine if it contains the
value DCA I BM. If not, te rm ina 1 is set to this value.

6-256 CASL Programmer's Guide

terminate

terminate (statement)

Use t e r min ate to exit the Crosstalk application.

Format

terminate

t e r min ate exits the Crosstalk application.

Note: To exit Crosstalk from the application, choose Exit from the
File pull-down .•

Crosstalk Mark 4 does not support this statement.

For related information, see the qui t statement.

Example

clear

pri nt "Crossta 1 k wi 11 termi nate in 5 seconds"

for i = 1 to 5
print at 5,5, time(-l)
wait 1 second

next

terminate

In this example, the script clears the window and then displays a mes­
sage on the screen. Next, using the for/next construct, the script dis­
plays the current time once every second until 5 seconds have elapsed.
Finally, it terminates Crosstalk.

Using the Programming Language 6-257

time

time (function)

Use time to return a formatted time string.

Format

x$ = timeC<integer»)

time returns the time in the correct format for the operating system
country code.

integer is required; it is the number of seconds elapsed since mid­
night. You can use -1 as the argument to indicate the current number
of elapsed seconds since midnight.

Note: If you want to check for a specific time, use the cur h0 u r,
curmi nute, and cursecond functions.•

Examples

print timeC~l)

this example prints the current time.

x = timeC3243l)

In this example, the time represented by 32431 is returned in x.

open output "time.tst" as #1
write #1, "The file open time is " + timeC-l)
while online

string_in = nextline
write line #1, string_in

wend
close #1

In this example, the file time. t s t is opened for output, and a phrase is
written to the file using the wr i t e statement. While the script is on
line, each line of text from the host is written to the file. Then the file
is closed.

6-258 CASL Programmer's Guide

timeout

timeout (system variable)

Use tim e0 u t to determine the status of the most recent wa i t or
watch ... endwatch statement.

Format

timeout

t i meou t is true or false indicating whether the last next 1 in e, wa i t,
or wa t c h ... end w a t c h statement timed out. tim e0 u t is true if the
statement exceeded the time specification before finding the condition
for which it was looking.

For related information, see the nex t 1in e, wa it, and wa t c h ...
end w at c h statements.

Example

repeat
reply
wait 1 second for "Login:"

until timeout = false

This example uses the time 0 u t system variable and wa i t statement
to log on to a host computer. The host, in this case, wants a number
of carriage returns (eRs) so it can check the baud rate, parity, and stop
bits. The eRs should be sent about once every second; and it will take
an arbitrary number of eRs to wake up the host. When it is ready for
your logon, the host sends the phrase" Log in: "

Using the Programming Language 6·259

trace

trace (statement)

Use t r ace to trace how the lines in a script are executing.

Format

trace {on I off}

When t r ace is 0 n, the script displays source script line numbers as

the statements in the script are executed.

t r ace can be useful for debugging scripts.

For related information, see the 9 e n1 i ne s compiler directive.

Example

trace on

In this example, tracing is activated.

6-260 CASL Programmer's Guide

track (statement)

track (statement)

Use the t r a c k statement to watch for string patterns or keystrokes
while on line.

Format

track <tracknum> <conditions>

The conditions are one or more of the following, separated by commas:

[[case] [space] <string>]
[quiet <time>]
[key <stroke_value>]

track routine <label or procedure>

track clear

The t rae k statement lets you check for any number of events or in­
coming strings while the script is on line and then take some action
based on which events occur. Use this statement with the wa it and
wa t c h ... en dwa tc h statements.

t rae k events take precedence over wa i t and wa t c h events. If a t rae k
event occurs while a script is at a wa i t or wa t c h, the wa i t or wa t c h
is terminated and program control passes to the next statement. If you
use t r a c k r 0 uti n e, control passes to the specified subroutine.

You can check events that you are tracking only at a wa i t or wa t c h. If
you do not use t r a c k r 0 uti ne, you will have to check the event with
an if ... the n ... e1 s e statement.

t racknum is the track number for the t ra c k statement. You can have
any number of t r a c k statements active at one time. You can get an
available track number with the f r e e t rae k function. Track numbers
stay active as long as the script that set them is still running. When the
script ends, the track numbers are closed.

When the string specified in s t r in g is received, the value of the cor­
responding t rae k function is set to t rue.

Using the Programming Language 6-261

track (statement)

There are a number of special sequences you can specify in 5 t r i ng,

each of which affects a t r a c k statement:

~_ (underscore) Matches any white-space character.

~A Matches any uppercase letter.

~ a Matches any lowercase letter.

~# Matches any digit (0-9).

~X Matches any letter or digit.

~? Matches any single character.

A tilde (~) with a dash (-) followed by a special sequence character

indicates that one or more occurrences of the sequence should be tracked.

The following is an example:

Matches one or more occurrences of any digit (0-9)

time is a time expression in one of the following forms:

n hours
n minutes
n seconds
n tic k s (1/10 seconds each)

Table 6-21 explains the t r a c k conditions.

Table 6-21. 	 Conditions for the track statement

Condition 	 Explanation

5 t r j ng 	 cas e. Indicates that the string to be matched is case­
sensitive. Unless this modifier is specified, Crosstalk
ignores case.

spa c e. Indicates that 5 t r i ng may contain white-space
characters, such as spaces or tabs, that are significant.
Crosstalk ignores white spaces unless this modifier is
specified.

Note: cas e and spa c e can be used together to ensure
an exact string match .•

continued

6-262 CASL Programmer's Guide

track (statement)

Table 6-21. Conditions for the track statement (cont.)

Condition Explanation

qui e t Indicates to wait until the communications line is quiet
(no characters are received) for the amount of time spe­
cified in t j me.

key Specifies a keyboard character to track. (See the in key
function earlier in this chapter for a list of keys and their
corresponding numbers). Note that key comes from the
local keyboard, not the communications line.

Use the t ra c k ro ut i ne form of the t ra c k statement to designate a
subroutine or a procedure that handles the t rae k event.

Use the t rae k c 1 ear form of the t rae k statement to clear all tracked
items and reset all of the track flags.

If you want to stop tracking a particular item, set the item to a null
string. If you want to stop tracking everything, use t rae k c 1 ear.

Note: You can use the rna t ch system variable to return the string
found during the last t rae k operation.•

Versions of Crosstalk for Windows older than 2.0 do not support this
statement.

For related information, see the inkey, t rae k, and f r e e t rae k
functions; the rn ate h system variable; and the wait and wa t c h ..,
end wate h statements.

Using the Programming Language 6-26

track (statement)

Example

track clear
track 1, space "system going
track 2, case space "no more
track 3, case "thank YOU for
track 4, key 833
track 5, qui et 1 minute
track routine check track

down"
messages"
calling"

- ­ Alt-A

wait for key 27 - - Esc

end
1abe 1 c h e c k_t r a c k
if track(1) then

{ bye: wait 8 minutes: call "megamail" : end}
if track(2) then goto send_outbound_messages
if track(3) then { bye: end}
if track(4) then end
if track(5) then (alarm 6 : reply: return)

This example shows t r a c k being used to watch for potential problems
during an unattended, imaginary electronic mail session. t rae k also
looks for the ALT-A key identifier to indicate the script should end.

6-264 CASL Programmer's Guide

track (function)

track (function)

Use the t r a c k function to determine if a string or event for which a
t r a c k statement is watching has occurred.

Format

x = track

x track«tracknum>l

The t r a c k function checks if one of the strings or events for which a
t r a c k statement is watching has been received and, if so, which one.
Use this function with the wa i t and wa t c h ... end w at ch statements.

t r a c k events take precedence over wa i t and wa t c h events. If a t r a c k
event occurs while a script is at a wa i t or wa t c h, the wa i t or wa t c h
is terminated and program control passes to the next statement. If you
use t r a c k r 0 uti n e, control first passes to the specified subroutine.

You can check events that you are tracking only at a wa i t or wa t c h. If
you do not use t r a c k r 0 uti ne, you will have to check the event with
an if ... the n ... e1 s e statement.

t ra cknum is the track number for the t ra c k event.

The t r a c k function is set to t rue when the string or event in the
corresponding t r a c k statement is received.

The first form of the t r a c k function returns the value of the lowest
track number that has had an event occur. If none of the t r a c k state­
ments has found a match, the t r a c k function returns fa 1 s e. The
second form of the t r a c k function, t r a c k (n l, returns t rue if the
specified track event has occurred. Checking the function clears it.

Versions of Crosstalk for Windows older than 2.0 do not support this
function.

For related information, see the f r e e t r a c k function; the mat c h
system variable; and the track, wai t, and watch ... endwatch
statements.

Using the Programming Language 6-265

track (function)

Example

track 1, "System is going down"
wait for key 27
if track(l) then reply "logout"

In this example, the t rae k statement is using track number 1 to watch
for a string. The script is waiting for the ESC key. The t r a c k function
for track 1 is checked to determine if the string was found, and if so, a
logout message is sent to the host.

6-266 CASL Programmer's Guide

trap

trap (compiler directive)

Use t rap to control error trapping.

Format

trap {on I off}

t rap enables and disables error trapping in a script. It allows you to
control the actions of a script when errors are encountered that would
normally stop script execution. When t rap is 0 n, it prevents an error
condition from interrupting the running of a script.

The default setting for t rap is 0 ff. When t rap is 0 n, the err 0 r
function and the errc 1 ass and err n0 system variables should be
tested to determine the occurrence, class, and number of an error. When
the err 0 r function is tested for a value, it is cleared out. If it is not
cleared, the next error that occurs will stop the script. Refer to err 0 r,
err c 1 ass, and err n0 earlier in this chapter for more information on
their use.

In general, it is best to set t rap to 0 n just prior to a statement that
might generate an error and then set it to 0 ff immediately after the
statement executes. Be sure to check the error return codes because
a subsequent statement may reset the codes.

Example

string fname
fname = "*.exe"

trap on
send fname
trap off
if error then goto error_handler

In this example, the script branches to an error-handling routine if an
error occurs when the sen d statement is executed.

Using the Programming Language 6·267

true

true (constant)

Use t rue to set a variable to logical true.

Format

x = true

t rue is always logical true. t rue, like its complement fa 1se, exists
as a way to set variables on and off. If t rue is converted to an integer,
its value is 1 (one).

For related information, see the fa 1 s e, 0 n, and 0 ff constants.

Example

x = 1
done = false
while not done

x = x + 1
if x = 10 then done true

wend

In this example, the statements in the whi 1e/we n d construct are
repeated until d one is t rue.

6-268 CASL Programmer's Guide

unloadallquickpads

unloadallquickpads (statement)

Use u n loa dall qui c k pad s to unload all of the OuickPads for the
current session.

Format

un1oada11quickpads

This statement unloads all open OuickPads for the current session.

Note: The QuickPads for the session must already be loaded using the
loa dqui c k pad or loa dall qui c k pad s statement. •

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0

do not support this statement.

For related information, see the statements loa d a 11 qui c k pad s,

1oadqui ckpad, and un1 oadqui ckpad.

Example

un1oada11quickpads

Using the Programming Language 6-269

unloadquickpad

unloadquickpad (statement)

Use un loa dqui c k pad to unload the specified QuickPad for the current
session.

Format

unloadquickpad <string>

This statement unloads the QuickPad specified in s t r i ng.

Note: The QuickPad for the session must already be loaded using the

1oadqui ckpad or 1 oadall qui ckpads statement..

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0

do not support this statement.

For related information, see the statements loa d a 11 qui c k pad s,

1oadqui ckpad, and unl oadall qui ckpads.

Example

unloadquickpad "apad"

In this example, the QuickPad "apad" is unloaded.

6-270 ' CASL Programmer's Guide

upcase ' (function)

upcase

Use up cas e to convert a string to uppercase letters.

Format

x$ = upcase«string»)

upc a s e converts only the letters a-z to uppercase characters; numerals,
punctuation marks, and notational symbols are unaffected.

For related information, see the low cas e function.

Example

string yn
print "Do this again?";
input yn
if upcase(yn) = "yo then goto start

In this example, the character entered by the user, which is stored in the
y n variable, is checked to determine if it is an uppercase "Y." If it is,
the script branches to the label s tar t.

Using the Programming Language 6-271

upload

upload (statement)

Use up load to upload a text file.

Format

upload <fi7ename>

fi 7ename is the name of an existing ASCII text file.

Use this command only when you are on line to the host.

Note: To initiate a file upload using your Crosstalk application,
choose Session from the Action pull-down and then choose Upload
Text File .•

Refer to your Crosstalk user's guide for more information about up­
loading ASCII text files.

Examples

upload "login.xws"

In this example, the script uploads a file called log in. x w s .

upload fname

In this example, the script uploads the file assigned to the fname

variable.

6-272 CASL Programmer's Guide

userid

userid (system variable)

Use use rid to read or set a user account number or identifier for a
session.

Format

userid = <string>

use rid sets and reads the user account identification associated with the
current session. use rid is limited to 40 characters.

Note: To set up the equivalent parameter using your Crosstalk appli­
cation, choose Session from the Settings pull-down. Then choose the
General icon and modify the User ID parameter.•

Examples

userid = "76004,302"

In this example, use rid is set to the specified string.

reply userid

In this example, use rid is sent to the host.

userid = ""

In this example, use rid is cleared.

Using the Programming Language 6-273

val

val (function)

Use val to return the numeric value of a string.

Format

x = val«string»

The v a 1 function, like the i n t val function, returns a numeric value;
however, val returns a real (floating point) number rather than an int­
eger. The val function evaluates 5 t r in9 for its numerical meaning
and returns that meaning as a real. Leading White-space characters are
ignored, and 5 t r in9 is evaluated until a non-numeric character is
encountered.

The characters that have meaning to the val function are: "0" through
"9", ".", "e", "E", "_", and "+".

Versions of Crosstalk for Windows older than 2.0 do not support this
function.

For related information, see the i n t val function.

Example

num = val(user_input_string)

In this example, use r_in p u t_s t r i n 9 is converted to a real number
and returned in n um.

6·274 CASL Programmer's Guide

version

version (function)

Use ve r s ion to return the Crosstalk version number.

Format

x$ = version

ve r s ion returns the Crosstalk version number as a string.

Example

print version

In this example, the Crosstalk version number is displayed.

Using the Programming Language 6·275

wait

wait (statement)

Use wa it to wait for a string of text from the communications device
or to wait for a keystroke.

Format

wait [<time>] for <conditions>

The conditions are one or more of the following, separated by commas:

[[case] [space] <string>]
[quiet <time>]
[key <key_value>]
[count <integer>]

The wa i t statement waits the amount of time specified in time for
one of the values specified in the foregoing format.

There are a number of special sequences you can specify in s t r j ng,
each of which affects a wa i t statement. See the t rae k statement
earlier in this chapter for a list of applicable sequences.

t j me is a time expression in one of the following forms:

n hours
n minutes
n seconds
n tic ks (1110 seconds each)

Table 6-22 explains the wa i t conditions.

6-276 CASL Programmer's Guide

wait

Table 6-22. 	 Conditions for the wait statement

Condition 	 Explanation

5 t r i n9 	 cas e. Indicates that the string to be matched is case­
sensitive. Unless this modifier is specified, Crosstalk
ignores case.

spa c e. Indicates that Crosstalk should match all white­
space characters exactly as specified in 5 t r in g. Any
extra white-space characters are not allowed.

Note: case and space can be used together to ensure
an exact string match .•

quiet 	 Indicates to wait until the communications line is quiet
(no characters are received) for the amount of time spe­
cified in time.

key 	 Specifies a keyboard character for which to wait. (See
the in key function earlier in this chapter for a list of
keys and their corresponding numbers). key 0 means
wait for any key. You can retrieve the value of the key
that was pressed by using the match function. Note
that key comes from the local keyboard, not from the
communications line.

count 	 Indicates to wait for the number of characters specified in
integer.

If one of the time options (mi nutes, seconds, or ti cks) is speci­
fied, and the specified string is not matched, the timeout system var­
iable returns t rue, indicating that the desired string was not received in
the time specified. The default time is forever.

Only the following constructs are valid when the session is off line; the
session must be on line to use any other option.

wait <time>

wait for key <inkey_va)ue>

wait <time> for key <inkey_va)ue>

Using the Programming Language 6-277

wait

For related information, see the ma t chand t i mea u t system variables,
the track and watch ... endwatch statements, and the i nkey
function.

Examples

wait for "Login:" : reply userid

In this example, the script waits for the specified phrase and sends the
information stored in the use rid system variable to the host.

wait 1 second for "Hello"

In this example, the script waits 1 second for the specified phrase.

wait for "A", "8", "e"
string_in = match
case string_in of

"A" reply 'We received an "A"'
"B" : reply 'We received a "8" I

"C nf"C" : reply 'We received a
endcase

In this example, the scripts waits for anyone of the characters "A," "B,"
or "c." Depending on which value is received, the appropriate response
is sent to the host.

wait 20 seconds for "in:" : if timeout then
goto no_ans

In this example, the script waits 20 seconds for a phrase. If the phrase
does not arrive within the 20-second time frame, the script branches to
the label n a a n s .

wait for count 10

In this example, the script waits until 10 characters are received.

wait for case "UserID:"

In this example, the script must wait for an exact upper- and lowercase
match for the Use rID: prompt.

6-278 CASL Programmer's Guide

watch ... endwatch

watch ... endwatch (statements)

Use wa t c h ... end w ate h to watch for one of several strings of text
from the communications device or to watch for a keystroke.

Format

watch [<time>] for
[[case] [space] <string> :

[<statement group>]]
[quiet <time>] : [<statement group>]
[key <stroke_va7ue>] : [<statement group>]
[count <integer>] : [<statement group>]

endwatch

The wa t c h statement waits the length of time specified in time for one
of the conditions specified in the foregoing format. time is optional;
however, if you do not specify a time limit, watch ... endwatch waits
forever.

watch performs the statements in statement group when the cor­
responding condition is met. The program logic then continues with
the statement following endwatch. statement group is optional.

s t r i ng, qui e t, and so on, are conditions for which to watch.

There are a number of special sequences you can specify in s t r i ng,
each of which affects a wa t c h statement. See the t rae k statement
earlier in this chapter for a list of applicable sequences.

time is a time expression in one of the following forms:

n hours

n minutes

n seconds

n ti cks (1/10 seconds each)

Using the Programming Language 6-279

watch ... endwatch

Table 6-23 explains the wa t c h conditions.

Table 6·23. 	 Conditions for the watch statement

Condition 	 Explanation

5 t r j ng 	 cas e. Indicates the case of the string must be matched
exactly. watch is case-insensitive unless the case
keyword is used.

spa c e. Indicates the string cannot contain extra white­
space characters. wa t chis not sensitive to embedded
white-space characters unless the spa c e keyword is
used.

Note: cas e and spa c e can be used together to ensure
an exact match .•

quiet 	 Indicates the communications line must remain quiet
(no characters should be received) for the amount of time
specified.

key 	 Specifies a keyboard key for which to watch. (See the
in key function earlier in this chapter for a list of keys
and their corresponding numbers.)

count 	 Specifies to watch for the number of characters given in
j nteger.

The wa t c h/ end w at c h construct is not a looping construct. When one
of the wa t c h conditions is met, the script goes on to execute the appro­
priate statement(s). If you want to use these statements in a loop, place
them inside a w hi 1 e/we n d construct.

Use this statement only when you are on line, unless you are using it to
watch for a keystroke.

For related information, see the t r a c k, wa it, and wh i 1 e ... we n d
statements; the ma tc h system variable; and the in key function.

6·280 CASL Programmer's Guide

watch ... endwatch

Examples

watch for
"Login:" : goto login_procedure
"system down" : goto cant_log_in
quiet 10 minutes: goto system_is_dead
key 27 : reply "logoff" : bye: end

endwatch

In this example, the script watches for one of the specified events. If
anyone of the events is true, the statement(s) to the right of the colon
are executed, and the watch/endwatch construct is completed.

while online
watch for

"graphics"
"first name"
"password"

endwatch

repl y "Yes"
: reply userid
reply password end

wend

This example shows how to make the watch/endwatch construct part
of a wh i 1e/wend loop. The code shown is a simple login script for the
Crosstalk BBS. The whi 1e/we n d construct continues to loop until
watch receives the password: prompt.

Using the Programming Language 6-281

weekday

weekday (function)

Use wee kday to return the number of the day of the week.

Format

x = weekday[«integer»)]

wee kday returns the number (0--6) of the current day of the week.
Sunday is day 0 (zero), Monday is 1, and so on.

If integer is specified, weekday returns the day of the week for a
given date in the past or future.

Examples

print weekday, weekday(365)

For a Friday, the script in this example prints 5, a tab, and 1.

print weekday(filedate("somefile"))

This example shows how to print the number of the day of the week

when somefi 1 e was last modified.

6-282 CASL Programmer's Guide

while ... wend

while ... wend

(statements)

Use wh i 1e ... wend to perform a statement or group of statements as
long as a specified condition is true.

Format

while <expression>

wend

ex pre s s ion is any logical expression; it can be a combination of
numerical, boolean, or string comparisons that can be evaluated as either
true or fal se.

whi 1 e lets you perform one or more statements as long as a certain ex­
pression is true. Unlike the repeat/unti 1 construct, the whi 1e/
wen d construct is not executed at all if the expression is fa 1 s e the first
time it is evaluated.

wen d indicates the end of the conditional statements.

When using any looping construct, be sure the terminating condition
(that is, exp res s i on) will eventually become true, or that there is
some other exit from the loop.

For related information, see the rep eat ... un til statements.

Example

x = 1
whil e x <> 100

print x

x = x + 1

wend

In this example, the script prints the numbers 1 through 99.

Using the Programming Language 6-283

winchar

winchar (function)

Use win c h a r to return the ASCII value of a character read from a
session window.

Format

x = winchar«ro~ col»)

win c h a r reads a character from a window, at row, col. The win c h a r
function helps you determine the results of operations not under script
control, such as the appearance of a certain character at a certain location
on the screen while under the control of a host computer.

For related information, see the next c ha r, next 1 i ne, and
win s t r i n 9 functions.

Example

charI = winchar(l, 1)

In this example, the character at row 1, column 1 is stored in c ha r 1.

6-284 CASL Programmer's Guide

winsizex

winsizex (function)

Use win s i z e x to return the number of visible columns in the session
window.

Format

x = winsizex

wi ns i zex returns the width of the session window, in columns. This
function is especially handy when writing scripts that display informa­
tion and need to accommodate the size of the terminal screen.

For related information, see the win s i z ey function.

Examples

print winsizex

In this example, the script prints the width, in columns, of the terminal
window at its current size.

if winsizex < 80 then maximize

If the session window is less than 80 columns in width, this statement
maximizes it.

Using the Programming Language 6-285

winsizey

winsizey (function)

Use win s i z ey to return the number of visible rows in the session
window.

Format

x = winsizey

win s i z ey returns the height of the session window, in rows. This
function is especially useful in scripts that must accommodate the
screen size to operate properly.

For related information, see the win s i zex function.

Example

if winsizey < 24 then maximize

If the session window is less than 24 rows in length, this statement
maximizes it.

6-286 CASL Programmer's Guide

winstring

winstring (function)

Use win s t r i n9 to return a string read from a session window.

Format

x$ = win s t r i n 9 (<row, co),) en>)

win s t r i n9 reads a string of characters from the session window,
beginning at row, co), for) en characters, with any trailing spaces
removed.

win s t r i n9 lets you determine the results of operations not under script
control, such as the appearance of a certain string at a certain location on
the screen while under the control of a host computer.

Example

string data
data = winstring(10, 10, 11)

if data = "Login name:" then reply userid

In this example, the script's d a t a variable is assigned the contents of
the screen area specified by the win s t r i n g function. If those characters
equal "Login name:" then the use rid system variable is sent to the
host.

Using the Programming Language 6-287

winversion

IWin I winversion (function)

Use win v e r s ion to check the Windows version number.

Format

x$ = winversion

win v e r s ion returns the Windows version number as a string.

Example

print winversion

In this example, the script displays the Windows version number on the
screen.•

6·288 CASL Programmer's Guide

write (statement)

write

Use wri te to write data to a sequential disk file.

Format

write [4I<filenum>,] [<item>] [{, I ;} ...
[< item>]] ... [;]

The wri te statement operates only on files opened in output or
a p pen d modes. f j 7en u m must be an open file output number; if
fj 7enum is not specified, the default output file number, which is
stored in the variable de f 0 u t put, is assumed.

The wri te statement writes lines containing comma-delimited fields of
ASCII data. Each wri te adds the members of 5 t r j n9_ va r_7 j 5 t to
the file, with the contents of each member separated from the next by a
comma. To suppress the commas in the output file, separate the items
in the list with semicolons instead of commas. If the contents of a
member of 5 t r j ng_ va r_ 7j 5 t include commas or quotation marks,
use the quote function to enclose the members in appropriate quotation
marks.

Normally, wri te terminates each write to the file with a carriage­
return/line-feed (CR/LF) pair. To suppress the CRlLF, use the
trailing semicolon.

For related information, see the de f 0 u t put system variable, the 0 pen
and wr i tel i n e statements, and the quo t e function.

Examples

open output file_name as #1
write if I, alpha, beta, gamma;
close #1

In this example, the script opens a file, writes the specified strings of
data to the file, and closes the file.

Using the Programming Language 6-289

write

wr i t e til, quo t e (v a r 1), quo t e (v a r 2), ...
quote(var3)

In this example, the script encloses the data strings in quotation marks
before writing them to the file.

6-290 CASL Programmer's Guide

write line

write line (statement)

Use w r i tel i n e to write data to a sequential disk file.

Format

write line [1f<filenum>,] [<item>] [{, I ;} ...
[< item>]] ... [;]

As with the w r i t e statement, the w r iteli n e statement operates only
on files opened in 0 u t put or a p pen d modes. f i 7en u m must be an
open file output number; if fi 7enum is not specified, the default output
file number, which is stored in the de f 0 u t put system variable, is
assumed.

The w r i tel i n e statement writes a new line for each item. You can
suppress this by separating items with a semicolon.

Normally, wri te 1 i ne terminates each write to the file with a carriage­
returnlline-feed (CR/LF) pair. To suppress the CR/LF, use the trailing
semicolon.

For related information, see the de f 0 u t put system variable and the
ope nand w r i t e statements.

Examples

write line "end of test"

In this example, the text line "end of test" is written to a file. Since the
file number is not specified, the default file number in de f 0 u t put is
used.

wri te 1 i ne #1, some_text

In this example, the script writes the contents of S ome_ t ext to the file
identified by the file number if 1.

Using the Programming Language 6-291

xpos

xpos (function)

Use xpos to find out the column location of the cursor.

Format

x = xpos

xp0 s returns the number of the column on which the cursor rests.

Examples

cur col = xpos

In this example, the script assigns the cursor's current column position
to the cur col variable.

if xpos = winsizex - 1 then alarm

In this example, the terminal sounds an alarm if the cursor position is
one column less than the size of the window.

6-292 CASL Programmer's Guide

ypos (function)

ypos

Use ypos to find out the row location of the cursor.

Format

x = ypos

ypos returns the number of the row on which the cursor rests.

Examples

cur row = ypos

In this example, the script assigns the cursor's current row position to
the cur r ow variable.

if ypos = winsizey - 1 then alarm

In this example, the terminal sounds an alarm if the cursor position is
one row less than the size of the window.

Using the Programming Language 6·293

zoom

zoom (statement)

Use zoom to enlarge a session window to the size of the Crosstalk
application window.

Format

zoom

zoom enlarges a session window to fill the Crosstalk application frame.

Crosstalk Mark 4 and versions of Crosstalk for Windows older than 2.0

do not support this statement.

For related information, see the hid e and show statements.

Example

if 	online then
zoom

In this example, the session window is enlarged if the session is on line
to the host.

6-294 CASL Programmer's Guide

The tool concept

The tool concept

A tool is a Crosstalk code file that is used to control a specific aspect of
a communications session. There are three types of tools: terminal,
connection, and file transfer. Each tool type offers a number of indi­
vidual tools, and each of those tools is suited to a specific communica­
tions task. Only One tool of each type is used for any given session.

You do not need to use each type of tool to complete a communications
task. At a minimum, communications requires a connection tool and a
terminal tool; a file transfer tool is needed only when you want to trans­
fer files. For example, if you are simply calling an information service
to browse the news, all you need is a connection tool appropriate for
your communications hardware and a terminal tool appropriate for the
system with which you are communicating.

You can establish the settings for the various tools using the Connec­
tion, Terminal, and File Transfer Tools provided with your software.
You can also set up or modify these settings in your scripts. The fol­
lowing sections provide information you need in order to work with the
three types of tools.

CASl Programmer's Guide 7-2

Terminal tool

Terminal tool

The remote systems with which you communicate are designed to be
connected to terminals of their own system type. This means they
expect to interact with specific terminals whose keyboard and display
characteristics are not exactly the same as that of a Pc. During com­
munications with a remote system, the terminal tool causes your PC
to emulate (assume the characteristics of) a terminal of the correct type.
This allows communications to continue just as if you were using a
terminal designed specifically for that remote system.

The terminal tool options provided with the software are set to the
defaults of an actual terminal. Even though many options are available
to ensure complete emulation capabilities, you do not need to be con­
cerned with all of the possible settings because the default settings al­
low communications to continue normally with most remote systems.
In general, you would change the default values only if the remote sys­
tem has been configured to require specific settings for its terminals or
if an option suits your personal preference.

Two fonts are included with your product: the IBM-PC font and the
DCA DEC font. These fonts are in two forms-bitmap and True Type.
Crosstalk automatically selects the correct font for the terminal tool you
are using. For example, the DCA DEC font is used for DEC, HP, and
WYSE emulations, and the IBM-PC font is used for IBM-PC (ANSI)
emulation. IBM 3101, TTY, Vidtex, and FTTERM emulations can use
any of the fonts provided, including the DEC and IBM-PC fonts. You
can override the default font, but incorrect characters may result.

Crosstalk for Macintosh, because of its support for the Apple Comm
ToolBox, can use third-party terminal tools that are not shipped with
your Crosstalk product. •

To set up or modify the terminal emulation type in a script, you must
use the ass Lime statement to access the terminal tool variables and then
assign the appropriate terminal emulation name to the t e r min a 1 sys­
tem variable. For information about the ass Lime statement and the
t e r min a 1 system variable, refer to Chapter 6, "Using the Program­
ming Language."

Note: To find detailed information about the terminal tool variables,
refer to the on-line help available for the Terminal tool. •

Working with Terminal, Connection, and File Transfer Tools 7·3

Connection tool

Connection tool

The connection tool contains the settings that control the hardware
device used for communications. These settings determine such
characteristics as communications speed, the character format of
transmitted data, and flow control.

Crosstalk for Macintosh provides the Apple Serial and Apple Modem
tools with the software. You can also use tools from other vendors,
including Apple's LAT tool, the Hayes modem tool, and other tools
that support the CTB standard .•

Crosstalk for Windows provides tools that support direct connection
with no modem (Local COM Port), dialing a modem attached to your
PC (Local Modem), dialing a modem attached to a NetWare Asynch­
ronous Communications Server (NASI-Advanced and NASI-Basic),
and INT 14 .•

To set up or modify the connection device type in a script, you must
use the ass ume statement to access the connection tool variables and
then assign the appropriate connection device name to the de vic e
system variable. For information about the ass u m e statement and the
de vic e system variable, refer to Chapter 6, "Using the Programming
Language."

Note: To find detailed information about the connection tool variables,
refer to the on-line help available for the Connection tool. •

7·4 CASL Programmer's Guide

File transfer tool

File transfer tool

The file transfer tool specifies a file transfer protocol, which is a stand­
ardized method of exchanging files between two computers. Each file
transfer protocol has a unique set of rules and conventions that define,
among other things, the number of bytes to send for each block of data
and how to detect and correct errors.

For a file transfer to work, both the sending and receiving computer
must use the same protocol. To ensure maximum flexibility with a
variety of remote systems, Crosstalk supports the most common file
transfer protocols.

Crosstalk for Macintosh, because of its support for the Apple Comm
ToolBox, can use third-party file transfer protocol tools that are not
shipped with your Crosstalk product. •

To set up or modify the file transfer protocol in a script, you must use
the ass ume statement to access the file transfer tool variables and then
assign the appropriate file transfer protocol name to the pro t 0 col
system variable. For information about the ass ume statement and the
protocol system variable, refer to Chapter 6, "Using the Program­
ming Language."

Note: To find detailed information about the file transfer tool varia­
bles, refer to the on-line help available for the File Transfer tool. •

Working with Terminal, Connection, and File Transfer Tools 7-5

Introduction

Introduction

The language elements presented in this guide are applicable to scripts
developed for Crosstalk for Windows or Crosstalk for Macintosh.
However, many of the elements are also valid for Crosstalk Mark 4.
This chapter explains the CASL compatibility among these Crosstalk
applications.

Crosstalk for Windows

There are differences between this implementation of CASL and that
used in older versions of Crosstalk for Windows. The following sec­
tions list the language elements that have been added to, changed for,
and removed from this release of CASL.

New elements 	 The following new language elements are supported only for Crosstalk
for Windows, version 2.0 and newer:

activatesession loadquickpad
activesession max (Was an operator)
assume mi n (Was an operator)
ca se/endcase nextline function
connectreliable on
copy perform
ddeack press
ddeadvise proc/endproc
ddeadvisedatahandler return (from a function)
ddenak rewind
ddeunadvise scriptdesc
device session
di almodifi er (Was modifi er) sessname
do sessno
downloaddir showallquickpads
ex i t (from a procedure) showquickpad
for/next stroke
func/endfunc track function
genlabels track statement
genlines unloadallquickpads
hideallquickpads unloadquickpad
hidequickpad val
keys zoom

CASL Programmer's Guide 8-2

Crosstalk for Windows

Changed
elements

Removed
elements

The following language elements have changed for Crosstalk for
Windows, version 2.0 and newer:

backups
chain
close
cmode
connected
dialogbox/enddialog
display
fileattr
filedate
filesize
filetime
get
go
kermit
netid
number
open
pack

password
pad
printer
protocol
quit
read
readline
redialcount
redi alwait
script
startup
write
write 1 i ne
time
terminal
tabex
userid

The following language elements are no longer supported for Crosstalk
for Windows, version 2.0 and newer:

answersetup
bookname
colorsereen
eonneetarq
connects peed
dial
dialprefix
dial suffix
dirxwp
dirxws
fkey statement
fkey function
hostmode
hostscript
inbook

kclear
ldnuillber
mise
outnumber
review
secret
showactive
showhscroll
showinput
showactive
showkeybar
showstatusbar
showvscroll
windowwrap

Compatibility Issues 8-3

Crosstalk for Macintosh

Crosstalk for Macintosh

The following language elements are not supported for Crosstalk for
Macintosh:

chmod
curdrive
ddeack
ddeadvise
ddeadvisedatahandler
ddeexecute
ddei niti ate
ddenak
ddepoke
dderequest
ddestatus

Crosstalk Mark 4

ddeterminate
ddeunadvise
dosversion
drive
environ
fncheck
fnstrip
move
size
winversion

The following language elements are not supported for Crosstalk
Mark 4:

activate
activatesession
activesession
alert
connectreliable
ddeack
ddeadvise
ddeadvisedatahandler
ddeexecute
ddei niti ate
ddenak
ddepoke
dderequest
ddestatus
ddeterlllinate
ddeunadvise
dialogbox/enddialog
di rfi 1
func/endfunc
footer
header

hideallquickpads
hidequickpad
kermit
loadquickpad
max
maximize
message
min
minimize
on
restore
return (from a function)
showallquickpads
showquickpad
tabwidth
terminate
unloadallquickpads
unloadquickpad
winversion
zoom

CASL Programmer's Guide 8-4

Developing DDE scripts

Developing DDE scripts

Scripts developed for Crosstalk for Windows can exchange information
with other applications using a protocol called Dynamic Data Exchange.
Using DDE, you can transfer data on a one-time basis, or establish an
ongoing dialog with other applications. This section explains things to
keep in mind when using DDE to communicate with other applications.

Topic name To execute a Crosstalk command from another application during

support a DDE conversation, use" XT A L K" as the application name, and
"s ys t em" as the topic. If a topic name is not specified, it is treated
as "system."

Crosstalk also accepts a session name as a DDE topic. With the addi­
tional session topic, you can access Crosstalk by referencing the name
of a session. The session name is displayed in the session window title
bar.

Requesting 	 The remote application can execute several requests during a DDE
conversation. Table A-lUsts valid requests for the system topic.information

Table A-I. Valid requests for the system topic

Request 	 Crosstalk response

top i c s 	 Returns a space-separated list of open profile
items.

s ta t us 	 Returns the word "Ready" or "Busy,"
depending on the application status.

fo rma ts 	 Returns the numeric value of the Windows
define CF TEXT.

s y sit ems Returns a list of the requests described in this
table.

A·2 CASL Programmer's Guide

Developing DDE scripts

Table A-2lists valid requests for a session topic.

Table A·2. Valid requests for a session topic

Request 	 Crosstalk response

status 	 Returns one of the following:

Busy 	 Connecting or disconnect­
ing.

Disconnected 	 Not connected.

Ready 	 Connected but not busy.

Script 	 A script is running. (A
ddeexecute command
will fail.)

Transfer 	 A file transfer is in pro­
gress. (A ddeexecute
command will fail.)

A pub 1 i c variable Returns the requested variable.

Executing 	 There are several Crosstalk commands you can execute from other ap­
plications during a DDE conversation. You should enclose the com­Crosstalk
mands in brackets. For example, the following command instructs commands
Crosstalk to dial the CSERVE session:

"[dial (CSERVEl]"

Table A-3lists valid commands for the system topic.

Windows Considerations A·3

Developing DDE scripts

Table A-3. Valid commands

Command

[load«entry_name»J

[newJ

for the system topic

Description

Starts the specified session. A topic
by this name is created.

Creates a new untitled session. The
session topic name may vary depend­
ing on how many untitled sessions
are already open.

Table A-4 lists valid commands for a session topic.

Table A-4. Valid commands

Command

[bye J

[cancelJ

[closeJ

[dial «entry_name»J

for a session topic

Description

Disconnects the connection. This
command is equivalent to the CASL
bye statement.

Cancels the currently running script.
This command is equivalent to the
CASL hal t statement.

Requests Crosstalk to terminate.
Termination is delayed until the DDE
channel is closed. Be careful in using
this command; when Crosstalk re­
ceives a c los e command, it termin­
ates even if a connection is active.

Loads and dials the specified session.
The script associated with the session
(if any) is run after a connection is
made. This command is NOT valid
if a CASL script is running. The
command is equivalent to the
[load «entry_name»J [goJ
command combination.

continued

CASL Programmer's Guide A-4

Learning more
about DDE

Table A-4. Valid commands

Command

[execute(<scr i pLname»]

[go]

[load«entry_name»]

[new]

[save]

[s aveas(<ent r y_name»]

Developing DOE scripts

for a session topic (con t.)

Description

Executes the specified script. The
script's name can include arguments
for the script. This command is
NOT valid if a CASL script is
running.

Connects to the selected communica­
tions port. This command is equiva­
lent to the CASL go statement.

Starts the specified session. This

command is NOT valid when a

CASL script is running.

Loads default Crosstalk parameters,
and starts the NORMAL session.
You can use this command to reset
Crosstalk settings. This command is
NOT valid when a CASL script is
running.

Saves Crosstalk settings using the

current session.

Saves the Crosstalk settings using

the session name specified in the

command.

Several DDE scripts are provided with the Crosstalk for Windows soft­
ware. If you are not familiar with DDE, you can run these scripts to
learn about it. If you have Microsoft Excel, you can use the Excel
demonstration scripts, also provided with the software, to see how
Crosstalk and Excel interact through DDE.

Windows Considerations A-5

Developing DDE scripts

DOE demonstration
scripts

The DDE demonstration scripts place stock price information in an
Excel spreadsheet. Two demonstration scripts are available: an on-line
script and an off-line script. The on-line script accesses CompuServe's
stock price information to place current stock prices in a chart. To run
the on-line script, you must have a CompuServe account and be able to
edit session information. The off-line script simulates this process and
does not require a CompuServe account.

Table A-5 lists the files that make up the DDE demonstration script set.

Table A·5. DDE demonstration script files

File name Purpose

EXCELSTK.XWS This is the on-line script. It runs after a
connection with CompuServe is established.
Its purpose is to extract current stock data,
which is passed to Excel through DDE. This
script uses the CSERVE.xWP session.

EXCELOFF.xWS This is the off-line script. It sends simulated
stock data to Excel through DDE.

XTALKDDE.xLM This is the Excel macrosheet. It opens auto­
matically.

XTALKDDE.xLS This is the Excel worksheet.
matically.

It opens auto­

XTALKDDE.xLW This is the Excel workspace.
you open from Excel.

It is the file

Running
scripts

the DOE You must start both the on-line and off-line scripts from Excel. To do
this, follow these steps:

1 Start Excel and maximize the window for best display.

2 Choose Open from the File pull-down.

3 Specify XTALKDDE.xLW as the file to open.

CASL Programmer's Guide A-6

Information
provided for
DDE commands

Developing DDE scripts

Use the keys shown in Table A-6 to run the on-line or off-line script or
to display help information.

Table A-6. DDE demonstration script control keys

Keys Action

CTRL-A Runs the on-line script.

CTRL-Z Runs the off-line script.

CTRL-H Displays help information.

Before you refer to the DDE commands in the sections that follow, you
may find it helpful to understand how the information is presented. The
command names are presented in alphabetical order. For each command,
the format of the command is shown, followed by an example of how
you can use the command in your script.

Windows Considerations A-7

ddeack

ddeack (statement)

Use d d e a c k to send a positive acknowledgment to the application that
sent a ddeadvi sedata message.

Format

ddeack <ddechanne7>

ddechanne 7 is the integer DDE channel number. This variable should
be defined at the beginning of the script. Windows assigns a value to
the variable when you initiate a DDE conversation. See the
d d e i nit i ate statement later in this chapter for more information.

You must use this command inside your d d e a d vis e d a t a event
handler; otherwise, a run-time error occurs.

Versions of Crosstalk for Windows older than 2.0 do not support this
statement.

Example

ddeack dde channel

In this example, an acknowledgment of receipt of add e a d vis e d a t a
message is sent through the channel dd e_ch a nne 1.

A-a CASL Programmer's Guide

ddeadvise

ddeadvise (statement)

Use d d e a d vis e to request notification of all changes to a specified data
item. The request remains in effect until it is canceled with the
dd e una d vis e statement.

Format

ddeadvise <ddechanne7>, <itemname>

ddechanne 7 is the integer DDE channel number. This variable should
be defined at the beginning of the script. Windows assigns a value to
the variable when you initiate a DDE conversation. See the
d d e i nit i ate statement later in this chapter for more information.

it emn ame is the name of the data item about which you want to be
informed.

Versions of Crosstalk for Windows older than 2.0 do not support this
statement.

Example

ddeadvisedatahandler ddeadvisedataprocedure
ddeadvi se excel IO, "R4C5"

In this example, the DDE data handler ddeadv is eproced ure is
enabled. Then a ddeadvi se request is sent for the item R4C5.

Windows Considerations A-9

ddeadvisedatahandler

ddeadvisedatahand ler (event handler)

Use ddeadvi sedatahandl er to enable the event handler that will
handle d de advis e d a t a message events This type of event occurs
when an incoming ddeadvi sedata message is received.

Format

ddeadvisedatahandler [<ddeadvisedatahandlername>]

You must declare your event handler before you enable it. Declare the
d dead vis ed at aha nd 1e r procedure as follows:

proc <ddeadvisedatahandlername>
integer <ddechannel>, string <itemname>,
string <data>

endproc

This procedure must accept three arguments: ddechanne I (the channel
through which the advise notification is received), i temname (the name
of the data item about which you asked to be informed), and data (the
data in i temname that has changed). No additional ddea dvi seda ta
messages are processed until this procedure returns control.

At some point in your event handler, you should reply using either
d d e a c k for a positive acknowledgment or d den a k for a negative
acknowledgment.

Note: If you want to turn off d d e a d vis e d a t a message handling,
use d d e a d vis e d a t a han d 1e r without specifying a procedure name.
When you omit the procedure name, the CASL default DDE advise
handler, which ignores d d e advis e d a t a events, becomes active .•

Versions of Crosstalk for Windows older than 2.0 do not support this
event handler.

A-10 CASL Programmer's Guide

ddeadvisedatahandler

Example

proc ddeadvi sedataprocedure integer dde_channel, ...
string itemname, string data

endproc

ddeadvisedatahandler ddeadvisedataprocedure

In this example, the advise handler ddeadvi sedataprocedure is
declared, and then it is enabled.

Windows Considerations A·11

ddeexecute

ddeexecute (statement)

Use ddeexecute to ask another application to execute a command.

Format

ddeexecute <ddechanne7>, <command>

ddechanne 7 is the integer DDE channel number. This variable should
be defined at the beginning of the script. Windows assigns a value to
the variable when you initiate a DDE conversation. See the next state­
ment, d d e i nit i ate, for more information.

command must be a string expression. The DDE protocol recommends
that all applications use the following format for commands:

<commands> [<command>] ...

<command> <operation>[«arguments>l]

<arguments> <argument> [, <argument>] ...

Example

[open("sales.xls"l] [print]

In this example, there are two commands: the first command consists
of the operation 0 pen, with its string argument sal e s . xl s; and the
second command is the operation p r i nt. Note that commands are en­
closed in square brackets; and argument(s), which are optional, are en­
closed in parentheses.

Suppose you have initiated a DDE conversation to Excel, and you want
to send the message in the preceding example. Write the command as
follows:

ddeexecute excelid, '[open("sales.xls")]' + ...
'[print]'

A-12 CASL Programmer's Guide

ddeinitiate

ddeinitiate

(statement)

Use d d e i nit i ate to open a DDE conversation with another appli­
cation. If more than one application responds to the d d e i nit i ate
request, the conversation is set up with the first response received.

Format

ddeinitiate <ddechanne7>, <app7icationname>, ...
<topicname>

The d d e i nit i ate statement opens a DDE conversation with a spe­
cified application. If d d e i nit i ate fails to establish the conversation
because the other application is not running, a run-time error occurs.
You can use the t rap compiler directive to trap the error and then use
the run statement to start the application. For more information about
t rap and run, see Chapter 6, "Using the Programming Language."

ddechanne I is the DDE channel used to communicate with the other
application. Windows assigns a value to this variable when you initiate
a DDE conversation. You must declare the variable as an integer before
you use the d d e i nit i ate statement. Other DDE statements covered
in this chapter also use the d dec han n e 7 variable.

Note: You can open DDE channels to more than one application,
provided that each d d e i nit i ate statement uses a unique variable name
for d dec han n e 7.•

The application is identified by a p p 7i cat ion n a me. This is the ap­
plication's DDE name. Refer to your DDE documentation for appro­
priate names.

The topic is identified by top i en ame. The value used for this variable
is only meaningful to the other application. Refer to the application
DDE documentation to find valid topic names.

Windows Considerations A-13

ddeinitiate

Example

integer dde_channel

ddeinitiate dde_channel, "Excel", "System"

In this example, the variable dde_channel is declared as an integer.
The variable is then used in the d d e i nit i ate statement to establish a
conversation with the application "E x c e 1 " and the topic" Sy s t em."

A·14 CASL Programmer's Guide

ddenak

ddenak (statement)

Use dden a k to send a negative acknowledgment to the application that
sent a ddeadvi sedata message.

Format

ddenak <ddechanne7>

ddechanne 7 is the integer DDE channel number. This variable should
be defined at the beginning of the script. See d d e i nit i ate earlier in
this chapter for more information.

You must use this command inside your d d e a d vis e d a t a event
handler; otherwise, a run-time error occurs.

Versions of Crosstalk for Windows older than 2.0 do not support this
statement.

Example

ddenak dde channel

In this example, a negative acknowledgment, indicating that a
d d e a d vis e d a t a message was not accepted is sent through the channel
dde channel.

Windows Considerations A-15

ddepoke

ddepoke (statement)

Use ddepoke to send a string of data to the application at the other end
of a DDE conversation.

Format

ddepoke <ddechanne7>, <itemname>, <data>

This statement sends a message by way of ddechanne 7to the other
application, requesting the application to assign the value in dat a to
i temname.

ddechanne 7 is the channel used to communicate with the application.
You should define this variable at the beginning of your script. For
more information, see d d e i nit i ate earlier in this chapter.

it emn ame is the name of the variable in the remote application that is
to contain the data string. If you do not know the name of the variable,
check the documentation for the remote application.

dat a is the data string the other application should assign to
i temname.

Example

ddepoke dde_channel, "user_name", "chuck"

In this example, the script sends the string" c h u c k" to the other appli­
cation, using the channel d d e _chan n e 1. The other application assigns
"chuck" to user name.

A-16 CASL Programmer's Guide

dderequest

dderequest (statement)

Use d d ere que s t to request data from another application.

Format

dde reques t <ddecha nne 7>, <remote item>, <myi tem>

This statement sends a request through the ddechanne 7 asking the
other application to return the value of remo t e it em in my item.

ddechanne 7 is the DDE channel used to communicate with the other
application. You should define this variable at the beginning of your
script. See d d e i nit i ate earlier in this chapter for more information.

remote item is the name of the other application's variable; it contains
the value to be returned to my item.

myi tem is the name of the string variable in your script that is to con­
tain the data received from the other application.

Example

string cellAI

dderequest dde_channel, "RICI", cellAI

In this example, the variable c ell A 1 is declared as a string. Then the
script sends add ere que s t asking the other application to send the data
in "R 1C1" to the script's variable cell AI.

Windows Considerations A -1 7

ddestatus

ddestatus (function)

Use d des tat us to check whether a DDE channel is open.

Format

x = ddestatusC<ddechanne7»

The d des tat u s function returns a true or false value indicating whether
the DDE channel is open. Use this function to periodically check the
status of a previously opened DDE conversation.

ddechanne 7 is the DDE channel used to communicate with the other
application. Windows assigns a value to the variable when you initiate
a conversation with another application. For more information, see the
d de i nit i ate statement earlier in this chapter.

Example

boolean x

x = ddestatusCdde channel)
pri nt "DOE Status = "; x

In this example, x is declared as a boolean variable. The d des tat u s
function returns a true or false value in x. The pr i nt statement then
prints the value in x.

A-18 CASL Programmer's Guide

ddeterminate

ddeterminate (statement)

Use ddetermi nate to close a DDE conversation.

Format

ddeterminate <ddechanne7>

ddechanne 7 is the DDE channel used to communicate with the other
application. Its value is set by Windows when you initiate a DDE con­
versation. For more information, see the d d e i nit i ate statement
earlier in this chapter.

Example

ddeterminate dde channel

In this example, you close the channel dde_cha nne 1.

Windows Considerations A-19

ddeunadvise

ddeunadvise (statement)

Use d d e una d vis e to cancel a request made previously with the
d d e a d vis e procedure. When you use this procedure, you send a
request asking to no longer be informed of changes either to a particular
data item or to any data item for which d d e a d vis e requests have been
made.

Format

ddeunadvise <ddechanne7>, <itemname>

ddeunadvise <ddechanne7>

Use the first form of the d d e una d vis e statement if you no longer
want to be informed of a particular data item. The ddechanne 7 is
the channel ID returned from a successful d d e i nit i ate statement.
The i temname is the data item about which you no longer want to be
informed.

Use the second form of the d d e una d vis e statement if you no longer
want to be informed of changes to any data item for which d d e a d vis e
requests have been made.

Versions of Crosstalk for Windows older than 2.0 do not support this
statement.

Examples

ddeunadvise excellO, "R4C5"

In this example, add e una d vis e request is sent, using the channel
exce 1 10, for the item R4C5.

ddeunadvise excellO

In this example, you request that all d d e a d vis e requests be canceled
for the channel exce 1 10.

A-20 CASL Programmer's Guide

Writing scripts for a Macintosh environment

Writing scripts for a Macintosh environment

When you write scripts to run in a Macintosh environment, keep in
mind that Apple events allow other applications to communicate in­
formation to your script. The application that sends an Apple event
is known as a source application, and the application receiving the
event is called a target application.

With this version of CASL, a session can receive an event that requests
it to run a script.

CASL Programmer's Guide B-2

CASL error messages

CASL error messages

Table C-1lists the CASL error messages grouped by error class. The
error class value is returned in the err c1ass system variable.

Table C-l. CASL error class values

Error class Description

12 Compiler errors.

13 Input/output errors.

14 Mathematical and range errors.

15 State errors.

16 Critical errors.

17 Script execution errors.

18 Compatibility errors.

19 DOS gateway errors.

20 Call failure errors.

21 Missing information errors.

32 DDE errors.

42 Communications device errors.

44 Terminal errors.

45 File transfer errors.

The corresponding error codes for each class are listed in the following
sections. For additional information about CASL errors, refer to the
on-line help. Note that on-line error messages contain the most current
information.

CASL Programmer's Guide C-2

CASL error messages

Compiler errors 	 Compiler errors are returned by the script compiler when your script
is compiled. For an up-to-date list of these errors, refer to the on-line
help.

Input/output 	 Input/output errors are explained in Table C-2. The error number is
returned in the system variable err no.errors

Table C-2. Input/output errors

Error class
and number Explanation

13-01 Reserved.

13-02 An upload was canceled by the local operator.

13-03 Reserved.

13-04 A backup file cannot be created. There is insufficient

room on the disk to receive the current file and also
keep a backup copy.

13-05 The file number is invalid or missing.

13-06 The specified file channel number is already open.
You must first close the channel or use another one.

13-07 The specified file channel number is not open.

13-08 Crosstalk cannot read an output file.

13-09 Crosstalk cannot write to an input file.

13-10 Crosstalk cannot get/put a text file.

13-11 Crosstalk cannot read from or write to a random file.

13-12 The file cannot be found in the d i r f i 1 path.

13-13 Reserved.

13-14 Reserved.

13-15 Reserved.

13-16 Window coordinates are out of range.

13-17 Reserved.

13-18 The specified window is not open.

continued

Error Return Codes C-3

CASL error messages

Table C-2. Input/output errors (cant.)

Error class
and number Explanation

13-19 Reserved.

13-20 Reserved.

13-21 Reserved.

13-22 Reserved.

13-23 Reserved.

13-24 Reserved.

13-25 Reserved.

13-26 This is an internal error. Contact DCA Technical

Support.

13-27 Reserved.

13-28 An attempt to send output to the display failed.

13-29 A file copy failed.

13-30 The script attempted a seek in a sequential file; you
can use see k only with random files.

13-31 Multiple windows in a session are not supported in
this version.

Mathematical Mathematical and range errors are explained in Table C-3. The error
and range number is returned in the system variable err no.

errors
Table C-3. Mathematical and range errors

Error class
and number Explanation

14-01 Arithmetic overflow has occurred.

14-02 Arithmetic underflow has occurred.

14-03 Division by zero was attempted.

14-04 The function key is out of range.

continued

CASL Programmer's Guide C-4

CASL error messages

Table C-3. Mathematical and range errors (cont.)

Error class
and number Explanation

14-05 The expression is not valid for the variable.

14-06 The value is outside the permissible range.

14-07 The value must be 0 n or 0 ff.

14-08 Reserved.

14-09 A string was truncated.

14-10 Invalid characters were found in a numeric string.

14-11 The specified value is outside the acceptable range.

14-12 Reserved.

14-13 Reserved.

14-14 Reserved.

14-15 Reserved.

14-16 Reserved.

14-17 Reserved.

14-18 An invalid string was specified for the quo t e func­

tion.

State errors 	 State errors are explained in Table C-4. The error number is returned in
the system variable errno.

Table C-4. State errors

Error class
and number Explanation

15-01 The specified command is applicable only when you
are on line.

15-02 Reserved.

15-03 Reserved.

continued

Error Return Codes C-S

CASL error messages

Table C-4. State errors 	 (cont.)

Error class
and number Explanation

15-04 Reserved.

15-05 Reserved.

15-06 Reserved.

15-07 The specified session does not currently exist.

Critical errors 	 Critical errors are explained in Table C-5. The error number is returned
in the system variable e r rno.

Table CoS. Critical errors

Error class
and number Explanation

16-01 The device is write-protected.

16-02 The unit is unknown.

16-03 The drive is not ready.

16-04 The command is unknown.

16-05 A data error has occurred.

16-06 The request structure length is invalid.

16-07 A see k error has occurred.

16-08 The media type is unknown.

16-09 The sector cannot be found.

16-10 The printer is out of paper.

16-11 A write fault has occurred.

16-12 A read fault has occurred.

16-13 A general failure has occurred.

16-14 An open fault has occurred.

16-15 There is not enough memory available.

CASL Programmer's Guide C-6

CASL error messages

Script execution 	 Script execution errors are explained in Table C-6. The error number is
returned in the system variable err no.errors

Table C-6. Script execution errors

Error class
and number Explanation

17-01 The specified label cannot be found.

17-02 Reserved.

17-03 go sub statements are nested too deep.

17-04 Reserved.

17-05 A data type mismatch for an external variable was

found.

17-06 Reserved.

17-07 The script was canceled by the user.

17-08 A reference to an unresolved external variable was
found.

17-09 Reserved.

17-10 An unavailable module variable was found.

17-11 Reserved.

17-12 Are t urn statement without a corresponding go sub
statement was found.

17-13 Reserved.

17-14 A script compilation failed when a c ha i n, do, or
compi 1 e statement was executed.

17-15 A return value was missing in the return from a
function.

17-16 Reserved.

17-17 An internal error occurred. Delete the .xwc file and
recompile the script. If the failure continues, contact
DCA Technical Support.

17-18 An invalid co u n t expression was used.

17-19 A string expression is too long.

continued

Error Return Codes C-l

CASL error messages

Table C-6. Script execution errors (cont.)

Error class
and number Explanation

17-20 There is not enough memory available.

17-21 A d i a log item was used outside a d i a log b0 xl
end i a log construct.

17-22 d i a log box statements are nested. These statements
cannot be nested.

17-23 The dialog box cannot be displayed.

17-24 No pushbutton was specified for a dialog box.

17-25 A second wa t c h statement was encountered before
the first one was resolved.

17-26 Too many track channels are open.

17-27 A stack overflow has occurred. Procedures or func­
tions are nested too deep.

17-28 The specified OuickPad file cannot be found.

17-29 The specified OuickPad has not been loaded.

Compatibility 	 Compatibility errors are explained in Table C-7. The error number is
returned in the system variable err no.errors

Table C-7. Compatibility errors

Error class
and number Explanation

18-01 Reserved.

18-02 Reserved.

18-03 The .xwc file is bad. Recompile the .xws file.

18-04 Reserved.

18-05 The specified feature is not supported in this version.

C-S CASL Programmer's Guide

CASL error messages

DOS gateway errors are explained in Table C-8, The error number is DOS returned in the system variable errno.
gateway errors

Table C-S. DOS gateway errors

Error class
and number Explanation

19-01 An unexpected DOS error has occurred,

19-02 The specified file cannot be found,

19-03 The specified path cannot be found.

19-04 There are too many open files,

19-05 Access has been denied to the specified file,

19-06 The specified directory cannot be removed,

19-07 The diskette is write protected,

19-08 The disk is full.

19-09 There are invalid characters in the file name.

19-10 Reserved,

19-11 Reserved,

19-12 Reserved,

19-13 An invalid file name was specified.

•
Call failure 	 Call failure errors are explained in Table C-9. The error number is

returned in the system variable err no.errors

Table C-9. Call failure 	 errors

Error class
and number Explanation

20-01 	 The call was canceled by the user.

20-02 	 The modem did not detect the carrier when the call
was answered or the call was never answered.

continued

Error Return Codes C-9

CASL error messages

Table C-9. Call failure errors (cont.)

Error class
and number Explanation

20-03 	 No dial tone was detected. The modem is set to check
for dial tone before dialing and did not get a dial tone
when it went off hook.

20-04 	 The number was busy. The modem detected a busy
signal and was unable to make a connection.

20-05 	 A voice answer was detected.

20-06 	 There is no phone number for the connection.
Choose Connection from the Settings pull-down to
specify a number.

20-07 	 The connection is already in progress. Crosstalk was
commanded to initiate a connection when one is
already active.

20-08 	 The connection with the host has been terminated.
This message is generated when Crosstalk disconnects
from a host as a result of a user Disconnect request,
when the call is terminated because the host discon­
nected the call, or when the call is dropped because of
a connection failure.

20-09 	 A modem error has occurred. The modem returned an
error indicating that it did not understand a command.
Choose File Transfer from the Settings pull-down to
check the modem command strings.

20-10 	 The modem did not respond. Crosstalk is not
receiving a response from the modem after sending
it a command. Choose File Transfer from the Set­
tings pull-down to check the modem command
strings.

C-10 CASL Programmer's Guide

Missing
information
errors

CASL error messages

Missing information errors are explained in Table C-lO. The error num­
ber is returned in the system variable errno.

Table C-IO. Missing information errors

Error class
and number Explanation

21-01 The specified script file cannot be found. Check the
name, make sure the file is in the DIRXWP directory,
and try again.

21-02 The specified session file cannot be found. Check the
name, make sure the file is in the DIRXWP directory,
and try again.

21-03 The specified variable cannot be found.

21-04 The default file name is empty.

21-05 A file name argument is required but was omitted.

21-06 The format of the XWP directory is invalid. The
session you attempted to start is from a version of
Crosstalk that uses a different XWP file format.

21-07 Reserved.

21-08 Reserved.

21-09 There is no default file name; f i 1efin d must be
used to set up a default file.

Error Return Codes C-11

CASL error messages

IWinl DOE
errors

DDE errors are explained in Table C-Il. The error number is returned
in the system variable err no.

Table Con. DDE errors

Error class
and number Explanation

32-01 The DDE channel number is invalid or missing.
Review the syntax of the DDE statement and correct
the channel number.

32-02 A bad response code from a PostMessage was returned
internally by DDE. This can occur during periods of
heavy system activity. Close the DDE connection
and try again.

32-03 No response was received to add e i nit i ate request.
Other applications are either busy or not in the sys­
tem. Wait until another application is free or run a
new copy of the application.

32-04 The data item about which you want to be advised is
busy.

32-05 Add e una d vis e request was issued for an item that
was not requested using d d e a d vis e.

32-06 An unknown data format was returned from the other
application. Check the DDE documentation for the
other application to determine other data retrieval
methods.

32-07 A busy status was returned from the other application.
Wait for the other application to finish and try the
command again.

32-08 The command was rejected by the other application.
This is normally caused by an invalid ddeexecute
statement format. Review the DDE documentation
for the other application to determine the correct
format for the statement.

•

C-12 CASL Programmer's Guide

CASL error messages

Communications
device errors

Communications device errors are explained in Table C-12. The error
number is returned in the system variable errno. Note that device
errors are specific to the connection device you are using.

Table C-12. Communications
connection

device errors-direct

Error class
and number Explanation

42-01

42-02

42-03

42-04

The port is already in use.

The necessary hardware is not present.

The port is not open.

There is not enough memory for the communications
buffers.

42-05

42-06

42-07

The specified serial port is not supported.

The specified baud rate is not supported.

The specified DataBits value is invalid.

Terminal errors Terminal errors are explained in Table C-13. The error number is
returned in the system variable err no.

Table C-13. Terminal errors

Error class
and number Explanation

44-01 An invalid terminal was selected.

44-02 An invalid terminal parameter was specified.

Error Return Codes C-13

CASL error messages

File transfer 	 File transfer errors are explained in Table C-14. The error number is
returned in the system variable err no.errors

Table C-14. File transfer errors

Error class
and number Explanation

45-01 	 A general time-out has occurred.

45-02 	 The host is not responding. Check to make sure the
communications link is working properly and try the
transfer again.

45-03 	 An incorrect response from the host was received.
The host computer did not respond as expected to
your file transfer request. Check to make sure the
communications link is working properly and try
the transfer again.

45-04 	 Too many errors have occurred; the transfer is can­
celed. The transfer is automatically canceled because
the maximum number of errors was reached. If the
connection is noisy, try disconnecting and calling
again. If the problem persists, change the protocol
timing or raise the number of errors allowed before
terminating.

45-05 	 The transfer was canceled because the connection was
lost. Attempt to connect again and restart the transfer.

45-06 	 The transfer was canceled because of a sequencing
failure. The protocol encountered an internal error.
Try the transfer again. If the problem persists,
contact DCA Technical Support.

45-07 	 The transfer was canceled by the local operator.

45-08 	 The transfer was canceled by the host computer.

45-09 	 A wild-card transfer was specified when using a pro­
tocol that cannot support wild-card specifications for
the file name. Transfer a single file at a time or use
a protocol that allows wild-card specifications.

continued

C-14 CASL Programmer's Guide

CASL error messages

Table C-14.

Error class
and number

45-10

45-11

45-12

45-13

45-14

45-15

45-16

45-17

File transfer errors (cont.)

Explanation

The file to be transferred could not be found. The file

name may be incorrect or the file may reside in a dif­

ferent directory.

The file transfer cannot take place or was canceled

because the local disk is full.

The file transfer cannot take place or was canceled

because the host disk is full.

The protocol has no server commands.

A file name is required for the transfer.

The system is busy. The system is performing tasks

that prevent starting a file transfer. Wait for the task

to finish and try the transfer again.

The protocol selected is not supported by Crosstalk.

The specified file transfer parameter is invalid.

Error Return Codes C-15

Requesting technical support

Requesting technical support

If you encounter a problem installing or using Crosstalk and cannot find
the answer in the documentation, you can call DCA Technical Support
for help. Assistance is provided only to registered users. To register for
technical support, complete the product registration card, which accom­
panies the software, and mail it to the following address:

DCA, Inc.
1000 Alderman Drive
Alpharetta, GA 30202-4199

Before contacting DCA Technical Support, make sure you know the
following information:

• 	 Your Crosstalk serial number. This number is on the master
diskette.

• 	 The version number of Crosstalk that you are using.

• 	 The contents of your system files.

If possible, call the customer support department from a telephone that
is near the PC you are using, so you can look at the software while
working through the problem with DCA Technical Support.

You can call DCA Technical Support at (404) 442-3210. Representa­
tives are available Monday through Friday, from 8:30 AM to 8:00 PM
EST. You can also contact DCA Technical Support by FAX at (404)
442-4358.

Note: The telephone system at DCA Technical Support automatically
routes calls to the next available representative, in the order in which the
calls are received. Remain on the line until your call is answered to keep
your place .•

0·2 CASL Programmer's Guide

Accessing DCA on-line services

Accessing DCA on-line services

In addition to telephone support, DCA maintains a bulletin board ser­
vice and a forum on CompuServe. These services provide the latest
support files for all products, sample scripts, and technical assistance
from DCA engineers.

The bulletin board service and the CompuServe forum can be accessed
24 hours a day, seven days a week. For instructions on how to connect
to these services, refer to your Crosstalk user's guide.

Updating or upgrading your software

If you have any questions or concerns about disk updating, software ver­
sions, or compatibility issues that are not covered in this guide, contact
DCA Technical Support.

Product Support 0-3

Index

A

abs function, 6-3

absolute file paths, 2-8

accessing DCA on-line services,

D-3

activatesession statement, 6-5

activate statement, 6-4

active function, 6-6

activesession function, 6-7,

6-237

Addition (operator), 1-20,2-18,

2-19

add statement, 6-8, 6-226

alarm, sounding, 1-26

Alarm sounds (table), 6-9

alarm statement, 1-26, 6-9

alert statement, 1-20, 4-8, 6-11

and (operator), 2-22, 6-135

append mode, 6-289, 6-291

append option for the open

statement, 6-190

Apple Comm ToolBox, 7-3,

7-5

Apple Modem Tool, 6-68,7-4

Apple Serial Tool, 6-68, 7-4

arg function, 6-13, 6-79

arguments, passing to other

scripts, 4-9

arithmetic expression, 1-20

standard arithmetic operators,

2-18

arithmetic operators

Addition, 2-18, 2-19

BitAnd, 2-18, 2-19

BitNot, 2-18, 2-19

arithmetic operators (cont.)

BitOr, 2-18, 2-19

BitXor, 2-18, 2-19

Division, 2-18, 2-20

IntDivision, 2-18, 2-20

Modulo, 2-19, 2-20

Multiplication, 2-18, 2-20

Negate, 2-18, 2-20

Rol, 2-18, 2-20

Ror, 2-18, 2-20

Shl, 2-18, 2-20

Shr, 2-18, 2-20

Subtraction, 2-18, 2-21

array declarations

multidimensional, 3-7

multidimensional, with

alternative bounds, 3-8

single-dimension, 3-7

single dimension, with

alternative bounds, 3-8

asc function, 6-15

ASCII control characters (table),

2-15

ASCII values in string con­

stants, 2-14

assume statement, 6-16, 7-3,

7-4, 7-5

B
backups module variable, 6-17

basic CASL elements. See

CASL elements, basic

binary function, 6-18

binary integers, 2-13

CASL Programmer's Guide Index-1

BitAnd (operator), 2-18, 2-19

Bitmap values

for the chmod statement

(table),6-33

for the fileattr function

(table),6-100

for the fncheck function

(table),6-106

for the fnstrip function

(table), 6-107

for the hms function (table),

6-133

BitNot (operator), 2-18, 2-19

BitOr (operator), 2-18, 2-19

bitstrip function, 6-19

BitXor (operator), 2-18, 2-19

blankex system variable, 6-20

blank lines, using, 1-14

block comments, 1-12, 2-3

bol option for the clear

statement, 6-39

boolean

constants, 2-16

data type, 2-11

expressions, 1-18, 2-22

boolean expression, testing an

outcome with, 1-18

boolean operators

and,2-22

not, 2-22

or,2-22

bow option for the clear

statement, 6-39

braces

to indicate a series of state­

ments, 2-2

using with a statement group,

1-21

branching to a different script

location, 1-19

breaklen module variable, 6-21,

6-236

bulletin board service, DCA,

xxi, D-3

Index-2 CASL Programmer's Guide

bye session topic command,

A-4

bye statement, 1-20, 6-22

byte data type, 2-11

C

call failure errors, C-9

calling another script, 4-9

call statement, 6-23, 6-156

cancelkeyword,6-11

cancel option, 6-75

cancel session topic command,

A-4

capchars function, 6-24

capfile function, 6-25, 6-26

Capture options (table), 6-26

capture statement, 4-4, 6-25,

6-26

capture statement options

new, 6-26

off,6-27

on, 6-27

pause, 6-27

slash (/), 6-27

to, 6-26

toggle, 6-27

capture and upload control, 5-2

add statement, 6-8

blankex system variable, 6-20

capchars function, 6-24

capfile function, 6-25

capture statement, 6-26

cmode system variable, 6-42

cwait statement, 6-57

dirfil system variable, 6-77

downloaddir system variable,

6-82

grab statement, 6-126

linedelim system variable,

6-154

linetime system variable,

6-155

capture and upload control
(cont.)

lwait statement, 6-162

tabex system variable, 6-252

upload statement, 6-272

capturing data, 4-4

case/endcase statement, 6-29

CASL

declarations, 3-2

errclass values, C-2

predeclared variables, 1-14

writing scripts, 1-6

CASL, rules for using

comments, 2-3

line continuation characters,

2-2

notational conventions, 2-4

statements, 2-2

CASL elements

changed, 8-3

new, 8-2

removed,8-3

CASL elements, basic

compiler directives, 2-26

constants, 2-12

data types, 2-10

expressions, 2-17

general rules, 2-2

identifiers, 2-10

reserved keywords, 2-27

type conversion, 2-24

chaining to another script, 4-9

chain statement, 4-9, 6-13,

6-31,6-79

character string, waiting for,

1-18,4-2

char data type, 2-11

chdir statement, 6-32

child script, 3-6, 4-9

chmod statement, 6-33

choice system variable, 6-11,

6-35,6-72

chr function, 2-25, 6-36

cksum function, 6-37, 6-48

class function, 6-38, 6-247

Class groupings (table), 6-38

clear statement, 6-39

clear statement options

bol,6-39

bow, 6-39

eol,6-39

eow, 6-39

line, 6-39

window, 6-39

close statement, 6-40

cls statement. See clear

statement

cmode system variable, 6-42

cmode system variable options

normal, 6-42

raw, 6-42

visual, 6-42

Commands for the kermit

statement (table), 6-148

comments

block,2-3

line, 2-3

using in a script, 1-14, 2-3

Comm ToolBox, 7-3

communications device errors,

C-13

communications device types,

6-68

compatibility errors, C-8

compatibility issues

Crosstalk for Macintosh, 8-4

Crosstalk Mark 4, 6-4, 6-5,

6-6,6-12,6-23,6-165,

6-169,8-4

Crosstalk for Windows, 8-2

compiler directives

genlabels, 2-26, 6-119

genlines, 2-26, 6-120

include, 2-27, 6-138

scriptdesc, 2-27, 6-232

trap, 2-26, 4-11, 6-267

compiler errors, C-3

compile statement, 6-43

CASL Programmer's Guide Index-3

compiling a script, 1-29

CompuServe forum, D-3

Conditions for the track

statement (table), 6-262

Conditions for the wait

statement (table), 6-277

Conditions for the watch

statement (table), 6-280

connected function. See online

function

Connection devices (table), 6-68

connection tool, 6-16, 6-68, 7-4

connectreliable module variable,

6-45

constants

boolean, 2-16

false, 6-99

integer, 2-12

off,6-186

on, 6-187

real,2-13

string, 2-14

true, 6-268

controlling the entire logon

process, 1-22

controlling a process with a

relational expression, 1-17

conventions

documentation, xix

DOS/Macintosh script file

name, 2-8

DOS/Macintosh terminology,

2-7

DOS/Macintosh naming, 2-7

notational, 2-4

conversions, type

asc function, 6-15

binary function, 6-18

bitstrip function, 6-19

chr function, 6-36

class function, 6-38

dehex function, 6-62

detext function, 6-67

conversions, type (cont.)

enhex function, 6-85

entext function, 6-87

hex function, 6-129

intval function, 6-146

mkint function, 6-172

mkstr function, 6-173

octal function, 6-185

str function, 6-246

val function, 6-274

converting

an ASCII value to a character

string, 2-25

an integer to a hexadecimal

string, 2-25

an integer to a string, 2-24

a string to an integer, 2-24

copy statement, 6-46

counters, incrementing, 1-20

count condition

for the wait statement, 6-277

for the watchlendwatch

statement, 6-280

count function, 6-47

count option for the lwait

statement, 6-162

crc function, 6-48

creating scripts with Learn, 1-5

critical errors, C-6

Crosstalk commands, executing

using DDE, A-3

Crosstalk information,

requesting using DDE,

A-2

Crosstalk Mark 4, 6-6, 6-12,

6-23,8-4

curday function, 6-49

curdir function, 6-50

curdrive function, 6-51

curhour function, 6-52

curminute function, 6-53

curmonth function, 6-54

Index-4 CASL Programmer's Guide

cursecond function, 6-55, 6-258

curyear function, 6-56

cwait statement, 6-57

cwait statement options

delay, 6-57

echo, 6-57

none, 6-57

D

data capture

add statement, 6-8

capchars function, 6-24

capfile function, 6-25

capture statement, 6-26

cmode system variable, 6-42

dirfil system variable, 6-77

downloaddir system variable,

6-82

grab statement, 6-126

data type conversion, 2-24

data types

array, 2-11

boolean, 2-11

byte, 2-11

char, 2-11

integer, 2-11

real,2-11

string, 2-11

word,2-11

date function, 6-59

date operations, 5-3

curday function, 6-49

curmonth function, 6-54

curyear function, 6-56

date function, 6-59

weekday function, 6-282

DCAANSI emulation, 6-254

DCA ANSIPC Tool, 6-254

DCA Connection bulletin

board, xxi

DCA CServeB Tool, 6-207

DCACSERV protocol, 6-207

DCADART protocol, 6-208

DCA DART Tool, 6-208

DCADEC emulation, 6-254

DCA DEC font, 7-3

DCA DEC Tool, 6-254

DCA F1TERM Tool, 6-255

DCAFTTRM emulation, 6-254

DCAHP700 emulation, 6-255

DCA HP700/94 Tool, 6-255

DCAIBM emulation, 6-255

DCA IBM3101 Tool, 6-255

DCA IND$FILE Tool, 6-208

DCAIND protocol, 6-208

DCAINT14 device, 6-68

DCA KERMIT Tool, 6-207

DCAKERMT protocol, 6-207

DCAMODEM device, 6-68

DCANASI device, 6-68

DCA on-line services,

accessing, D-3

DCASERIL device, 6-68

DCA Technical Support, D-2

DCATTY emulation, 6-254

DCA TTY Tool, 6-254

DCA VIDTEX Tool, 6-254

DCAVIDTX emulation, 6-254

DCAWYSE emulation, 6-255

DCA WYSE Tool, 6-255

DCAXTALK protocol, 6-208

DCAXYMDM protocol, 6-207

DCA XYMODEM Tool, 6-207

DCAZMDM protocol, 6-207

DCA ZMODEM Tool, 6-207

ddeack statement, A-8

ddeadvisedatahandlerevent

handler, A-10

ddeadvise statement, A-9

DDE commands, format of,

A-12

DDE errors, C-12

ddeexecute statement, A-12

ddeinitiate statement, A-13

CASL Programmer's Guide Index-5

DDE interface, 5-4

command format, A-12

executing Crosstalk

commands, A-3

requesting Crosstalk

information, A-2

running demonstration

scripts, A-6

session topic commands, A-4

session topic requests, A-3

system topic commands, A-4

system topic requests, A-2

topic name support, A-2

ddenak statement, A-15

ddepoke statement, A-16

dderequest statement, A-17

ddestatus function, A-18

ddeterminate statement, A-19

ddeunadvise statement, A-20

decimal integers, 2-12

declarations

arrays, 3-7

explicit, 3-4

func/endfunc, 6-116

functions, 3-12, 6-116

implicit, 3-5

procedures, 3-9, 6-204

proc/endproc, 6-204

public and external variables,

3-6

scope rules for labels, 3-15

scope rules for variables, 3-14

variables, 3-3

declaring variables in a script,
1-16

default keyword, 6-29

default variable initialization

values, 3-14

defining a script description,

2-27

definput system variable, 6-60,

6-121,6-212, 6-213

defoutput system variable, 6-61,

6-158, 6-289, 6-291

Index-6 CASL Programmer's Guide

dehex function, 6-62, 6-85,

6-87

delay option

for the cwait statement, 6-57

for the lwait statement, 6-163

delete function, 6-64

delete statement, 6-63

delimiters, end of line, 2-9

demonstration scripts

provided for DDE, A-6

running, A-6

describing the purpose of a

script, 1-12

description system variable,

6-65, 6-109, 6-128

designing a script, 1-10

destore function, 6-66, 6-86

detext function, 6-62, 6-67,

6-85,6-87

developing a sample script

alerting the user if the

connection failed, 1-20

branching to a different script

location, 1-19

checking if a time-out

occurred, 1-18

continuing the logon if the

connection is established,

1-19

controlling the entire logon
process, 1-22

declaring variables, 1-16

describing the purpose of the

script, 1-12

disconnecting the session,

1-20

displaying a message, 1-12

documenting the script's

history, 1-12

ending the script, 1-14

establishing a connection

with MCI Mail, 1-13

incrementing a counter, 1-20

developing a sample script
(cont.)

initializing variables, 1-17

logging on in a trouble-free

environment, 1-11

overview, 1-11

performing a task while a

condition is true, 1-17

performing a task while

multiple conditions are

true, 1-24

sending the logon sequence,
1-13

sounding an alarm, 1-26

testing an outcome with a

boolean expression, 1-18

using braces with a statement

group, 1-21

using CASL predeclared

variables, 1-14

using comments and blank

lines, 1-14

using indentation, 1-21

using keywords, 1-14

using the line-continuation

sequence, 1-27

using a relational expression

to control a process, 1-17

using string constants, 1-13

verifying the MCI Mail

connection, 1-15

waiting for a character string,

1-18

waiting for a prompt from the

host, 1-13

watching for one of several

host responses, 1-24

device interaction, 5-5

connectreliable module

variable, 6-45

dialmodifier module variable,

6-70

device system variable, 6-68,

7-4

device types, 6-68

dialmodifier module variable,

6-70

dialogbox/enddialog statement,

4-8,6-71

dialog item options for the

dialogbox/enddialog

statement, 6-74

dialog items for the

dialogbox/enddialog

statement, 6-72

dial session topic command,

A-4

dirfil system variable, 6-26,

6-77, 6-82, 6-214

disconnecting a session, 1-20

displaying information for a

user, 4-6

displaying a message, 1-12

display system variable, 6-78,

6-201

Division (operator), 2-18, 2-20

documenting a script's history,

1-12

DOS gateway errors, C-9

DOS/Macintosh differences

absolute file paths, 2-8

end-of-line delimiters, 2-9

file path specifications, 2-8

naming conventions, 2-7

relative file paths, 2-8

script file name conventions,

2-8

terminology, 2-7

wild cards, 2-9

DOS and Macintosh

terminology (table), 2-7

do statement, 4-9, 4-10, 6-13,

6-79

dosversion function, 6-81

CASL Programmer's Guide Index-7

double hyphens, to indicate a

line comment, 2-3

downloaddir system variable,

6-26, 6-82, 6-214

drive statement, 6-83

E
echo option

for the cwait statement, 6-57

for the lwait statement, 6-162

emulations, 6-254

enabling error trapping, 4-11

ending a script, 1-14

end-of-line delimiters, 2-9

end statement, 1-14,6-84

enhex function, 6-62, 6-85,

6-87

enstore function, 6-66, 6-86

entext function, 6-62, 6~67,

6-85,6-87

environ function, 6-88

eof function, 6-89, 6-91

eol function, 6-91

eol option for the clear state­

ment, 6-39

eow option for the clear state­

ment, 6-39

Equality (operator), 2-22

errclass system variable, 4-11,

6-93, 6-94, 6-95, 6-267

ermo system variable, 4-12,

6-94, 6-95, 6-267

error control, 5-5

errclass system variable, 6-93

ermo system variable, 6-94

error function, 6-95

trap compiler directive, 6-267

error function, 4-11, 6-95,

6-267

error number, checking, 4-12

errors

call failure, C-9

communications device, C-13

compatibility, C-8

compiler, C-3

critical, C-6

DDE, C-12

DOS gateway, C-9

file transfer, C-14

input/output, C-3

mathematical and range, C-4

missing information, C-11

script execution, C-7

state, C-5

terminal, C-13

error trapping, 2-26, 4-11

error type, checking, 4-11

event handler,

ddeadvisedatahandler, A-lO

Excel, A-5

exchanging variables with other

scripts, 4-10

executable file, 1-28

execute session topic command,

A-5

exists function, 6-96

exit statement, 6-97, 6-204

explicit variable declarations

multiple-variable declaration,

3-5

single-variable declaration,

3-4

expressions

arithmetic, 2-18

boolean, 2-22

relational, 2-21

string, 2-21

expressions, order of evaluation,
2-17

external variables, 3-6, 4-10,

6-79

extract function, 6-98

Index-8 CASL Programmer's Guide

F
false constant, 6-99, 6-268

fileattr function, 6-100

filedate function, 6-59, 6-102

filefind function, 6-100,6-102,

6-103,6-104,6-105

file I/O operations, 5-5

backups module variable,

6-17

capture statement, 6-26

chdir statement, 6-32

chmod statement, 6-33

close statement, 6-40

copy statement, 6-46

curdir function, 6-50

curdrive function, 6-51

definput system variable, 6-60

defoutput system variable,

6-61

delete statement, 6-63

drive statement, 6-83

eof function, 6-89

eol function, 6-91

exists function, 6-96

fileattr function, 6-100

filedate function, 6-102

filefind function, 6-103

filesize function, 6-104

filetime function, 6-105

fncheck function, 6-106

fnstrip function, 6-107

freefile function, 6-113

get statement, 6-121

kermit statement, 6-148

loc function, 6-158

mkdir statement, 6-171

open statement, 6-190

put statement, 6-209

read line statement, 6-213

read statement, 6-212

receive statement, 6-214

rename statement, 6-218

rmdir statement, 6-228

file I/O operations (cont.)

seek statement, 6-234

send statement, 6-235

upload statement, 6-272

write line statement, 6-291

write statement, 6-289

file paths

absolute, 2-8

relative, 2-8

file path specifications, 2-8

files, source and executable,

1-28

filesize function, 6-104

filetime function, 6-105

file transfer, 7-5

file transfer errors, C-14

File transfer protocols (table),

6-207

file transfer protocol types,

6-207

file transfer tool, 6-16, 6-207,

7-5

finish command for the kermit

statement, 6-148

fncheck function, 6-106

fnstrip function, 6-107

fonts, provided with Crosstalk,

7-3

footer system variable, 6-109

formats system topic request,

A-2

for/next statement, 6-110

forward declarations

functions, 3-13, 6-116

procedures, 3-10, 6-205

freefile function, 6-60, 6-113

freemem function, 6-114

freetrack function, 6-115, 6-261

func/endfunc declaration, 3-12,

6-116,6-224
function declarations

argument list, 3-12, 6-116

forward function declaration,

3-13,6-116

CASL Programmer's Guide Index-9

function declarations (cont.)

general description, 3-12,

6-116

variable and label references,

6-116

functions

abs, 6-3

active, 6-6

activesession, 6-7

arg, 6-13

asc,6-15

binary, 6-18

bitstrip, 6-19

capchars, 6-24

capfile, 6-25

chr, 6-36

cksum, 6-37

class, 6-38

count, 6-47

ere, 6-48

curday, 6-49

curdir, 6-50

curdrive,6-51

curhour, 6-52

curminute, 6-53

curmonth, 6-54

cursecond,6-55

curyear, 6-56

date, 6-59

ddestatus, A-18

dehex,6-62

delete, 6-64

des tore, 6-66

detext, 6-67

dosversion, 6-81

enhex, 6-85

enstore, 6-86

en text, 6-87

environ, 6-88

cot, 6-89

eol,6-91

error, 6-95

exists, 6-96

extract, 6-98

functions (cont.)
fileattr, 6-100

filedate, 6-102

filefind, 6-103

filesize, 6-104

filetime, 6-105

fncheck, 6-106

fnstrip, 6-107

freefile, 6-113

freemem, 6-114

freetrack, 6-115

hex, 6-129

hms, 6-133

inject, 6-139

inkey, 6-140

inscript, 6-143

insert, 6-144

instr, 6-145

intval, 6-146

left,6-152
length, 6-153

loc, 6-158

lowcase, 6-159

max, 6-165

mid,6-168
min, 6-169

mkint, 6-172

mkstr, 6-173

name, 6-175

nextchar, 6-178

nextline, 6-181

null,6-183
octal, 6-185

online, 6-188

ontime, 6-189

pack,6-192
pad, 6-193

quote, 6-211

right, 6-227

secno, 6-233

session, 6-237

sessname,6-238
sessno, 6-239

slice, 6-244

Index-10 CASL Programmer's Guide

functions (cont.)

str, 6-246

strip, 6-247

stroke, 6-249

subst, 6-250

systime, 6-251

time, 6-258

track,6-265

upcase, 6-271

val,6-274

version, 6-275

weekday, 6-282

winchar, 6-284

winsizex, 6-285

winsizey, 6-286

winstring, 6-287

winversion, 6-288

xpos, 6-292

ypos, 6-293

functions, declaring, 3-12

functions, external, 3-13

G
genlabels compiler directive,

2-26,6-119,6-143

genlines compiler directive,

2-26,6-120

get command for the kermit

statement, 6-148

get statement, 6-60, 6-89,

6-121, 6-234

go session topic command, A-5

go statement, 6-122

gosub/return statement, 6-116,

6-123,6-198,6-204
goto statement, 1-19,6-116,

6-125,6-146,6-204

grab statement, 6-126

GreaterOrEqual (operator), 2-22

GreaterThan (operator), 2-22

H
halt statement, 6-127

header system variable, 6-128

help, on-line, xxi

hexadecimal integers, 2-12

hex function, 2-25, 6-129

hideallquickpads statement,

6-131

hidequickpad statement, 6-132

hide statement, 6-130, 6-240

hms function, 6-133

host computer, definition of,

1-3

host interaction, 5-7

breaklen module variable,

6-21

display system variable, 6-78

match system variable, 6-164

nextchar function, 6-178

nextline function, 6-181

nextIine statement, 6-179

online function, 6-188

press statement, 6-199

reply statement, 6-221

sendbreak statement, 6-236

host prompt, waiting for, 1-13

host responses, watching for

one of several, 1-24

hyphens (double) to indicate a

line comment, 2-3

IBM-PC font, 7-3

identifiers, 2-10

if/then/else statement, 1-18,

6-135,6-261,6-265

implicit variable declarations,

3-5

include compiler directive, 2-27,

3-11,3-13, 6-138, 6-205

CASL Programmer's Guide Index-11

including an external file, 2-27

incrementing a counter, 1-20

indentation, using, 1-21

Inequality (operator), 2-22

initializing variables, 1-17

inject function, 6-139

inkey function, 6-140, 6-178,

6-199,6-249

input mode, 6-60, 6-212, 6-213

input option for the open

statement, 6-190

input/output errors, C-3

input statement, 4-7, 6-142

inscript function, 6-143

insert function, 6-144

instr function, 6-47, 6-145

IntDivision (operator), 2-18,

2-20

integer data type, 1-16, 2-11

Integer ranges for the octal

function (table), 6-185

integers

binary, 2-13

decimal, 2-12

hexadecimal, 2-12

kilo, 2-13

octal,2-13

Integer values and their binary
string lengths (table), 6-18

interacting with the host, 4-2

intval function, 2-24, 6-146,

6-246, 6-274

invoking other scripts, 4-9

J
jump statement. See goto

statement

K
kermit statement, 6-148

kermit statement commands

finish, 6-148

kermit statement commands
(cont)

get, 6-148

send,6-148

Keyboard keys and their
corresponding numbers
(table),6-140

key names in string constants,

2-16

key condition

for the track statement, 6-263

for the wait statement, 6-277

for the watchlendwatch

statement, 6-280

keys system variable, 6-150

keywords, 1-9, 1-14,2-27

kilo integers, 2-13

L
labels

overview, 1-9

scope rules, 3-15

label statement, 1-19,6-151
Learn facility

recording a script, 1-5

replaying a script, 1-6

left function, 6-152

length function, 6-153

LessOrEqual (operator), 2-22

LessThan (operator), 2-22

line comments

using double hyphens, 1-12,

2-3

using a semicolon, 2-4

line continuation characters,

1-27,2-2

linedelim system variable,

6-154

line option for the clear

statement, 6-39

linetime system variable, 6-155,

6-163

Index-12 CASL Programmer's Guide

loadallquickpads statement,
6-156

loadquickpad statement, 6-157

load session topic command,

A-5

load statement, 6-156

load system topic command,

A-4

loc function, 6-158, 6-234

logon, continuing if a

connection is established,

1-19

logon sequence, sending to the

host, 1-13

lowcase function, 6-159

Iprint statement, 6-160

lwait statement, 6-57, 6-155,

6-162

lwait statement options

count, 6-162

delay, 6-163

echo, 6-162

none, 6-162

prompt, 6-162

M
Macintosh connections,

supported, 7-4

Macintosh environments,

writing scripts for, B-2

MacintoshlDOS differences

absolute file paths, 2-8

end-of-line delimiters, 2-9

file path specifications, 2-8

naming conventions, 2-7

relative file paths, 2-8

script file name conventions,

2-8

terminology, 2-7

wild cards, 2-9

match system variable, 6-164,

6-263

mathematical operations, 5-8

abs function, 6-3

cksum function, 6-37

crc function, 6-48

intval function, 6-146

max function, 6-165

min function, 6-169

mkint function, 6-172

val function, 6-274

mathematical and range errors,
C-4

max function, 6-165

maximize statement, 6-166

MCI Mail connection

establishing, 1-13

verifying, 1-15

message statement, 1-12, 1-20,

4-7,6-167

Microsoft Excel, A-5

mid function, 6-168

min function, 6-169

minimize statement, 6-170

missing information errors,

C-ll

mkdir statement, 6-171

mkint function, 6-172, 6-173

mkstr function, 6-172, 6-173

Mode options for the open

statement (table), 6-190

modifying

connection tool variables, 7-4

file transfer tool variables, 7-5

terminal tool variables, 7-3

module variables

backups, 6-17

breaklen, 6-21

connectreliable, 6-45

dialmodifier, 6-70

number, 6-184

patience, 6-196

redialcount, 6-216

redialwait, 6-217

tabwidth, 6-253

CASL Programmer's Guide Index-13

Modulo (operator), 2-18, 2-20

move statement, 6-174

Multiplication (operator), 2-18,

2-20

N
name function, 6-175

Negate (operator), 2-18, 2-20

netid system variable, 6-176

new option for the capture

statement, 6-26

new session topic command,

A-5

new statement, 6-177

new system topic command,

A-4

nextchar function, 6-178

nextline function, 6-181

nextline statement, 1-18, 6-179,

6-259

noask keyword, 6-63

none option

for the cwait statement, 6-57

for the lwait statement, 6-162

normal option for the cmode

statement, 6-42

notational conventions

angle brackets, 2-5

bold square brackets,

2-6

bold braces, 2-6

ellipses, 2-6

typeface, 2-5

not (operator), 2-22, 6-135

null function, 6-183

number module variable, 6-184

o
octal function, 6-185

octal integers, 2-13

off constant, 6-186, 6-187

off option for the capture
statement, 6-27

ok keyword, 6-11

ok option for the

dialogboxlenddialog
statement, 6-75

on constant, 6-186, 6-187

online function, 1-24, 6-188

on-line help, xxi

on option for the capture

statement, 6-27

ontime function, 6-189

open statement, 6-190

open statement options

append,6-190

input, 6-190

output, 6-190

random, 6-190

Options for the clear statement

(table), 6-39

Options for the cmode variable

(table),6-42

Options for the cwait statement

(table),6-57

or (operator), 2-22, 6-135

output mode, 6-61, 6-289,

6-291

output option for the open

statement, 6-190

p
pack function, 6-192

pad function, 6-193, 6-209

Parameters for the lwait

statement (table), 6-162

parent script, 3-6

passing arguments to other

scripts, 4-9

password system variable, 1-14,

6-195

path specifications, 2-8

patience module variable, 6-196

Index-14 CASL Programmer's Guide

pause option for the capture

statement, 6-27

perform statement, 3-11, 6-197,

6-205

pop statement, 6-198

predefined variables

module, 3-3

system, 3-3

using, 1-14

press statement, 6-199

printer control, 5-8

footer system variable, 6-109

header system variable, 6-128

lprint statement, 6-160

printer system variable, 6-203

printer system variable, 6-203

print statement, 4-6, 6-201

procedure declarations

argument list, 3-9

forward declarations, 3-10,

6-205

general description, 3-9,

6-204

variable and label references,

6-204

procedures

declaring, 3-9

external, 3-11

proc/endproc declaration, 3-9,

6-204

program flow control

case/endcase statement, 6-29

chain statement, 6-31

do statement, 6-79

end statement, 6-84

exit statement, 6-97

for/next statement, 6-110

freetrack function, 6-115

func/endfunc declaration,

6-116

gosub/return statement, 6-123

goto statement, 6-125

halt statement, 6-127

if/then/else statement, 6-135

program flow control (cont.)

label statement, 6-151

new statement, 6-177

perform statement, 6-197

proc/endproc declaration,

6-204

quit statement, 6-210

repeat/until statement, 6-219

return statement, 6-224

terminate statement, 6-257

timeout system variable,

6-259

trace statement, 6-260

track function, 6-265

track statement, 6-261

wait statement, 6-276

watchlendwatch statement,

6-279

while/wend statement, 6-283

prompt option for the lwait

statement, 6-162

protocol system variable, 6-207,

7-5

protocol types, 6-207

public variables, 3-6, 4-10, 6-79

public variable session topic

request, A-3

pull-down, definition of, xx

pushbutton accelerator, 6-12,

6-72

put statement, 6-61, 6-209,

6-234

Q
quiet condition

for the track statement, 6-263

for the wait statement, 6-277

for the watchlendwatch

statement, 6-280

quit statement, 6-210

quotation marks embedded in

string constants, 2-14

quote function, 6-211, 6-289

CASL Programmer's Guide Index-15

R
random mode, 6-60, 6-61,

6-121,6-209,6-234

random option for the open

statement, 6-190

Range of coordinates for the

move statement (table),

6-174

range and mathematical errors,

C-4

raw option for the cmode

statement, 6-42

read line statement, 6-60, 6-89,

6-213

read statement, 6-60, 6-89,

6-91,6-212

real constants, 2-13

real data type, 2-11

receive statement, 6-214

recorded scripts

recording with Learn, 1-5

replaying, 1-6

redialcount module variable,

6-184, 6-196, 6-216,

6-217

redialwait module variable,
6-196,6-217

relational expressions

boolean comparisons, 2-21

using in a script, 1-17

relational operators

Equality, 2-22

GreaterOrEqual,2-22

GreaterThan, 2-22

Inequality, 2-22

LessOrEqual,2-22

LessThan, 2-22

relative file paths

DOS, 2-8

Macintosh, 2-9

rename statement, 6-218

repeat/until statement, 4-3,

6-219, 6-283

replaying a script, 1-6

reply statement, 1-13, 4-6,

6-86,6-154,6-199,6-221

requesting Crosstalk informa­

tion using DDE, A-2

requesting information from a

user, 4-7

request statement. See receive

statement

reserved keywords, 2-27

restore statement, 6-223, 6-240

return codes, C-2

return statement, 6-123, 6-224

rewind statement, 6-226

right function, 6-227

rmdir statement, 6-228

Rol (operator), 2-18, 2-20

Ror (operator), 2-18, 2-20

run statement, 6-229

S
sample scripts. See also

developing a sample script
controlling the entire logon

process, 1-22

developing, 1-11

logging on in a trouble-free

environment, 1-11

verifying the MCI Mail

connection, 1-15

saveas session topic command,

A-S

save session topic command,

A-S
save statement, 6-230

scope rules

for global variables, 3-14

for labels, 3-15

for local variables, 3-14

scriptdesc compiler directive,
2-27,6-232

Index-16 CASL Programmer's Guide

•

Script description, defining,

2-27

script elements

constants, 1-9

expressions, 1-9

keywords, 1-9

labels, 1-9

procedures and functions, 1-9

statements, 1-8

variables, 1-9

script execution errors, C-7

script file name conventions,

2-8

script file types, 1-28

script management, 5-10

chain statement, 6-31

compile statement, 6-43

do statement, 6-79

genlabels compiler directive,

6-119

genlines compiler directive,

6-120

include compiler directive,

6-138

inscript function, 6-143

quit statement, 6-210

scriptdesc compiler directive,

6-232

startup system variable, 6-245

terminate statement, 6-257

trace statement, 6-260

scripts

calling another, 4-9

chaining to another, 4-9

compiling, 1-29

designing, 1-10

developing a sample, 1-11

ending one, 1-14

exchanging variables with

other scripts, 4-10

invoking, 4-9

passing arguments to other

scripts, 4-9

recording with Learn, 1-5

scripts (cont.)
replaying a recorded script,

1-6

running, 1-30

script elements, 1-8

script structure, 1-7

script types, 1-6

why use them, 1-4

writing for a Macintosh

environment, B-2

script structure

comments, 1-7

declarations, 1-7

directives, 1-8

script system variable, 6-231

secno function, 6-233

seek statement, 6-60, 6-234

semicolon to indicate a line

comment, 2-4

sendbreak statement, 6-236

send command for the kermit

statement, 6-148

sending a logon sequence, 1-13

sending a reply to the host, 4-6

send statement, 6-235

Serial Tool, 6-68, 7-4

session, disconnecting, 1-20

session function, 6-237

session management, 5-10

activate session statement, 6-5

active function, 6-6

activesession function, 6-7

assume statement, 6-16

bye statement, 6-22

call statement, 6-23

description system variable,

6-65

device system variable, 6-68

dirfil system variable, 6-77

downloaddir system variable,

6-82

go statement, 6-122

keys system variable, 6-150

load statement, 6-156

CASL Programmer's Guide Index-17

session management (cont.)

name function, 6-175

netid system variable, 6-176

number module variable,

6-184

ontime function, 6-189

password system variable,

6-195

patience module variable,

6-196

protocol system variable,

6-207

quit statement, 6-210

redialcount module variable,

6-216

redial wait module variable,

6-217

run statement, 6-229

save statement, 6-230

session function, 6-237

sessname function, 6-238

sessno function, 6-239

startup system variable, 6-245

terminal system variable,

6-254

terminate statement, 6-257

userid system variable, 6-273

session topic commands

bye, A-4

cancel, A-4

dial, A-4

execute, A-5

go, A-5

load, A-5

new, A-5

save, A-5

saveas, A-5

session topic requests

public variable, A-3

status, A-3

sessname function, 6-238

sessno function, 6-239

setting and testing time limits,

4-5

Shl (operator), 2-18, 2-20

showallquickpads statement,

6-241

showquickpad statement, 6-242

show statement, 6-240

Shr (operator), 2-18, 2-20

Single-dimension arrays, 3-7

size statement, 6-243

slash (/) option for the capture

statement, 6-27

slice function, 6-244

software, updating or upgrading,

D-3

some keyword, 6-46

sounding an alarm, 1-26

source file, 1-28

special characters in string

constants, 2-16

startup system variable, 6-245

state errors, C-5

statement group, using braces

with,1-21
statements

activatesession, 6-5

add,6-8

alarm, 6-9

alert, 6-11

assume, 6-16

bye, 6-22

call,6-23

capture, 6-26

case/endcase, 6-29

chain, 6-31

chdir, 6-32

chmod,6-33

clear, 6-39

close, 6-40

compile, 6-43

copy, 6-46

cwait, 6-57

ddeack,A-8

ddeadvise, A-9

ddeexecute, A-12

ddeinitiate, A-13

Index-18 CASL Programmer's Guide

statements (cont.)

ddenak, A-IS

ddepoke, A-16

dderequest, A-17

ddeterminate, A-19

ddeunadvise, A-20

delete, 6-63

dialogbox/enddialog, 6-71

do, 6-79

drive, 6-83

end,6-84

exit, 6-97

for/next, 6-110

get, 6-121

go, 6-122

go sub/return, 6-123

goto, 6-125

grab,6-126

halt, 6-127

hide, 6-130

hideallquickpads, 6-131

hidequickpad, 6-132

if/then/else, 6-135

input, 6-142

kermit, 6-148

label, 6-151

load,6-156

loadallquickpads, 6-156

loadquickpad, 6-157

lprint, 6-160

lwait, 6-162

maximize, 6-166

message, 6-167

minimize, 6-170

mkdir, 6-171

move, 6-174

new, 6-177

nextline, 6-179

open, 6-190

perform, 6-197

pop, 6-198

press, 6-199

print, 6-201

statements (cont.)

put, 6-209

quit, 6-210

read,6-212

read line, 6-213

receive, 6-214

rename, 6-218

repeat/until, 6-219

reply, 6-221

restore, 6-223

return, 6-224

rewind,6-226

rmdir, 6-228

run, 6-229

save, 6-230

seek,6-234

send,6-235

sendbreak,6-236

show, 6-240

showallquickpads, 6-241

showquickpad, 6-242

size, 6-243

terminate, 6-257

trace, 6-260

track, 6-261

unloadallquickpads, 6-269

unloadquickpad,6-270

upload, 6-272

wait, 6-276

watch/endwatch,6-279

while/wend, 6-283

write, 6-289

write line, 6-291

zoom, 6-294

status session topic request, A-3

status system requests, A-2

str function, 2-24, 6-246

string (case) condition

for the track statement, 6-262

for the wait statement, 6-277

for the watchlendwatch

statement, 6-280

CASL Programmer's Guide Index-19

string constants

ASCII values, 2-14

continuing on a new line,

2-16

embedded quotation marks,

2-14

general description, 2-14

key names, 2-16

special characters, 2-16

unprintable characters, 2-14

using in a script, 1-13

string data type, 2-11

string expressions, 2-21

string operations, 5-13

arg function, 6-13

bitstrip function, 6-19

count function, 6-47

dehex function, 6-62

delete function, 6-64

des tore function, 6-66

detext function, 6-67

enhex function, 6-85

ens tore function, 6-86

entext function, 6-87

extract function, 6-98

hex function, 6-129

hms function, 6-133

inject function, 6-139

insert function, 6-144

instr function, 6-145

intval function, 6-146

left function, 6-152

length function, 6-153

lowcase function, 6-159

mid function, 6-168

mkstr function, 6-173

null function, 6-183

pack function, 6-192

pad function, 6-193

quote function, 6-211

right function, 6-227

slice function, 6-244

str function, 6-246

strip function, 6-247

string operations (cont.)

subst function, 6-250

upcase function, 6-271

val function, 6-274

win string function, 6-287

string (space) condition

for the track statement, 6-262

for the wait statement, 6-277

for the watch/endwatch

statement, 6-280

strip function, 6-98, 6-193,

6-247

stroke function, 6-249

subst function, 6-250

Subtraction (operator), 2-18,

2-21

support, technical, D-2

supported Windows

connections, 7-4

suppressing label information,

2-26

suppressing line number

information, 2-26

sysitems system topic request,

A-2

system topic commands

load, A-4

new, A-4

system topic requests

formats, A-2

status, A-2

sysitems, A-2

topics, A-2

system variables

blankex, 6-20

choice, 6-35

cmode, 6-42

definput, 6-60

defoutput, 6-61

description, 6-65

device, 6-68

dirfil, 6-77

display, 6-78

downloaddir, 6-82

Index-20 CASL Programmer's Guide

system variables (cont.)

errclass, 6-93

ermo,6-94

footer, 6-109

header, 6-128

keys, 6-150

linedelim, 6-154

linetime, 6-155

match,6-164

netid, 6-176

password, 6-195

printer, 6-203

protocol, 6-207

script, 6-231

startup, 6-245

tabex, 6-252

terminal,6-254

timeout, 6-259

use rid, 6-273

systime function, 6-251

T
tabex system variable, 6-252

tabstop group option for the

dialogbox/enddialog

statement, 6-74

tabstop option for the

dialogboxlenddialog

statement, 6-74

tabwidth rnodule variable,
6-252, 6-253

takes keyword, 6-204

technical support, D-2

Terminal emulations (table),

6-254

terminal errors, C-13

terminal system variable, 6-254,

7-3

terminal tool, 6-16, 6-254, 7-3

terminal types, 6-254

terminate statement, 6-257

testing if an error occurred, 4-11

testing an outcome with a
boolean expression, 1-18

tick, definition of, 1-25

tick keyword, 6-189, 6-251

time function, 6-105, 6-258

time operations, 5-3

curhour function, 6-52

curminute function, 6-53

cursecond function, 6-55

hms function, 6-133

secno function, 6-233

time function, 6-258

time-out, checking if one

occurred, 1-18

timeout system variable, 4-5,

6-179,6-259,6-277

toggle option for the capture

statement, 6-27

tool concept, 7-2

tools

connection, 6-16, 6-68, 7-4

file transfer, 6-16, 6-207, 7-5

terminal, 6-16, 6-254, 7-3

to option for the capture

statement, 6-26

topic commands

session, A-4

system, A-4

topic name support for DDE,

A-2

topic requests

session, A-3

system, A-2

trace statement, 6-260

track clear, 6-263

track function, 6-265

track routine, 6-261, 6-263,

6-265

track statement, 6-115, 6-261

track statement conditions

key, 6-263

quiet, 6-263

string (case), 6-262

string (space), 6-262

CASL Programmer's Guide Index-21

trap compiler directive, 2-26,

4-11, 6-95, 6-267

trapping an error, 2-26, 4-11

true constant, 6-99, 6-268

type conversion, 5-14

asc function, 6-15

binary function, 6-18

bitstrip function, 6-19

chr function, 6-36

class function, 6-38

dehex function, 6-62

detext function, 6-67

enhex function, 6-85

entext function, 6-87

hex function, 6-129

intval function, 6-146

mkint function, 6-172

mkstr function, 6-173

octal function, 6-185

str function, 6-246

val function, 6-274

U
unloadallquickpads statement,

6-269

unloadquickpad statement,

6-270

unprintable characters in string

constants, 2-14

upcase function, 6-271

updating software, D-3

upload control, 5-2

blankex system variable, 6-20

cwait statement, 6-57

linedelim system variable,

6-154

linetime system variable,

6-155

lwait statement, 6-162

tabex system variable, 6-252

upload statement, 6-272

upload statement, 6-272

user

communicating with, 4-6

requesting information from,

4-7

userid system variable, 1-14,

6-273

V

val function, 6-274

variable declarations

explicit, 3-4

implicit, 3-5

public and external, 3-6

variables
backups module variable,

6-17

blankex system variable, 6-20

breaklen module variable,

6-21

choice system variable, 6-35

cmode system variable, 6-42

connectreliable module

variable, 6-45

default initialization values,

3-14

definput system variable, 6-60

defoutput system variable,

6-61

description system variable,

6-65

device system variable, 6-68

dialmodifier module variable,

6-70

dirfil system variable, 6-77

display system variable, 6-78

errclass system variable, 6-93

errno system variable, 6-94

exchanging with other scripts,

4-10

external, 3-6, 4-10

footer system variable, 6-109

global,3-14

Index-22 CASL Programmer's Guide

variables (cont.)
global, default initialization

values, 3-14

header system variable, 6-128

initializing, 1-17, 3-6

keys system variable, 6-150

local,3-14

local, default initialization

values, 3-14

match system variable, 6-164

netid system variable, 6-176

number module variable,

6-184

password system variable,

6-195

patience module variable,

6-196

predefined, 3-3

printer system variable, 6-203

protocol system variable,

6-207

public, 3-6, 4-10

redialcount module variable,

6-216

redialwait module variable,

6-217

scope rules, 3-14

script system variable, 6-231

startup system variable, 6-245

tabex system variable, 6-252

tabwidth module variable,

6-253

terminal system variable,

6-254

timeout system variable,

6-259

user-defined, 3-4

userid system variable, 6-273

verifying the Mel Mail
connection, 1-15

version function, 6-275

visual option for the cmode

statement, 6-42

W

waiting for a character string,

1-18,4-2

waiting for a prompt from the

host, 1-13

wait statement, 1-13, 1-18, 4-2,

6-276

wait statement conditions

count, 6-277

key, 6-277

quiet, 6-277

string (case), 6-277

string (space), 6-277

watch/endwatch statement, 1-24,

4-3,6-279

watch/endwatch statement

conditions

count, 6-280

key, 6-280

quiet, 6-280

string (case), 6-29 0

string (space), 6-280

watching for one of several

events to occur, 4-3

watching for one of several host

responses, 1-24

weekday function, 6-282

while/wend statement, 1-17,

1-24,4-3,6-219,6-280,
6-283

wild-card support, 2-9

winchar function, 6-284

window control, 5-15

activate statement, 6-4

alert statement, 6-11

choice system variable, 6-35

clear statement, 6-39

dialogbox/enddialog

statement, 6-71

hideallquickpads statement,

6-131

hidequickpad statement, 6-132

hide statement, 6-130

CASL Programmer's Guide Index-23

window control (cont.)

input statement, 6-142

loadallquickpads statement,

6-156

loadquickpad statement, 6-157

maximize statement, 6-166

message statement, 6-167

minimize statement, 6-170

move statement, 6-174

print statement, 6-201

restore statement, 6-223

showallquickpads statement,

6-241

showquickpad statement,

6-242

show statement, 6-240

size statement, 6-243

tabwidth module variable,

6-253

unloadallquickpads statement,

6-269

unloadquickpad statement,

6-270

winchar function, 6-284

winsizex function, 6-285

winsizey function, 6-286

winstring function, 6-287

xpos function, 6-292

ypos function, 6-293

zoom statement, 6-294

window option for the clear

statement, 6-39

Windows connections,

supported, 7-4

winsizex function, 6-285

winsizey function, 6-286

win string function, 6-287

winversion function, 6-288

word data type, 2-11

write line statement, 6-61,

6-291

write statement, 6-61, 6-289

writing scripts with CASL, 1-6

x

xpos function, 6-292

XTALK.INI file, 3-3

y
ypos function, 6-293

Z
zoom statement, 6-294

Index-24 CASL Programmer's Guide

	Front cover

	Contents

	Before You Begin

	1 - Introducing CASL

	2 - Basics of CASL

	3 - Declaring Variables, Arrays, Procedures, and Functions

	4 - Interfacing with the Host, Users, and Other Scripts

	5 - Introducing the Programming Language

	6 - Using the Programming Language

	7 - Working with Terminal, Connection, and File Transfer Tools

	8 - Compatibility Issues

	A - Windows Considerations

	B - Macintosh Considerations

	C - Error Return Codes

	D - Product Support

	Index

	Rear cover

