

/

PG-640A
Professional Graphics Board

for the IBM XT and AT
July 1, 1987
277-MU-OO

Rev. 6

'1
f

;
i

L matron
electronic /y/tem/

PG-640A
Professional Graphics Board

for the IBM XT and AT
Jnly 1, 1987
277-MU-00

Rev. 5

This Manual Is Valid For The Following Products
Name Hardware I.D. Firmware I.D.

PG-04OA CPU REV.6 REV.2
PG-04OA VGM REV.l

1055T§t°LE^CtefeCv^!emS LimUedl
Dorval. Quebec,

H9P 2T4
FAX: (514)085-2853

$
CANA

Telephone: (514)685-2630 Telex: 05-822798

FEATURES

• IBM Professional Graphics Controller (PGC)

100% compatible

• 10 times as fast as the IBM PGC

• 640 x 480 resolution

• 256 colours from a palette of more than 16

million colours

• 32/16 bit display processor |

• VLSI drawing processor

• 40,000 vectors/second

• 5,000 characters/second

• 1,200,000 pixel/second raster operations

• Enhanced instruction set includes text win­
dows, stroke text, and raster operations

• IBM XT or AT compatible

• VDI compatible

• Demonstration and diagnostics programmes in­
cluded

• Low Cost

Contents

1 Introduction 1-1

2 Functional Description 2-1

2.1 The High Level Graphics Engine 2-2

2.1.1 Hardware 2-2

2.1.2 Coordinate Space and Transforms 2-3

2.1.3 Graphics Attributes and Primitives 2-5

2.1.4 Text 2-6

2.1.5 The Text Window 2-6

2.1.6 Direct Screen Operations 2-6

2.2 The CGA Emulator 2-8

3 The High Level Graphics Engine 3-1
i

3.1 Introduction 3 - 1

i

CONTENTS

3-73.2 Command Format

3-73.2.1 Documentation Conventions

3-73.2.2 ASCII Command Format

3-83.2.3 Hex Mode

3-93.2.4 Parameter Types

3-113.3 Communications

3-113.3.1 FIFO Access

3-143.3.2 The Control Block

3-203.3.3 Setting System Flags

3-203.3.4 The WAIT Command

3-223.4 Transforms

3-233.4.1 2D Transforms

3.4.2 3D Transforms 3-24

3-413.5 Graphic Attributes

3-413.5.1 Drawing Mode

3.5.2 Color 3-43

3.5.3 Line Texture And Blinking Pixels 3-48

3.5.4 Masking Bit Planes 3-49

3.6 Primitives 3-51

3.6.1 2D Primitives 3-51

ii

CONTENTS

3.6.2 3D Primitives 3-57

3.6.3 Converting the Current Point 3-59

3.7 Fills 3-60

3.8 Text 3-66

3.8.1 Character Attributes 3-69

3.8.2 Defining Characters For The User Font 3-72

3.9 Command Lists 3-78

3.10 Direct Screen Operations 3-83

3.11 The Text Window 3-90

3.12 Read Back Commands 3-93

3.13 Error Handling ,

3.14 Graphics Input Support

3-94

3-95

4 Command Descriptions 4-1

5 The CGA Emulator 6-1

6.1 The Programmer’s Model 5 - 1

6.2 Emulator Access 5-2

6.2.1 Video Modes 5-3

6.2.2 Memory Organisation 5-5

6.3 Register Descriptions 5-8

5.3.1 Register Summary 5-8

\
iii

CONTENTS

5-95.5.2 Mode Control Register

5-105.5.5 Color Select Register

5-125.5.4 Status Register .

5-12.5.5.5 CRTC Index Register

5.5.0 CRTC Data Register . 5-15

5-155.5.7 6845 CRT Controller Emulator

6-16 Maintenance and Warranty

A- 1A Installation

A - 1A.l Configuration

A - 1A.1.1 CPU Board

A - 2A. 1.2 Video Board

A - 5A.2 Installation

A - 5A.S Connectors

A.S.l Video Output ^ A - 5

A.S.2 PC Bus Connector A - 6

D Default Parameters B - 1

C Specifications C - 1

D The Monitor Program D - 1

iv

CONTENTS

D.l Start Up Procedure

D.2 Command Entry .

D- 1

D- 1

E Lookup Table Data E - 1

F Diagnostics and LED’s F - 1

F.l Diagnostic Programme F- 1

F.1.1 Main Menu F- 1

F.l.2 CGA Emulator Test F - 2

F.l.S High Level Graphics Test F - 3

F.1.4 Self Test F - 5

F.2 LED’s F- 5

G Diskette Directory G - 1

G.l Directory G - 2

G.1.1 Directory of Utilities Diskette G - 2

G.l.2 Directory of Demo Diskette G - 3

G.2 Read.Me Files G - 4

G.2.1 Utility Diskette Read.Me File G-4

G.2.2 Demo Diskette Read.Me File G - 7

H Installing The PG-640A Device Driver H - 1

H.l Introduction 11-1

v

CONTENTS

H-lH.2 Installation

H-3H.3 VDI Opcodes

1-1I Board Layout

J-lJ Fast Execution “Local Pipes”

J.l Description of Local Pipes..................

J.2 Local Pipe Command Set Descriptions

J-2

J-3

K Command Reference Card K - 1

K.l Commands by Name . . .

K.2 Commands by Hex Opcode

K - 3

K - 4

vi

List of Figures

2.1 PG-640A Block Diagram 2-2

2.2 Two Dimensional Virtual Space to Pixel Mapping . . 2-4

2.3 Raster Transfer of Pixels 2-7

5.1 The 2D Drawing Environment 3-4

3.2 The 3D Drawing Environment 3-5

3.3 FIFO Pointer Protocol 3-13

3.4 Coordinate Spaces 3-22

3.5 Default House 3-25

3.6 Rotation Direction 3-28

3.7 Rotation Example 3-29

3.8 Translation Example 3-30

3.9 Viewing Reference Point 3 - Si

3.10 Viewing Transform Example 3-34

i

I

LIST OF FIGURES

3-363.11 Clipping Example

3-373.12 Viewing Angle and Viewing Distance

3-403.13 3D To 2D Projection Example

3.14 The Output Stage...............

3.J5 Lookup Table Bit Map

3-41

3-43

3-533.16 Example: Movest Lines, And Points

3-553.17 Example: Polygons..

3.18 Example: Circles, Ellipses, Arcs, And Sectors

3.19 3D Example..

3.20 Primitive Fill Example....................................

3-56

3-58

3-61

3-623.21 AREA Fill

3.22 AREABC Fill 3-62

3.23 AREA Pattern Example

3.24 AREABC Fill Example

3-64

3-65

3.25 The Standard Font 3-68

3.26 Justification Options 3-76

3.27 Slanted Text . 3-76

3.28 Text Example...............

3.29 TDEFIN Example . . .

3.30 Command List Example

3-76

3-77

3-80

ii

LIST OF FIGURES

3.31 Raster Scan 3-87

3.32 RASTOP Example 3-89

3.33 The Emulator Window 3-91

3.34 Graphics Input Example 3-98

5.1 Attribute Byte - Alphanumeric Mode 5-2

5.2 320 x 200 Byte Layout 5-5

5.3 Graphics Mode Row Layout 5-6

5.4 PG-640A Memory Map 5-7

i

iii

LIST OF FIGURES

iv

List of Tables

2.1 Drawing Command Summary 2-5

3.1 Communications Block Memory Map 3-12

3.2 Control Block Locations 3-19

3.3 System Flags 3-21

3.4 List Of Lookup Table Value Sets

3.5 2>Bit/3'Bit Correspondence . . .

3-45

3-46

3.6 Character Attribute Use Restrictions 3-70

3.7 Logic Operations 3-87

3.8 Scan Directions 3-88

3.9 Summary of Error Codes and Messages 3-94

5.1 Alphanumeric Color Table 5-3
i

5.2 320 x 200 Bit Storage 5-4

i

LIST OF TABLES

5.3 320 X 200 Color Sets..............................

5.4 Emulator I/O Map................................

5.5 6845 CRT Controller Emulated Registers

5-4

5-8

5-14

B.l Default Values for the PG-640A . . .

B.2 Communications Area Default Values

B - 2

B - 3

D.l Function Key Summary D - 2

ii

Chapter 1

Introduction

Thank you for purchasing the MATROX PG-640A. The PG-640A is
a plug in card set that allows an IBM PC microcomputer to perform
high level, high resolution graphics operations. This manual provides
all of the information required to install, programme, and operate the
PG-640A.

Details of the PG-640A’s capabilities can be found in the functional
description in Chapter 2. Chapter 3 is dedicated to programming the
high level graphics engine, and provides information that the user must
have in order to operate the graphics engine. Chapter 4 contains the
command descriptions for the high level graphics engine. The PG-640A’s
colour graphics emulator is described in Chapter 5. Chapter 6 provides
information on maintenance and warranty. Appendix A gives a brief
installation and check out procedure, Appendix B lists the high level
graphics engine’s parameter default values, Appendix C lists the board’s
specifications and features in point form. Appendix D describes the
monitor programme and Appendix £ lists the lookup table data. The
diagnostics programs, the self test program, and the PC-640A’s LEDs
are described in Appendix F. Appendix C outlines the utility programs
provided with the PC-640A. Appendix H explains how to install the PG-

1 - 1

INTRODUCTION

640A VDI device driver. Circuit board layout diagrams can be found in
Appendix I, and Appendix J contains a summary of the commands for
the high level graphics engine.

We believe this manual contains all the information needed to get your
PG-640A operational; however, if you do have problems feel free to tele­
phone anyone in our applications engineering department. They will be
happy to answer any questions you may have.

1 - 2

Chapter 2

Functional Description

The PG-640A is an intelligent graphics controller for the IBM PC bus. It
is 100% software compatible with the IBM Professional Graphics Con­
troller and can execute software 10 times faster than the IBM PGC.
Several new commands have been added to the PGC command set in
order to improve the versatility of the PG-640A. The speed and power of
the PG-640A make it an ideal choice for applications such as CAD/CAM,
presentation graphics, and mapping systems.

The PG-640A has a colour graphics adaptor emulator section built-in
that provides emulation of the alphanumeric and graphics modes of the
IBM Colour Graphics Adaptor. The presence of the emulator allows
the user to run software that requires a colour graphics adaptor without
the need to purchase an additional monitor and adaptor card. The High
Level Graphics Engine of the PG-640A occupies 1 Kbyte of address space
in the PC, and the emulator occupies 16Kbyte of address space and 16
bytes of I/O space.

The High Level Graphics Engine allows the user to create images with
minimal use of the system micro-processor. The PG-640A provides the
intelligence needed to draw, in two or three dimensions, geometric priin-

2 - 1

FUNCTIONAL DESCRIPTION

»••« «««
I Qj •n** •••

>mm nrni

IMH • •«*t< ;«no»
PMCdiea

■MtIM

MOIHM

IWUIO*
■A*«•«

! IIM K Ml

Figure 2.1: PG-04OA Block Diagram

itives by specifying their sise and type. High level graphics commands
are sent to a 1Kbyte FIFO buffer and are executed by the PG-04OA.
Alternately several commands can be stored in a command list and then
be executed at any time. This is different from the colour graphics adap­
tor, which allows the user to draw only single pixels and alphanumeric
characters. As the on board micro-processor of the PG-04OA provides
the intelligence for the emulator and also controls the drawing processor,
the user can display part of the emulator output in a window in the high
level graphics display. The relationship between the two graphics drivers
is illustrated in Figure 2.1.

The High Level Graphics Engine2.1

2.1.1 Hardware

The PG-04OA uses a micro-processor with a 32-bit internal architecture

2-2

THE HIGH LEVEL GRAPHICS ENGINE

and a 16-bit bus. This processor acts as the command processor and pro­
vides the intelligence to process high level commands into instructions
for the drawing processor. The on board CPU also has the processing
power to provide virtual coordinate addressing and matrix transforms.
This allows the user to choose the coordinate space to be in two or three
dimensions with the PG-640A performing the necessary three dimen­
sional to two dimensional transforms. The command processor uses a
1Kbyte FIFO queue to buffer commands from and responses to the sys­
tem unit CPU. One hundred and twenty-eight kilobytes of ROM provide
software to parse commands and to generate instructions for the draw­
ing processor. There are 128Kbyte of RAM provided to store command
lists, user fonts, and internal variables. The drawing processor draws
primitive graphics forms directly into the 320Kbyte video display buffer.

The video display buffer provides output data which is passed through
a lookup table. The user can load this LUT with any 256 colours from
a palette of more than 16 million, permitting changes to any colour on
the display with out altering the video display buffer.

2.1.2 Coordinate Space and Transforms

The PG-640A has firmware to enable it to draw in either the two or three
dimensional virtual work spaces. In both work spaces the axes have 32-
bit values and the user can define both the window and the view port.
The window is the section of the virtual work space that the user wishes
to be mapped to the view port. The view port is the physical area of
the screen that can be modified. While the user can always modify the
entire virtual work space, only the pixels that correspond to points in
the window are affected by graphics commands. The results of drawing
commands on areas inside the virtual work space, but outside of the
window, will not appear on the screen or be saved - images that pass
through the window will be clipped as they are mapped to the view port.
Alternately, there is a set of direct screen commands that allow the user
to draw directly to the screen, bypassing the transforms and increasing
drawing speed.

2-3

FUNCTIONAL DESCRIPTION
VIRTUAL SPACE SCREEN SPACE

(•40 8 4«0)

TRANSFORMATION

(0.0)

(0.0)

('9X7M.OOOOO. -337MJ00000)

Figure 2.2: Two Dimensional Virtual Space to Pixel Mapping

When drawing in two dimensions, the user has at his disposal a set of two
dimensional graphics commands. These commands draw the graphics
primitives: points, lines, arcs, circles, ellipses and polygons. The user
can set masks so that dashed lines and patterns in filled figures are
produced. The virtual points are mapped to the real display coordinates
(pixel locations) .by the PG-640A (see Figure 2.2). For a more detailed
discussion of two dimensional drawing, see Chapter 3.

In three dimensions, the user has access to the virtual coordinate system
as well as full control over viewing angles and distances. The PG-640A
uses a modelling matrix to rotate, scale, and translate the virtual coor­
dinates of the three dimensional object. A viewer reference point matrix
is used to translate a point to the centre of the currently defined view
port. This view port matrix afTects the angle of rotation by moving the
eye about the object - leaving the object stationary, see Chapter 3.

The user can also set the angle and distance from the three dimensional
origin to the two dimensional origin. This allows both two dimensional
and three dimensional objects to be drawn in the same coordinate space.

2-4

THE HIGH LEVEL GRAPHICS ENGINE

2-D Command* 3-D Command Effect Move Current Point
ARC
CIRCLE
DRAW
DRAWR
ELIPSE
MOVE
MOVER
POINT
POLY
POLYR
RECT
RECTR
SECTOR

drawa arc
drawa circle
drawa line
drawa line .

no
no

DRAWS
DRAWR3

yea
yea

drawa ellipae
movea current point
movea current point
coloura current point
drawa polygon
drawa polygon
drawa rectangle
drawa rectangle
drawa pie alice________

no
MOVES
MOVERS
POINTS
POLYS
POLYRS

yea
yea
no
no
no
no
no
no

* Direct acreen operationa parallel the 2-D commanda

Table 2.1: Drawing Command Summary

2.1.3 Graphics Attributes and Primitives

The PG-640A presents the user with a drawing model consisting of a
pen and ink. The pen has two positions, the two dimensional and three
dimensional current points. The ink has 256 colours, those that are
stored in the output lookup table. Drawing operations use the current
colour. The current points can be moved to any point in their respective
coordinate spaces with a single command and the current colour can be
selected from any of the LUT colours, again, with a single command.
Primitives are drawn from the appropriate current point in the current
colour - some relocate the current point, others do not. See Table 2.1.

The high level graphics commands provide the ability to draw geometric
figures with single commands. These figures can be drawn with pat­
terned lines, and filled in the case of closed figures. How the figure is
drawn is dependent upon how the Area Pattern and Line Pattern Masks
are set, and whether or not they are enabled. There are five drawing
modes to allow for different types of pixel replacement. The PG-640A
also has the ability to mask off entire bit planes in the display buffer
from read and write operations. This allows the user to load different
images into the buffer and to perform image overlays.

i

2-5

FUNCTIONAL DESCRIPTION

The two dimensional command set provides instructions to draw arcs,
circles, ellipses, lines, points, polygons, and rectangles. In three dimen­
sions, the user can draw lines, points, and polygons.

2.1.4 Text

Text is specified in two dimensional space. There are two pre-defined
fonts and two user defined fonts. Characters can be drawn as thin stroke,
vector based characters or fat, smooth characters that are constructed
with lines whose thickness is proportional to the character size. The user
can set the size, angle of rotation, and aspect ratio of the characters. The
justification about the current point can also be set.

2.1.5 The Text Window

On the PG-04OA there is a provision for a window, containing part or all
of the emulator screen, to be overlayedon the high level graphics screen.
This allows the user to concurrently display both high level graphics and
emulator output. The user can set the size and position of the emulator
window, and enable or disable it.

2.1.6 Direct Screen Operations

One of the major features of the PG-04OA is the ability to perform block
moves of pixel data. The user can copy a block from one part of the
display buffer'to another. Using a single command, the user defines
the block to be transferred, its destination, and the major and minor
directions in which it is to be read and written. Jt is by setting the
transfer directions that the user has the ability to invert or rotate the
pixel blocks. The inversion of a block of pixels is illustrated in Figure 2.3.

2-6

THE HIGH LEVEL GRAPHICS ENGINE

SOURCE DESTINATION

major dir => major dir <=

minor dir [minor dir j

Figure 2.3: Raster Transfer of Pixels

2-7

FUNCTIONAL DESCRIPTION

Images can also be transferred to and from the system unit. Pixel values
can be sent through the system unit and can also be transferred by DMA.
This allows the rapid reading and writing of images making the PG-640A
a useful tool for displaying images.

There are fourteen commands supported by the PG-640A that allow the
user to plot pixels directly on to the display without going through the
modelling mechanism. These commands have the advantage of having
much faster drawing speeds and are specified directly in screen coordi­
nates.

2.2 The CGA Emulator

The PG-04OA has an on board colour graphics adaptor emulator. This
emulator allows the user to run MS-DOS software in his PC without
having to purchase a second monitor and adaptor. The emulator is fully
compatible with the colour adaptor. See Chapter 5.

2-8

Chapter 3

The High Level

Graphics Engine

This chapter explains how to program the HLGB. It does so by assem­
bling related commands into groups and explaining how they are used
together to accomplish various tasks. Although it gives the formats of
many commands, it is not intended to be used for command reference-
Chapter 4, which contains the command descriptions arranged in alpha­
betical order, is better suited for that purpose. Rather, it is intended to
be an overview of the HLGE’s various functions taken from a program­
mer’s point of view.

3.1 Introduction

Most people using the HLGB will not have to program it. They will
simply run applications programs that are compatible with it. In some
cases, however, the user will want to program the HLGE.

3 - 1

THE HIGH LEVEL GRAPHICS ENGINE

In such a case the programmer’s task with respect to the HLGE is to
interface it to a CPU running another level of software. How this is done
depends on the application. For example, if the HLGE is being used to
display the output of an original assembly language application program,
the programmer will have to write parts of that program to interface with
the HLGE. If the programmer is adapting a graphics package to run the
HLGE he will have to write drivers so that the package can display
graphics on the HLGE. In another situation the programmer might be
called upon to write driver routines that could be called from a program
written in a high level language such as BASIC.

The programmer operates the HLGE by passing it commands. The form
that those commands take depends on which of two command modes
the programmer is using. In one command mode, called ASCII Mode,
the commands are passed as ASCII strings forming keywords, ASCII
decimal value parameters, and ASCII character parameters. The string
‘CLEARSU23’, for example, causes the HLGE to clear the screen to
the color corresponding to color index 23. Keywords in this mode have
a short form which can be used for brevity. In this case, for example,
*CLEAIISl»23’ can also be sent as ‘CLSU23’. ASCII Mode provides ease of
operation since the keywords are mnemonic in nature and the parameters
are decimal values. Commands in this mode do, however, take more
space than commands using the other command mode, referred to as
Hex Mode.

Hex Mode allows the programmer to store and send his commands in a
more compressed format. It uses binary opcodes instead of keywords and
uses binary values instead of ASCII decimal values for parameters. For
example, the Hex mode equivalent of <CLEARU23’ is OF 17. Hex Mode
commands lack the mnemonic character of ASCII Mode commands and
are more primitive; however, they can be stored in less space and sent
to the HLGE in less time than ASCII Mode commands. See Section 3.2
for a more detailed explanation of the two command modes.

In this chapter, to keep things simple, we describe commands and give
examples in ASCII Mode format only. Chapter 4, however, provides
descriptions of both forms of each command.

3-2

INTRODUCTION

The programmer communicates with the HLGE via a 1-Kbyte section
of HLGE memory that is mapped into the system address space. This
memory buffer is divided into 4 functional blocks referred to as the Com­
mand FIFO, the Read Back FIFO, the Error FIFO, and the Control
Block. The user passes commands to the HLGE via the Command
FIFO, reads status information from the Read Back FIFO, and reads
error information from the Error FIFO. Both the HLGE and the system
CPU use the Control Block to maintain pointers to the current read and
write locations in each FIFO. See Section 3.3 for a detailed explanation
of how to use FIFOs.

To make a 2D drawing, the user defines a window and a view port to map
all or part of the 2D virtual coordinate space onto the screen; he selects
graphics attributes such as color, line style, and drawing mode; then
uses graphics primitives, text commands, and fill commands to draw
the image. For example, putting the following string into the Command
FIFO defines the window and view port shown in Figure 3.1 and draws a
line in them. The operations specified by this code will become clear as
you read on in this chapter. The u characters represent any one of several
delimiters. Valid delimiters are listed in Section 3.2, which explains the
documentation conventions used to describe commands in this manual.

OLE A RSU0U
WIND OWu-10000u 1 OOOOu-10000u10000u
VWPORTu200u500u100u400u
MOVElAjOu
DRAWu20000u20000u

Section 3.4 explains coordinate spaces, windows, and view ports; Section
3.5 explains graphics attributes; Section 3.6 explains graphics primitives;
Section 3.7 explains text commands; and Section 3.8 explains fills.

3D drawing is a little more complicated than 2D drawing. The user
makes the drawing in a 3D coordinate space which is mapped into the
same window and view port used by the 2D coordinate space. How the
image is mapped into the view port depends on a number of transforms
that the user specifies before he does the drawing. These transforms
define the following aspects of the image:

3-3

THE HIGH LEVEL GRAPHICS ENGINE

♦3276799999 479
SC*f*N
SPACI_ 500.40020 y

COORDINATE
SPACE

VICW*0"TlOOOO 10000z TOO 100
X-32760 00000 0 6392 0

WIN 30W
♦3276799999- lOOOO -1000C

- 32768 00000

Figure S.l: The 2D Drawing Environment

• the scale, rotation, and translation (position) of the image in the
3D coordinate space.

• the position and direction of view of the viewer with respect to the
3D coordinate space.

• the hither and yon clipping planes.

• the distance of the viewer from the viewing plane and his angle of
view.

The 3D transforms and coordinate space are described in Section 3.4.

The following command string uses the default 3D transforms to draw
the figure shown in Figure 3.2. The particular operations performed by
this code will become clear as you read this chapter.

3-4

INTRODUCTION

30 20 SCREEN
COORDINATE

SPACE

y yCOORDINATE
SPACE

COORDINATE
SPACE

\ \
X

VS
V

30 TRANSFORMS 2D TRANSFORMS

Figure 3.2: The 3D Drawing Environment

CLEARSu0
MOVESu-IOOltSOuSOu

POLYR3u4uOuOuO u^OOuOuO u200ul00u0 uOulOOuOu
DRAWRSuOuOu-lOOu
POLYR3u4uOuOuO u200u0u0 u200u100u0 u0u100u0u
MOVE3u-100u50u-50u
DRAWRSuOuOulOOu
MOVE3ulOOu50Lr50u
DRAWR3uOuOulOOu
MOVE3u100u-50u-50u
DRAWR3u0u0u100u

The user can store drawings in the 1ILGE in the form of command lists
that can be run (drawn) as required. For example, if a figure is in
a command list and the user wants to move it to another part of the
screen, he sets up a new translate transform, clears the screen, and runs
the command list. The use of command lists is explained in Section 3.9.

The programmer can perform certain operations directly on the screen

3-5

THE HIGH LEVEL GRAPHICS ENGINE

(the screen coordinate space), bypassing the coordinate spaces and trans­
forms. He can use the ‘S* series commands to draw fast graphics prim­
itives in the screen coordinate space, he can use rasterops to copy one
part of the screen to another and he can transfer all or part of the screen
to or from system memory. These operations are described in Section
3.10.

3-6

COMMAND FORMAT

3.2 Command Format

3.2.1 Documentation Conventions

Throughout this chapter and Chapter 4 we describe the different com­
mands that the user can give to the HLGE. We use the following con­
ventions to make these command descriptions easier to understand:

• We print parameter names in lowercase block characters to identify
them as such. For example, parameter.

• We print hexadecimal values in typewriter style characters. For
example, FFFE.

• We print command keywords in upper case roman characters. For
example, ARC.

• We use the u character to indicate the position of a delimiter when
it can be any one of several delimiters.

3.2.2 ASCII Command Format

When the HLGE is in ASCII Command Mode (the power-up default),
the user passes commands to the HLGE as strings of ASCII characters.
A command string consists of a keyword identifying the command, pa­
rameters (where required), and delimiter characters.

The keywords for most commands have a long form and a short form.
For example the long form of the draw command is DRAW and the short
form is D. The parameters are either text strings enclosed by quotes or
ASCII decimal numbers. The allowed delimiters are:

• The space character.

• The tab character.

3-7

THE HIGH LEVEL GRAPHICS ENGINE

• The comma.

• The semicolon.

• The carriage return character.

• The line feed character.

• The hyphen acts as a delimiter at the same time that it identifies
negative values.

• The plus sign acts as a delimiter at the same time that it identifies
positive values.

For example, to draw a line from the current pen position to xy co­
ordinate 100, 200 in the 2D coordinate space, the user would put the
following ASCII string into the Command FIFO:

DRAWU100U200U

where u is any of the delimiters in the preceding list.

The ASCII Command Mode is particularly well suited for use with high
level languages, since it takes advantage of their ability to easily manip­
ulate strings.

Use the CAU command to enter ASCII Command Mode.

3.2.3 Hex Mode

When the HLGE is in Hex Mode, the commands that the user passes
to the HLGE are binary byte values. A command consists of a single
byte opcode followed by binary parameter values. In this manual we
give these values as hexadecimal numbers.

Use the CXU command to enter ASCII Command Mode.

3-8

COMMAND FORMAT

For example to draw a line from the current pen position to xy coordinate
100, 200 in the 2D coordinate space, the user would put the following
values into the Command FIFO:

28 64 00 00 00 C8 00 00 00

200
100
opcode

3.2.4 Parameter Types

The HLGE uses 3 different parameter types: Chars, Ints, and Reals. The
way that these parameter types are represented depends on the current
command mode.

The Char parameter type is a single ASCII character code in ASCII
Mode. In Hex Mode it is a single byte value in the range 0-255.

An Int in ASCII Mode is an ASCII decimal value from -65535 to 65535
inclusive. A hyphen immediately preceding an ASCII Int indicates that
it is a negative value. An unsigned Int is an ASCII decimal value from
0 to 65535. In Hex Mode an Int is a two byte binary value with the low
byte first. Hex Mode negative Ints use two’s complement form.

A Real is a value with a fractional part and a non-fractional part. In
ASCII Command Mode, a Real is an ASCII decimal real number from
>32768.00000 to +32767.99999 (the decimal is optional if the fractional
part is 0). In Hex Command Mode, it is a real number represented by 4
bytes using the following format:

3-9

THE HIGH LEVEL GRAPHICS ENGINE

l 2 3 4 bytexx TTY
"high byte of fractional part
low byte of fractional part
'high byte of non-fractional part
low byte of non-fractional part

where the value of the bytes are derived by multiplying the decimal Real
by 65536 and converting the result to hexadecimal form. For example
3.142 becomes:

3.142,o x 65536,o = 205914,o = 00032454, <,

where 0003 is the non-fractional part, 246A is the fractional part, and
the Real is sent as 03 00 5A 24.

This method is equally valid for calculating negative Reals. Thus -3.142
becomes FFFCDBA6 and is sent as FC FF A6 DB.

3-10

COMMUNICATIONS

3.3 Communications

The user communicates with the HLGE via 3 FIFO’s and a control
block that are mapped into a IK section of the system address space.
On-board switches select one of two positions for this section. Each of
the FIFO’s occupies 256 bytes, the control block occupies 14 bytes, and
242 bytes are reserved. Table 5.1 gives the layout of the communica­
tions block and indicates how switch two of switch block SWl selects
its position. Subsection 3.3.1 explains how to access the FIFO’s, Sub­
section 3.3.2 explains the use of the various flags in the control block,
and Subsection 3.3.3 describes the commands to read the current status
of certain system parameters. The last subsection is about the WAIT
command.

3.3.1 FIFO Access

The user writes commands to the Command FIFO, reads read-back com­
mand data from the Read Back FIFO, and reads error and warning codes
from the Error FIFO.

Each read pointer location and write pointer location contains an offset
from the FIFO base address. The offset plus the base address give an
address in the corresponding FIFO. In the case of a read pointer, this
address is that of the next location to be read. In the case of a write
pointer the address is that of the next location to be written to. When­
ever the user or the HLGE’s processor reads or writes a FIFO location,
they adjust the corresponding pointer.

In a FIFO of this type there are two situations where the values of the
pointers could be the same: (1) when the buffer is full of unread data
and the write pointer is incremented to the value of the read counter or
(2) when the FIFO is full of data that has been read and the read pointer
is incremented to the value of the write counter. To avoid confusion and
the possibility of overwriting unread data, our protocol only allows the
latter of these two situations. That is to say you are not allowed to

3-11

ADDRESS FUNCTION
2 SW1 OPEN 2 SW1 CLOSED

C63F7
C03FK
C63FD
C63FC
C63FB
C63FA
C03F9
C03FI
C03F7

Reserved
Reserved
Text Window Status
Turn Text Window On/Off
Reserved
Reserved
Board Type
Revision No.

C07FF
C67FB
C07FD
C07FC
C67FB
C07F1
C07F0
C67F8
C07F7

l Reserved
C6314
C6313
C0312
C6311
C6310
C630F
C03OE
C03OD
C630C
C630B
C03OA
C6300
C03O8
C03O7
C03O0
C03O6
C03O4
C03O3
C03O2
C03O1
C03OO
C02FF

C0714
C0713
C0712
C0711
C071O
C07BF
C07BK
C07OD
C07OC
C07OB
C07B1
C07B0
C07O8
C07O7
C07O0
C07O6
C07O4
C07O3
C07O2
C07O1
C07OO
C00FF

CMD List Offset 2
CMD List Offset 1
Self-test Flags
DMA Flag
Expand Mode Status Flag
CX/CA Status Flag
Emulator Status Flag
Emulator Control Flag
Emulator Strap Flag
Reserved
Reserved
Error Enable Flag
Warm Restart Flag
Cold Restart Flag
Error FIFO Read Pointer
Error FIFO Write Pointer
Input FIFO Read Pointer
Input FIFO Write Pointer
Output FIFO Read Pointer
Output FIFO Write Pointer

Error FIFO
C02OO
C01FF

C00OO
C0GFF

Read Back FIFO
C01OO
C0OFF

C06OO
C04FF

Command FIFO
C04OOC8000

Table S.l: Communications Block Memory Map

3 - 12

\

COMMUNICATIONS

255

WRITABLE
LOCATIONS

♦— I WRITE POINTER!WRITE LOCATION

OATA TO BE
REAO

—— I READ POINTER 1REAP LOCATION

WRITABLE
LOCATIONS

0

Figure 3.3: FIFO Pointer Protocol

write to the location immediately preceding the current read position.
You may, however, read the location immediately preceding the current
write position.

The preceding rules allow the user to use the values in the pointers to
determine how full a particular FIFO is at any point in time. If the
read and write pointers for a FIFO have the same value, the FIFO is
empty. If the write pointer is one less than the read pointer (modulo 256)
the FIFO is full. Figure 3.3 illustrates how the FIFO pointer protocol
functions.

To access the FIFO’s use the following procedures:

COMMAND FIFO WRITE

1. Read the values of the read and write pointers.

(a) If (writcpointcr + l)MOD25Q = readpointcr loop at step 1
(FIFO is full).

3-13

THE HIGH LEVEL GRAPHICS ENGINE

(b) If (writepointer+l)Af OD256 ^ readpointer continue to step
2.

2. Write command byte to location pointed to by writepointer.

3. Increment writepointer (MOD 256).

4. Loop to step 1 until all command bytes are written to FIFO.

ERROR OR READ BACK FIFO READ

1. Read the values of the read and the write pointers.

(a) If writepointer = readpointer stop (FIFO is empty).
(b) If writepointer ^ readpointcr continue to step 2.

2. Read byte at location pointed to by the readpointcr.

3. Increment the readpointer.

4. Loop to step 1.

The HLGE uses complementary procedures when it reads the Command
FIFO, writes to the Read Back FIFO, and writes to the Error FIFO.

3.3.2 The Control Block

The control block consists of various locations in the communications
area that are used to pass specific information between the board and
the user.

Table 3.2 describes the various locations in the control block by giving
the ofTset of each location from the base of the communications area, the
user access type, and an explanation of how the location is used.

3-14

COMMUNICATIONS

For the moat part, the information transferred in these locations is either
X or 0 and the explanations in Table 3.2 are all that you need; however,
the data passed in the self-test status location is more complicated and
requires further explanation. ,

The PG-04OA has two self-tests: Self-test A and Self-test B. Self-test
A is run at power up. Whether or not Self-test B is run depends on
the state of the the self-test switch (switch 4). If the switch is on, the
PG-04OA runs Self-test B on power up and whenever a cold restart is
issued. Self-test B reports in bits Q-4 of the self-test status location, and
Self-test A reports in bits 6 and 7 of the self-test status location. All of
the bits in the self-test status location are initially set to 0 and are set
to 1 as the corresponding test starts, if a test fails the PG-640A clears
the corresponding bit to 0.

The following diagram and text explain the functions of the individual
bits in the self-test status location.

70543210 BIT
I I I I I I I I I

I 1-Test Bl (Self-test B)
' Test B2 (Self-test B)

-Test B3 (Self-test B)
-Test B4 (Self-test B)
-Test B5 (Self-test B)
Not Used
•Test A2 (Self-test A)
Test A1 (Self-test A)

Bit 0: Test Bl. This is the first test in the Self-test B se­
quence, and tests RAM from the start of the main
buffer to the start of the communications area.

Bit 1: Test B2. This is the second test in the Self-test B se­
quence and tests that the PG-04OA’s CPU has
to the ACRTC.

access

3-15

THE HIGH LEVEL GRAPHICS ENGINE

Test B3. This is the third test in the Self-test B
sequence and tests that ACRTC can read and write
the VRAM. Errors are indicated by pixels remaining
visible on the screen.

Test B4. This is the forth test in the Self-test B
sequence and tests that the CPU can read and write
the VRAM.

Test B5. This is the fifth and final test in the Self­
test B sequence and tests that the CPU can read
and write the communications area
test assumes that the system CPU is reading and
writing to the FIFO’s. This test will not stop on
its own; the user must write a non-zero value
to the Warm Restart location (offset 307) to
terminate the test.

Test A2. This is the second and final test in the
Self-test A series and tests the RAM stack area.

Test Al. This is the first test in the Self-test A scries
and does a checksum test on the PG-04OA’s ROM.

Bit 2:

Bit 3:

Bit 4:

FIFO’s. This

Bit 6:

Bit 7:

3-16

COMMUNICATIONS

Control Block Locations
NAME OFFSET ACCESS DESCRIPTION
Cold Restart R/W Write a 1 to this kit to re­

set the board. The on-board
CPU will write a 0 to this
bit when the reset operation
is complete.

300

Warm Restart R/W Write a 1 to this byte to
halt command list execu­
tion, DMA transfers, and
Self-test B, and to reset the
FIFO pointers to 0. The on­
board CPU writes a 0 to this
byte when the halt opera­
tion is complete.

307

Error Report R/W Write a 1 to this byte to
enable error reports to the
error FIFO. Write a 0 to
this byte to disable error re­
ports. Read this byte to see
whether error reports are en­
abled or disabled.

308

Emulator Strap
Status

R The on-board CPU writes
one to this byte if the emula­
tor enable switch is enabled.
It writes a zero to this byte
if the emulator switch is not
set.

30B

Turn Emulator
On/Off

W Write a 1 to this byte to
turn on the CGE. Write a 0
to this byte to turn off the
CGE. This bit does the same
thing as the DISPLA com­
mand.

30C

Emulator On/Off
Status

R The on-board CPU writes a
1 to this byte when the CGE
is on. It writes a 0 to this
byte when the CGE is off.

30D

continued on next page

3-17

THE HIGH LEVEL GRAPHICS ENGINE

continued from previous page
NAME OFFSET ACCESS DESCRIPTION
DMA R/W The on-board CPU writes

FF to this byte when a DMA
operation is completed. It
writes a 0 to this byte when
a new DMA operation is in
progress.

310

Self-test Status R311 The on-board CPU writes
the status of the current self-
test into this byte.

CMD List 1 R The least significant byte
of a word giving the off­
set of the most recently en­
tered command in the com­
mand list currently being
defined. The user may want
to note this ofTset when en­
tering commands that may
have to be changed. When
the time comes to change
the commands, he can use
the ofTset in the CLMOD
command. The most signifi­
cant byte of the offset word
is in byte 313.

313

CMD List 2 R The most significant byte of
the command list command
offset. The least significant
byte is in byte 312.

313

Version R The version number of the
board firmware. If you have
to telephone our applica­
tions engineers for assistance
please have this number and
the revision number at hand.

3F9

continued on next page

3-18

COMMUNICATIONS

continued from previous page
NAME OFFSET ACCESS DESCRIPTION
Revision R 0 = PG-1280, PG-I280A

PG-1280A/8
1 = PG-640
2 = PC-640A
3 = not used
4 = SM-640

3F8

Window Switch W3FC write a noil-zero value to
this byte to turn on the text
window. Write 0 to this byte
to turn off the text window.

Window Status R3FD A non-zero value in this byte
indicates that the text win­
dow is enabled. A zero value
indicates that the text win­
dow is disabled.

Table 3.2: Control Block Locations

3 - 19

THE HIGH LEVEL GRAPHICS ENGINE

3.3.3 Setting System Flags

The user can read the current values of several system parameters using
the FLAGRD command. This command has the following format:

FLAGRDuflag

where flag selects one of the flags shown in Table 3.3. The current
value.of the flag is written to the read back buffer. Another command,
the RESETF command, resets all flags to the default values listed in
Appendix B. The system automatically resets flags to these values on
power-up or after a reset of the board. The command format is the
following:

RESETFu

3.3.4 The WAIT Command

The WAIT command is provided as an easy way to suspend command
execution for a specified length of time. The command format is as
follows:

WAITuf fames

where frames is the delay in ^ seconds. You can have a delay of up to
18 minutes.

3-20

THE HIGH LEVEL GRAPHICS ENGINE

Flag Name Type of Value
AREAPT

CLIPH
CLIPY
COLOR
DISPLA
DISTAN
DISTH
DISTY

FILMSK
LINFUN
LINPAT
MASK

MDORG
2- D current point
3- D current point

PRMFIL
PROJCT
TANGLE
TJUST
TSIZE

VWPORT
VWRPT

WINDOW
transformed 3- D current point

free memory
current position of XHAIR

2-D position of XHAIR
Screen Current Point

free memory
TWVIS
TWPOS
TSTYLE
TASPCT
TCHROT
COLMOD
BCOLOR

1 16 Ints
1 Char
1 Char
1 Char
1 Char
1 Real
1 Real
1 Real
1 Char
1 Char

1 Int
1 Char
3 Reals
2 Reals
3 Reals
1 Char

2
3
4
5
6
7
8
9
10
11
12
13
IA
15
16

1 Int
1 Int

17
18

2 CharB
1 Real
A Inta

3 Reals
A Reals
3 Reals

1 Int
2 Ints

2 Reals
2 Ints

1 Real4
1 Char
6 Ints

1 Char
1 Real

1 Int
1 Char
1 Char

19
20
21
22
23
2 A
25
26
27
28
29
30
31
32
33
3 A
41
42

4 This value is treated as a double precision integer

Table 3.3: System Flags
3-21

THE HIGH LEVEL GRAPHICS ENGINE

3.4 Transforms

The IILGE displays images on a video screen using a physical coordinate
space of 1280 pixels by 960 pixels, and this is the maximum resolution
of the displayed image. The user, however, draws his images in one of
two virtual coordinate spaces with a much higher resolution. The HLGE
uses transforms to map images in the virtual coordinate space into real
screen coordinate space in such a way that maximum resolution is always
maintained. For example, a user could use the HLGE to draw a very
detailed picture of a tree. When the whole tree was displayed the screen
resolution would only allow larger details such as branches, the trunk,
and the form of the tree to be seen. However, if the picture in the virtual
coordinate space was detailed enough the user could zoom in on one leaf
and see it in detail.

The two virtual coordinate spaces are a 2D coordinate space with two
axes (x and y) and a 3D coordinate space with 3 axes. The resolution
of both coordinate spaces is from -32768.0000 to +32767.9999 on each
axis. Figure 3.4 shows the two virtual coordinate spaces and illustrates
their relation to each other and the screen space.

♦37707900—

30-3?r66 00000
COORDINATE
SPACE

COORDINATE
SPACE

♦ 37707.0—9^ ♦37767 9—t SCREEN SPACE- 37700 OOOOO 0 -37760 60000

•It
♦ 37707.00000

-37700 00000 , -37700 00000

Figure 3.4: Coordinate Spaces

3-22

TRANSFORMS

3.4.1 2D Transforms

The 2D coordinate space uses Cartesian coordinates with the origin in
the centre and coordinates going from -32768.0000 to +32767.9999 on
each axis. The user utilizes the WINDOW and VWPORT commands
to map a rectangular section of this coordinate space onto the display.
The WINDOW command takes the following format:

WINDOWuXiuXjuyiuya

where the parameters Xi and yi form one coordinate pair, and Xa and y2
form another. These coordinate pairs specify two opposing corners of a
rectangular section of the 2D coordinate space. This rectangular section
is referred to as a window and any image drawn in it is mapped into the
current view port-a rectangular section of the screen space. If the user
does not specify a window, the HLGE defaults to a 640 by 480 window
centred on the the coordinate space origin.

The VWPORT command defines the view port, and has the following
format:

VWPORTuXiuXauyjuy*

where coordinate pairs Xj. yi and Xj. ya specify the opposing corners
of a rectangular section. In this case, however, the coordinates must be
given in screen coordinates rather than 2D coordinate space coordinates.
As indicated in Figures 3.4 and 3.5, the screen coordinate space has its
origin in the lower left corner, has 640 (0-639) points on the x axis, and
480 (0-479) points on the y axis. If the user does not specify a view port
the IILGE defaults to a view port that includes the whole screen.

The command string that defines the window and view port in Figure
3.1 of Section 3.1 illustrates how the user can define different windows
and view pprts.

3-23

THE HIGH LEVEL GRAPHICS ENGINE

3.4.2 3D Transforms

The user draws 3D pictures in the 3D coordinate space. When he draws
them, their position, size, and how they are viewed are determined by the
current state of a number of transforms. Modeling transforms determine
the scale (size), rotation, and position (translation) of the picture within
the coordinate space. Viewing transforms determine the position of the
viewer and his direction of view with respect to the coordinate. The
clipping function's hither and yon clipping planes slice off the front and
the back of the picture if that is required. 3D to 2D transforms map
the 3D image into the 2D coordinate space, establishing the distance of
the viewer from the image and his angle of view (perspective). Once the
image is in the 2D coordinate space it is mapped onto the screen by the
window and view port transforms that we have already described during
the description of 2D drawing.

The 3D transforms allow the user to manipulate the graphic object and
the viewer. For example, let us assume that the user has a routine to
draw a house. If he wants 2 houses in different parts of the 3D coordinate
space, he sets up the translation transform for one position then runs
the routine to draw the first house. Then he sets up the translation
transform for another position and runs the same program again to draw
the second house.

The diskette that you received with the PG-04OA contains a file named
house.pga. It contains a list of commands that draw a house. Figure
3.5 shows how that house is displayed when the HLGE uses its default
parameters for the 3D transforms. In this section we use several examples
to show how different transform settings affect this house. You can easily
use the PG-04OA monitor program to input the example code to the
HLGE so that you can see the results on the screen. If you wish to do
so, execute the following procedure. It loads the monitor, and puts the
house description into a command list (command lists are described in
Section 3.9).

1. Put 82960A-J2001 diskette into drive A.

3-24

l

TRANSFORMS

2. Type "AiPG-MONfcarriage return)” to load monitor program.

3. Press the F6 key then the F8 key to enable the HLGE display with
a text window at the bottom.

4. Press the Fl key then type “Arhouse.pga”. Instructions in the file
will put the house routine into command list number 100.

5. Now to send command strings to the Command FIFO you just type
them as they are shown in the examples, using a delimiter such as
space, comma, or carriage return in place of the u characters.

7 s-rf]o □tf □ .c
Figure 3.5: Default House

Modeling Transforms

The modeling transforms are the first transforms to afTect the house
when it is being drawn. There are 3 different modeling transforms-the
translation transform, which moves objects in the coordinate space by
offsetting their coordinates as they are drawn; the rotation transform
which rotates the object around each of the three axes; and the scaling
transform, which determines the size of the object.

3 - 25

THE HIGH LEVEL GRAPHICS ENGINE

The HLGE performs the modeling transforms by multiplying each x,y,i
coordinate set in the graphic object’s description by a modeling
trix (M). The user can load the modeling matrix directly by using the
MDMATX command, or he can modify various aspects of it by using
5 modeling commands (MDTRAN, MDSCAL, MDROTX, MDROTY,
and MDROTZ). When the HLGE receives a modeling command it tem­
porarily creates a submatrix corresponding to the command function,
multiplies it by the modeling matrix then discards it, leaving a modified
modeling matrix. The submatrices created by the modeling commands
are: the translation matrix (T), the scaling matrix (S), and the 3 rotation
matrices (Rx, Rv, RM).

The submatrices are multiplied by the master in the order that their
corresponding commands are received. Since matrix multiplication is
not commutative this means that the order that you send your modeling
commands in affects the form of the master matrix.

ma-

At reset the modeling matrix is a unity matrix. You can return it to
unity at any time by issuing the MDIDEN command. You can read
the current modeling matrix by issuing a MATXRD command with a
parameter of 1.

The rotation and scaling transforms require an origin. In rotation op­
erations the origin is the point around which the graphic object turns.
In scaling operations it is the point at the centre of the expansion or
contraction. The MDORG command is used to specify the modeling
origin; its format is as follows:

MDORGuOXuoyuOz

The parameters are an x,y,* coordinate set that specifies the modeling
origin with respect to the graphic object’s original coordinates. For
example, our house is centred on the coordinates 0, 50, 0. To specify
this point as the modeling origin we would pass the following ASCII
string to the IILGE:

MDORGu0u50u0u

3-26

TRANSFORMS

Use the MDROTX, MROTY, and MDROTZ commands to rotate graphic
objects. The command formats are as follows:

MDROTXudeg
MDROTYudeg

MDROTZudeg

where deg is the number of degrees of rotation to be performed. The
HLGE calculates the sin and cos of these angles and enters them into
the rotation matrices as shown below:

/ 1 0 0\
0 coaO axnO 0
0 —si nO coaO 0

0 1

0

0 0

f coaO 0
0 1

axnO 0
0 0

—axnO 0
0 0

coaO 0
0 1)

Rv =

f coaO axnO 0 0 >
—axnO coaO 0 0

0 10
0 0 1 J

R„ = 0
0

The HLGE uses the right-hand rule for rotation. This rule defines the x,
y, and i axes to be in the directions that the first finger, second finger,
and thumb of a right hand will point in if they are held at right angles to
each other (see Figure 3.6). The origin of these axes is at the modeling
origin, and the object rotates around the axes as illustrated in Figure
3.6.

3-27

THE HIGH LEVEL GRAPHICS ENGINE

Figure 3.6: Rotation Direction

The default modeling transforms use identity matrices that do not afTect
the graphic object. There will be situations where the user will want to
get back to this identity state-i.e. to reset the transforms. The HLGE
provides the MDIDEN command for this purpose. In our examples of
modeling transforms we use this command to reset the transforms so
that you can see the effect of one transform without interference from
others.

The following command string resets the modeling transforms, sets the
modeling origin, sets up the rotation transforms, then runs command list
number J00. If command list 100 has the house routine from house.pga
(see page 3-18) then the result will be as shown in Figure 3.7.

MDIDENU
MDORGu0u50u0u
MDROTXu45u
MI)ROTYu45u
MDROTZu45u
CLRUNul00u

The MDSCAL command is used to scale graphics objects. Its format is
as follows:

3 - 28

TRANSFORMS

Figure 3.7: Rotation Example

MDSCALuSXusyuSZ

where SX. sy. and sz are entries in the scaling transform as follows:

t, 0 0 0 \
0 Sy 0 0
0 0 Sy 0

^ 0 0 0 1 J

S =

The result of this is that when it is drawn, the size of the graphic ob­
ject along each axis is multiplied by the corresponding parameter. For
example, if sx is 2 the graphic object is expanded by 2 times along its x
axis. If sy is .5, the graphic object’s size along the axis is halved.

The MDTRAN command is used to offset a graphic object from its as
sent coordinates to a different position. The command format is as
follows:

MDTRANutXutyutz

3 - 29

THE HIGH LEVEL GRAPHICS ENGINE

Figure 3.8: Translation Example

where the parameters are values to be added to the x, y, and s as sent
coordinates. The HLGE enters these values into its translation matrix
as follows:

1 0 0 O'
0 10 0
0 0 10

fy ty 1 J

T =

The following command string makes 2 half-size copies of our house in
different positions as shown in Figure 3.8.

CLEARSlAj
MDJDENu
MDSCALu5u.5u.5u
MDTRANu50u40u50
CLRUNulOO
MDTRANU-150LT150LT150U
CLRUNui00u

3-30

TRANSFORMS

VIEWING
REFERENCE
POINT

V
\

VIEWER f
COORDINATE
8PACE «•—
ORIGM

Figure 3.9: Viewing Reference Point

Viewing Transforms

The HLGE uses a viewing transformation to position the viewer with
respect to the coordinate space. It establishes a viewing reference point,
which is mapped into the centre of the view port, and it positions the
viewer somewhere on the surface of a sphere that has its centre at the
viewing reference point, as illustrated in Figure 3.9. The radius of the
sphere and the amount of the coordinate space that is mapped into the
view port are determined by the 3D to 2D transformation, which is
described further along. Our examples up to this point have used the
default viewing reference point and viewer position-the viewer reference
point is in the centre of the coordinate space and the viewer is looking
down the positive Z axis.

As is the case with the modeling transform, the viewing transform uses
a master matrix (the viewing matrix). The user can load the viewing
matrix directly with the VWMATX command, or he can alter vari­
ous aspects of it with the viewing commands (VWRPT, VWROTX,
VWROTY, VWROTZ). The viewing commands function like the mod-

3-31

THE HIGH LEVEL GRAPHICS ENGINE

eling commands in the respect that they set up submatrices that are
multiplied by the viewing matrix then discarded; and like the modeling
commands, the order that they are issued in has an effect on the final
view. The user can read the current viewing matrix at any time by
issuing the MATXRD command with a parameter of 2.

The VWIDEN command is similar to the MDIDEN command, and we
use it in our examples to reset the viewing matrices so that other matrices
don’t affect the matrix that we are using in the example.

The VWRPT command is used to specify the viewing reference point.
^The command format is as follows:

VWRPTuXuyuZ

where x, y, and 2 are a coordinate set specifying the 3D coordinate space
point that the user wants in the centre of the viewer’s field of view (i.e.
the centre of the view port).

The VWROTX, VWROTY, and VWROTZ commands determine the
position of the viewer on the viewing sphere. The command formats are
as follows:

VWROTXudeg
VWROTYudeg
VWROTZudeg

where deg is the number of degrees the viewer is to move around the
corresponding axis in the direction indicated in Figure 3.6. Note that
the axes used by these commands are parallel to the coordinate system
axes but that their origin is at the viewing reference point. The HLGE
takes the sin and cos of the angle and enters them into the viewing
rotation matrices as follows:

3-32

TRANSFORMS

f 1 0 o o\
0 coaO —ainO 0
0 ainO coaO 0

0 1

VWRx =

0 0

eoaO 0 ainO 0
0 1

—ainO 0 coaO 0
0 1

0 0VWRy =

0 0

^ coaO —ainO 0 0 ^
coaO 0 0

0 1 0
0 0 1 ,

ainOVWRa = 0
0

The following string clears the display, resets modeling and viewing
transforms, sets the viewing reference point to {0,50,0} (the default
value), moves the viewer’s position to 90 degrees up from the xz plane
in the ys plane, then runs command list number 100 to draw our house.
Figure 3.10 shows the result.

CLEARSuO
MDIDENu
VWIDENu
VWRPTu0u50u0u
VWROTYu90u
CLRUNulOOu

Hither and Yon Clipping

The WINDOW command, which we have already examined, clips the
sides of the picture to frame the part of the coordinate space that we want

3-33

THE HIGH LEVEL GRAPHICS ENGINE

iDO

Figure 3.10: Viewing Transform Example

3-34

TRANSFORMS

to look at. The HLGE also has commands to clip everything in front
of a given point and every thing behind a given point. The operation
is referred to as hither and yon clipping, and to do it you must specify
clipping planes, then set clipping enable flags. The clipping planes are
set with the following commands:

DISTHudist
DISTYudist

where dist in the DISTH command is the distance from the viewing
reference point to the hither (foreground) clipping plane, and dist in the
DISTY command is the distance from the viewing reference point to the
yon (background) clipping plane. The polarity of the parameter values
are the opposite of what the user might think. That is to say negative
value are closer to the viewer than positive values.

The commands that actually enable or disable clipping have the following
format:

CLIPHuflag
CLIPYuflag

where flag is 0 or 1. A 1 enables clipping; a 0 disables clipping. As
the last letter in the command keywords suggest, CLIPH controls hither
clipping and CLIPY controls yon clipping.

The following string clears the screen, sets the clipping planes and flags,
then runs command list 100. The result is a house with the front and
back clipped off as shown in Figure 3.11.

CLEARSuOu
VWRPTuOuOuOu VWIDENu
DISTHur90u
D1STYU90U
CLIPHulu
CLIPYulg
CLRUNulOOu

3-35

THE HIGH LEVEL GRAPHICS ENGINE

Figure 3.XI: Clipping Example

To appreciate applications of the hither and yon clipping function imag­
ine that our graphic object is not a simple line drawing house but a
complex gear box. If such was the case we would now be able to exam­
ine its inner workings.

Clipping should be disabled when it is not required since it requires extra
calculations on the part of the HLGE, with the result that performance
is decreased.

3D to 2D Projection

In addition to the VWROT commands and the hither and yon clipping
parameters there are 3 other factors that affect the appearance of a 3D
object on the screen: the distance of the viewer from the object, the
projection angle, and the current window position.

The HLGE projects the area around the viewing reference point onto
the 2D coordinate space. The size of this area depends on 2 parameters:
the viewing angle and the viewing distance as illustrated in Figure 3.12.
The viewing angle specifies the number of degrees on the horizontal axis
and the vertical axis of the viewer’s field of view (default is 60°), centred

3-36

TRANSFORMS

VIEWED
AREA

VIEWING
REFERENCE

POINT
I

7

ANGLE

>

VIEWER

Figure 3.12: Viewing Angle and Viewing Distance

on the viewing reference point, and the viewing distance is the distance
that the user is from the viewing reference point (default is 500). In an
analogy with & camera, the viewing angle would be determined by the
type of lens (wide angle, narrow angle, etc.) and the viewing distance
would be determined by the distance of the camera from the subject. If
the viewing angle is larger, more of the 3D coordinate space is projected
into the window. Likewise, if the viewer moves farther away from the
viewing reference point more of the 3D coordinate space is projected into
the window.

The DISTAN command is used to specify the viewing distance. Its
format is as follows:

DISTANudist

3-37

THE HIGH LEVEL GRAPHICS ENGINE

where dist is the distance (specified in 3D coordinate point units) of the
viewer from the viewing reference point.

The PROJCT command is used to set the viewing angle and the type of
perspective that is to be used for the projection. Its format is as follows:

PROJCTuangle

where angle is the number of degrees (horizontal and vertical) in a field
of view with the viewing reference point at its centre. An angle of 0° is a
special case. It specifics a orthographic parallel (non-oblique) projection.
When this type of projection is used the viewing distance has no effect
on the size of the picture.

The HLGE uses the following formulas to convert 3D coordinates to 2D
coordinates: • <

windowdiagonal1
X Xvw XX2 D =

2 X tan^dist — zvw

windowdiagonal1 x yvw xV2D -
2 Xdist — zvw

The HLGE does not automatically map the view into the current win­
dow; however, the transformations used do guarantee that the viewing
reference point is mapped to the origin of the 2D virtual space. So if
your window includes the 0,0 coordinate, you will see your viewing ref­
erence point on the screen, and you can adjust the window position as
required to see any part of the object that is not in the window.

Window size, however, makes no difference to all projections except the
2D and 3D orthographic cases. That is to say, the window size is inef­
fective in displays with PROJECT angles greater than 0°.

3 - 38

TRANSFORMS

This is because the 2D virtual coordinates from the equations above are
next passed through another transform to bring them to screen coordi­
nates. This final transform has the following form:

(xnewportaize)
% tern (*2 d xwindowle/t) ^ + Zvicwportlef tedgewindow size

Substituting for z2d and separating out the constant terms leaves:

windowdiagonal viewportsize
2 x tan anVl- windowaize

1 + K*tcrn = diet — zvw

If the current window is close to being square, the windowdiagonal is
close enough to the windowaize in both the x coordinate and y coordi­
nate transforms so they will cancel out for all practical purposes.

Also note that since diat is in the denominator, larger distances give
smaller screen images. Similarly, since the tangent of half the projection
angle is in the denominator, when the angle is bigger, the screen image
is smaller (especially for large angles).

The following command string uses the 3D to 2D transform to zoom in
on the house as shown in Figure 3.13. The 3D to 2D transform converts
the 3D coordinates to 2D coordinates then the window to view port
mapping converts the 2D coordinates to screen coordinates.

CLEARSuOu
MDIDENu
VWIDENu
CLIPIIuOu
CLIPYuOu
DISTANuSOOu
CLRUNulOOu

3 - 39

THE HIGH LEVEL GRAPHICS ENGINE

Figure 3.13: 3D To 2D Projection Example

V

3-40

GRAPHIC ATTRIBUTES

PLANE o
plans

PLANE 2
PLANE 3

PLANE 4
PLANE 5

G DISPLAYPLANE «
B479 PLANE 7

OISPLAY BUFFER

639

Figure 3.14: The Output Stage

Graphic Attributes3.5

After the HLGE has performed all of the transforms described in the
preceding section, the resulting image is drawn by loading 8-bit color
indices into pixel locations in the display buffer. The display bufTer is
a 640 by 480 array of pixel locations that is mapped onto the display
screen through a color lookup table. This lookup table determines the
color that corresponds to each index. Figure 3.14 illustrates the relation
of the display buffer to the screen.

When drawing an image in the display buffer, the color indices used
depend on several graphics attributes. These attributes are: the current
index, the current line style, the current drawing mode, and the current
mask.

>

3.5.1 Drawing Mode

The current drawing mode affects all the other modes. There are five
drawing modes: Replace, Complement, OR, AND, and XOR.

i

3-41

TIIE HIGH LEVEL GRAPHICS ENGINE

The user selects the mode with the following command:

LINFUNumode

where mode is & Char from 0 through 4.

When Replace Drawing Mode is active, lines and fills are drawn by
replacing the contents of pixel locations with the current index.

When Complement Drawing Mode is active, the PG-640A draws lines
and fills by complementing the current contents of pixel locations. For
example, the default contents of the display buffers is index 0 in all pixel
locations; in Complement Drawing Mode the PG-640A would draw a line
on this background by changing the index of every pixel in the line to 255,
since 255 (FF) is the complement of 0 (00). The advantage of this mode
is that it allows individual graphic objects to be erased easily without
affecting underlying graphic objects or the background. For example,
to erase a line that was just drawn, we would merely redraw it, and it
would be complemented back to what it was before. The disadvantage
of Complement Drawing Mode is that the color displayed is affected by
the underlying color.

The XOR Drawing Mode is a more general form of the Complement
Drawing Mode and can be used for similar applications. It, however,
allows more flexibility, since it XORs the current index with the current
values of underlying pixels to obtain the new pixel values as a line is
drawn. Drawing the same line twice in this mode results in no line,
since the second line reverses the first.

The OR Drawing Mode ORs the current index with the current values in
underlying pixels, and the AND Drawing Mode ANDs the current index
with the current values in underlying pixels. The uses for these two
drawing modes are less common; however, the experienced programmer
should be able to put them to use in certain applications.

Note that all of the drawing modes interact with the PRMFIL command
(refer to Section 3.7).

3-42

GRAPHIC ATTRIBUTES

3.5.2 Color
s » i t. ; o 7 g » » *■ j o 7 k 9 <► s z i o »rr

11 i m i i i 11 i i i ri i m ii n

: ■—

_► a£ ^
7

— B

Figure 3.15: Lookup Table Bit Map

The user selects the current index by issuing the COLOR command,
which has the following format:

COLORuindex

where index is a value from 0 to 255. A color index is not a color in
itself; it is the address of a location in the lookup table. As the display
bufler is scanned, the value in each pixel location is sent to the lookup
table. The lookup table provides three values to the digital to analog
converter. These values are used to generate the three analog signals to
drive the red, green, and blue guns of the color display. Each lookup
table location has 24 bits that are mapped into the digital to analog
converter (D/A) inputs as indicated in Figure 3.15.

Referring to Figure 3.15, you will see that there are 256 intensity values
for each of the three primary colors. The color that appears on the screen
depends on the combination of these values. For example, a lookup
table value of FF FF 00 generates bright blue-green, 00 FF FF generates
bright yellow, and 00 00 00 generates black.

3 - 43

THE HIGH LEVEL GRAPHICS ENGINE

The LUTX, LUT and LUTINT commands allow the user to load various
color values into the lookup table. The LUTX and LUT commands write
values into single lookup table locations, and the LUTINT command
initializes the whole lookup table to one of several sets of predetermined
values. The format of the LUTX command follows:

LUTXijindexurugubu

where index is the index of a lookup table location, and r, g. and b are
values from 0 to 255 specifying the intensity of the red, green, and blue
elements respectively for that location. The LUT command is similar to
the LUTX command except that only the four low bits are loaded into
the four high bits of the lookup table entry. LUT is provided in order
to maintain software compatibility with other MATROX products. For
example, the following LUTX command string sets lookup table location
4 to bright yellow:

LUTXu4u255u255u0

The following LUT command string will put bright yellow into the lookup
table location A:

LUTu4ul5ul5uO

The LUTINT command has the following format:

LUTINTuset

where set is a number specifying one of several sets of values to be loaded
into the lookup table. Table 3.4 lists these sets and Appendix E gives
their contents.

Set 0 has values that generate colors in the standard color cone used by
graphic artists. The relationship between the color index and the color

3-44

GRAPHIC ATTRIBUTES

SET DESCRIPTION
Color-cone
2 surface
rrgggbbb
rrrggbbb
rrrgggbb
6-level rgb
Alternate saved LUT
Saved LUT 1
Saved LUT 2

0
I
2
3
4
5

253
254
255

Table 3.4: List Of Lookup Table Value Sets

that is generated by it is arbitrary. The values of the predefined lookup
table can be found in Appendix E.

Sets 2 to 5 are arranged in such a way that there is a relationship between
the format of the color index and the color that it generates. When Set
2, 3, or 4 is in the lookup table, the color index is divided into three
binary numbers: a red number, a green number, and a blue number.
The number of bits in each number depends on the lookup table set as
shown below:

76543210 bit
Set 2 index = rrgggbbb
Set 3 index = rrrggbbb
Set 4 index = rrrgggbb

The value of these numbers determines the intensity of the red, green,
and blue components of the color. The two-bit intensity values are re­
lated to the three-bit intensity values as shown in Table 3.5.

For example, if Set 2 is in the lookup table, index 63 (00111111) selects
bright cyan. When Set 5 is in the lookup table, the relationship of the

3-45

THE HIGH LEVEL GRAPHICS ENGINE

VALUE
INTENSITY3-BIT2-BIT

000
31
521
73
94
102
115
136
1573

The high nibble of each eolor component contains the selected entry
from the INTENSITY column; the low nibble of each color component

is set to zero.

Table 3.5: 2-Bit/3-Bit Correspondence

3-46

GRAPHIC ATTRIBUTES

index to the color selected is a follows:

index = (r X 36) + (y x 6) + 6

where r, g, and b are intensity values from 0 through 5 for the color
components of the selected color.

Set 1 has a special set of color values designed to provide two superim­
posed display surfaces. When Set 1 is in the lookup table, the index is
divided into two subindices: ones in the low four bits select the underly­
ing color and ones in the high four bits select the overlying color. Zeroes
in the high four bits makes the foreground surface transparent, allowing
the underlying surface to show through. Further on we explain how to
use the MASK command to write to one surface or the other.

Sets 253, 254 and 255 load the lookup table with sets of lookup table val­
ues that the user has previously saved using the LUTSAV and LUTSTO
commands. Note, however, that Set 253 alternately loads the lookup
table with the specified lookup table values. The LUTS.AV command,
which has no parameters, saves the current contents of the lookup table
to a special on-board memory buffer reserved for Set 255. The LUTSTO
is similar to the LUTSAV command except that it allows two sets of
lookup table contents to be stored. It has a parameter which specifies
that the current lookup table be saved to Set 255 or to a second buffer
reserved for Set 254. Subsequent LUTSAV and LUTSTO commands
overwrite any lookup table sets that may have already been saved in the
lookup table buffers.

The user can read the contents of a lookup table location by issuing the
LUTRD command or the LUTXRD command. These commands have
the following formats:

LUTRDJndex LUTXRDJndexor

where index is a value from 0 to 255 specifying the lookup table location
to be read. The HLGE will copy the contents of the specified lookup
table location into the Read Back FIFO.

3-47

THE HIGH LEVEL GRAPHICS ENGINE

3.5.3 Line Texture And Blinking Pixels

Lines can have texture as well as color. The texture is determined by
the current line pattern, which the user sets with the LINPAT command.
LINPAT has the following format:

LINPATupattern

where pattern is a word with the line bit pattern. For example, the
decimal value 61680 is equivalent to the binary value 1111000011110000.
Issuing the following command:

LINPATU61680U

causes lines to be drawn with four pixels in the current index alternating
with four transparent pixels that allow the underlying index to show
through (1 = current index, 0 = transparent).

Under certain conditions, primitives may generate both a background
and a foreground. When a patterned line is drawn, for example, the
pattern is made up of a foreground and a background, a character cell has
a foreground and a background, and any of the commands that produce
filled areas produce a foreground and a background if the fill is in the
form of a pattern. In such a case, using the COLMOD command specifies
the color mode that determines whether the background is transparent or
is the color last specified by the background color index. The background
color is specified by the BCOLOR command. Note that the color mode
affects the LINPAT command.

The COLMOD command has the following format:

COLMODumode

where mode is a Char equal to 0 or 1. When parameter mode is 0, the
background is set to the color specified by the BCOLOR command; when
mode is 1, the background is transparent.

3-48

\

GRAPHIC ATTRIBUTES

The BCOLOR command has the following format:

BCOLORuindex

where index is a Char from 0 to 255 specifying the background color
index.

Color indices can also be given a blink attribute to make them blink
with the BL1NKX command. It has the following format:

BLINKXuindeXuredugreenublueuontimeuofTtime

where index specifies the lookup table index to blink. The parameters
red, green, and blue are values from 0 through 255 that compose the
color that the index is to blink to. The time that the affected pixels
will be the blink color is specified by ontime in ^ seconds. The time
that the pixels are their normal color is set by offtime in ~ seconds. A
similar command, BLINK, is provided for software compatibility with
other MATROX products.

If you want to stop all blinking set by BLINK and BLINKX commands
simply use the SBLINK command. It has the following format:

SBLINKu

All pixels will be assigned their original color.

3.5.4 Masking Bit Planes

If you refer to Figure 3.14 again you will note that the display buffer is
composed of eight bit planes - one for each of the eight bits in the color
index. The MASK command can mask off specified bit planes so that
they cannot be overwritten when the HLGE draws in the display buffer.
The MASK command has the following format:

3-49

THE HIGH LEVEL GRAPHICS ENGINE

MASKuplanemask

where planemask is an eight bit value (0-255). Zeroes will prevent access
to their corresponding bit planes and ones will permit access. For exam­
ple, the value 240 (11110000) masks access to the four least-significant
bit planes.

The mask allows the display buffer to be divided into different display
surfaces. This is particularly useful when used in conjunction with the
Set 1 lookup table values. For example, to superimpose the layers of
artwork for a multilayer printed circuit board, the user could draw one
layer with the four lower bit planes masked ofT, and then mask off the
high four bits and draw the second layer. The image already on the
lower bit planes would not be affected.

5-50

PRIMITIVES

3,6 Primitives

The HLGE maintains 2 current points: a 2D current point and a 3D
current point. These points are analogous to the position of a pen on
a piece of paper. Just as you would move a pen over paper to draw
an image, you move the 2D current point to draw an image in the 2D
coordinate space and you move the 3D current point to draw an image
in the 3D coordinate space. The commands that allow you to move the
current point are called graphic primitives, and are explained in this
section.

There are 2 main categories of graphics primitives: those that are used
in the 2D coordinate space and those that are used in the 3D coordinate
space. The keywords for commands in the 2 groups are similar. The 3D
keywords are distinguished from their 2D counterparts by having a 3 as
the last character of their keywords. Note, however, that not all the 2D
primitives have 3D counterparts.

In this section we describe all of the 2D primitives then describe the 3D
primitives. In both cases we use a running example to illustrate how
the commands work. The reader is invited to use the PG-640A monitor
program to input the commands in these examples to the HLGE (see
Subsection 2.5.2 or Appendix D for instructions on how to use the PG-
640A monitor program).

3.6.1 2D Primitives

When you draw on a piece of paper your pen is not always on the paper.
You need to lift it and move it from time to time to start new lines.
The same is true for drawing with the HLGE. The MOVE and MOVER
commands are provided to move the pen in the 2D coordinate space
without drawing. The formal of the MOVE command is as follows:

MOVEuXuy

3-51

THE HIGH LEVEL GRAPHICS ENGINE

where x and y are reals specifying a coordinate pair in the 2D coordinate
space. When it receives this command, the HLGE moves the current
point to the indicated point without drawing.

The format of the MOVER command is as follows:

MOVERudxudy

where dx and dy are reals specifying the distance that the current point
is to be moved on the x and y axes respectively. Note that the ‘R’
termination on this and other command keywords identify the command
as using relative coordinates.

If you want to draw a dot at the current point, you issue a POINT
command. It draws a point in the current index or complemented index
depending on the current drawing mode, as is the case with all graphics
primitives. The POINT command has no argument.

To draw a single straight line (also called a vector) you issue either a
DRAW or DRAWR command. The parameters for these commands are
the same as those for the MOVE and MOVER commands and the effect
is the same with the difference that the DRAW and DRAWR commands
draw lines from the old current point to the new current point.

The following example clears the screen then moves the current point to
the centre of the coordinate space and draws a point. Then moves the
current point again (using relative coordinates this time) and draws two
lines-one using relative coordinates and one using absolute coordinates.
The result is illustrated in Figure 3.16.

COLORu24u
CLEARSuOu
MOVEuOuOu
POINTu
MOVERuO -10u
DRAWRu^Olt-Su
DRAWuOuOOu

3-52

PRIMITIVES

I
l
l
i
i
i

ti

i
i

i
i

Figure 3.16: Example: Moves, Lines, And Points

The HLGE has several graphic primitives that use a sequence of straight
lines to draw polygons. These include the RECT, RECTR, POLY, and
POLYR commands. RECT and RECTR draw rectangular polygons.
RECT uses absolute coordinates, and RECTR uses relative coordinates.
The format for the RECT command is as follows:

RECTuXuy

where X and y are reals specifying a coordinate pair at one comer of the
rectangle to be drawn. The HLGE assumes that the opposite corner on
the diagonal is the current point and draws a rectangle based on the two
corners. The current point does not move.

The format of the RECTR command is as follows:

RECTRudxudy

where dx and dy are reals indicating the distance along the x and y
axes respectively from the current point to the corner opposite on the
diagonal of the rectangle to be drawn.

3-53

THE HIGH LEVEL GRAPHICS ENGINE

The POLY and POLYR commands draw general polygons. The format
of the POLY command is as follows:

POLYunptSuxluylux2uy2 ... xnuyn

where npts is a value of 0-255 giving the number of corners in the polygon
to be drawn, and the rest of the argument is a series for coordinate pairs
specifying the positions of the corners in the order that they are to be
drawn. When the IILGE receives this command it draws the polygon
specified and leaves the current point at its original position.

The POLYR command is similar except that instead of absolute coordi­
nates (relative to the origin of the coordinate space) it uses coordinates
relative to the current point in effect when the command is issued.

The following command string draws a rectangle using absolute coor­
dinates, a rectangle using relative coordinates, a 5-sided polygon using
relative coordinates, and a 5-sided polygon using absolute coordinates,
in that order. The result is shown in Figure 3.17 combined with the
result of the previous example.

MOVEu20u-50u
\ RECTu-20u-60u

MOVEu50u180u
RECTRcrl20u40u
MOVEu50u180u
POLYRtAjOuO |j50|_rl50 ^-30^280 ^70^280 ^160^160 u-IOOlAj
POLYl*6 u3OLr55u2Oi.r05u "20Lr65t/*30Lr55u-20u"45 u20|_r45u

The IILGE can draw curved lines as well as straight lines, and has 3
commands that do so-CIRCLE, which draws a circle; ARC, which draws
an arc of a circle, and ELIPSE, which draws an ellipse. The format of
the CIRCLE command is as follows:

CIRCLEuradius

3-54

PRIMITIVES

Figure 3.17: Example: Polygons

where radius is a Real specifying the radius of the circle to be drawn and
the circle’s centre is at the current point.

The format of the ARC command is as follows:

ARCuradiusudegOudegl

where radius is a Real specifying the size of the circle on which the arc is
drawn, degO is an Int giving the starting angle, and degl is an Int giving
the ending angle. The starting angle and ending angle are measured in
degrees counterclockwise from the positive x axis of the circle on which
the arc is drawn.

The ELIPSE command has the following format:

ELIPSEuxradiusuyradius

where xradius is the distance from the centre of the ellipse to the cir­
cumference along the x axis and yradius is the distance from the centre
to the circumference along the y axis. The centre of the ellipse is the
current point.

3-55

THE HIGH LEVEL GRAPHICS ENGINE

primitive that combines curved and straight lines.The HLGE has
It is the SECTOR command and draws sections of circles shaped like
pieces of pie. Its parameters are exactly the same as those used by the
ARC command. The SECTOR command, however, draws lines from
the ends of the arc to the centre of the circle on which the arc is drawn.

one

The following command string draws 2 circles, 2 ellipses, 2 arcs, and 2
circle segments. Figure 3.18 shows these elements combined with the
results of the 2 preceding examples.

MOVEu50u70u
CIRCLEulOu
ELIPSEu30u20u
ARCu30ud5u135u
MOVEltSOuTOu
CIRCLEulOu
ELIPSEu30u20u
ARCu30u45u135u
MOVEullOulOu
SECTORu60u265u275u
MOVEu-HOulOu
SECTORu60u265u275u

Figure 3.18: Example: Circles, Ellipses, Arcs, And Sectors

3-58

PRIMITIVES

3.6.2 3D Primitives

The HLGE has the following SD primitives:

MOVES
MOVERS
POINTS
DRAWS
DRAWR3
POLYS
POLYRS

These commands function in the same way that their 2D counterparts
do, except that they require an extra coordinate parameter-a coordinate
on the s axis.

The following command string uses all SD primitives to draw the house
shown in Figure S.19. The S dots on the end of the roof are there to
illustrate the use of the POINT command; they have no architectural
significance.

S - 57

THE HIGH LEVEL GRAPHICS ENGINE

I
i\ i\ i\ + fti
i

s"
\

I \I \I \l
\

I

Figure 3.19: 3D Example

CLEARSuOu
MO VE3u- 100u-30u50u
POLYR3u4u0u0u0u200u0u0 u200jj60|j0ij0u60li0 u
DRAWR3u0u0u-100u
POLYR3u4uOuOuOu200uOuO Ij200|j80ij0u0|_|60ij0 u
MO VE3u- 100u30u50u
DRAWR3u0u0u-100u
MOVE3u100u-30u50u
D RAWR3u0u0lt 100u
MOVE3u100u30u50u
DRAWR3u0u0u-100u
POLY3u4ulOOuSOu-50ulOO ^0^0-100^0^ -IOOuSOltSOu

MOVESltIOOuSOuSOu

DRAW3LrlOOu60uOu
MOVE3ul00u30u50u
DRAW3u100u60uOu
MOVE3U100U40LT20U
POINT3u
MOVER3uOuOu20u
POINT3u
MOVER3uOuOu20u
POINTSu

3-58

;• ■

PRIMITIVES

5.6.3 Converting the Current Point

As we explained at the start of this section, there are two current points:
the 3D current point, used to draw 3D primitives; and the 2D current
point, used to draw 2D primitives and text. In many cases you will
want to combine 2D primitives or text with 3D primitives in the same
picture, and you will want to position the 2D images in relation to the
3D image. The CONVRT command will help you to do this. It moves
the 2D current point to the position that the current 3D current point
would occupy if it was mapped into the 2D coordinate space by the
current 2D to 3D transforms. This saves you the trouble of calculating
the position of 2D points with respects to 3D points.

So, for example, after you have drawn a 3D image, you can move the 3D
current point to the place where you want explanatory text, then issue
the CONVRT command, followed by a TEXT command.

3-59

THE HIGH LEVEL GRAPHICS ENGINE

3.7 Fills

There are three methods to fill areas of the screen with solid colors and
patterns: primitive fills, area fills, and screen fills.

PRMFIL, the primitive fill command, allows the user to fill closed prim­
itives (polygons, ellipses, sectors, etc.) as he draws them. The command
has the following format:

PRMFILuflag

where flag is 0, or 1, and becomes the current primitive fill flag. If the
flag is 0, closed primitives are left unfilled when they are drawn. If the
flag is 1, closed primitives are filled with the current color when they
are drawn. The primitive fill function works with both 2D and 3D filled
primitives.

The following command string draws a box and uses the PRMFIL com­
mand to fill one side as shown in Figure 3.20:

CLEARSuO
MO VE3u-100u-50u50ij
POLYR3u4uOuOuO u200u0u0 u200uI00u0 u0uI00u0
DRAWR3u0u0u-10Ou
PRMFILulu
POLYR3u4uOuOuO u200u0u0 u200u100u0 u0u100u0
MOVESultIOOuSOu-SOu
DRAWR3u0u0ul00u
MOVE3u100u50a-50u
DRAWRSlAAjIOOu
MOVESuIOOltSOltSOu
DRAWR3u0u0u100u

The primitive fill function is powerful and easy to use; however, it does
have the disadvantage that it can be used only to draw filled closed
primitives. When areas not in this category need to be filled, as is often
the case, the user can use either of two more general area fill commands:

3-60

m:
■

■

FILLS

3D y
COORDINATE

SPACE

wmm x
\\\J

Vz

Figure 3.20: Primitive Fill Example

AREA and AREABC. These commands, which function only in the 2D
coordinate space, fill outward from the current point until they reach a
specified boundary. The difference between them is the way in which the
boundary is defined. The AREA command has no parameters and fills
with the current index outward from the current point until it encounters
indices that are neither the current index nor the index of the current
point (see Figure 3.21).

The AREABC command allows you to specify the boundary of the filled
area. Its format is as follows:

AREABCubindex

where bindex is the color index the HLGE uses to contain the fill.

When the HLGE executes an AREA or AREABC command it reads
pixels and compares them with the current index and the index at the
current point or the boundary index to know whether it should continue
filling. What the IILGE reads depends on both the mask set by the
MASK command and a special mask called the fill mask. The fill mask
affects read data only and is only active during area fill operations. It is
set with the FILMSK command, which has the following format:

3-61

THE HIGH LEVEL GRAPHICS ENGINE

INDEX Sm INOCXINOCX m i ■4

MOCX •

Figure 3.21: AREA Fill

Figure 3.22: AREABC Fill

3-62

FILLS

FILMSKumask

where mask is an 8-bit value (0-255) that is logically ANDed with plane-
mask (set by the MASK command) and indices read during an area fill.
The AND operation takes place before the indices are compared with
the boundary index and the current index (AREABC), or the current
index and the index in the current point (AREA).

The mask and the fill mask give you more flexibility in boundary spec­
ification. When the AREA command is used, they allow you to ignore
certain boundary colors by masking them to look like the current index
or the index at the current point. When the AREABC command is
used, the masks allow you to use more than one index in the boundary
by making them to look like the specified boundary index.

The most general commands, which fill the entire viewport, are the
FLOOD command and the CLEARS command. The FLOOD command
has the following format:

FLOODuindex

where index is the color used to fill the viewport; the current color is not
changed. The final color written to the display depends on the current
mask, as selected by the MASK command.

The CLEARS command sets all pixels in the display buffer(both visible
and hidden) to particular color. The format of the command is:

CLEARSuindex

where index is the color used to fill the display buffer; the current color
is not changed. The current mask is ignored.

A fill does not have to be done with a solid index. The AREAPT com­
mand is provided so that the user can specify a pattern composed of
the filling index and the underlying index. The command format is as
follows:

3-63

THE HIGH LEVEL GRAPHICS ENGINE

16x16
pixel section

Figure 3.23: AREA Pattern Example

AREAPTupattern

where pattern is a 16-word array that functions as a 16-pixel by 16-pixel
bit mapped pattern. Zeros in the bit map inhibit fill and allow the
underlying index to show through. The HLGE applies the pattern to
the filled area. The following command string defines the pattern shown
in Figure 3.23.

AREAPT U1 u2 u4 u8
ul6 u32 u64 i_|128
u256 u512 u1024 u2048
u4096 u8192 u16384 u32768u

The AREA and AREABC commands can be used to fill 3D drawings by
working on them after they have been projected onto the 2D coordinate
space. The CONVRT command is useful here. It converts the 3D current
point into the 2D current point. Thus it can be used to position the 2D
current point in the area that you wish to fill.

The following command string draws a tetrahedron illustrated in Figure
3.24, and fills one side.

3-64

FILLSI
I

A
\
\

Figure 3.24: AREABC Fill Example

CLEARSuO
COLORu24
MOVE3u0u100u0u
DRAWSulOOu-COuOu
DRAWSu-lOOu-eOuOu
DRAWSuOulOOuOu
DRAWS|j0u0ul70u
DRAWSltIOOu-OOuOu
MOVESuOuOul70u
DRAWSuIOOltOOuOu
MOVE3u-10uOuOu
CONVRTu
COLORU70U
AREABCU24

3-65

mmm.
;V.

THE HIGH LEVEL GRAPHICS ENGINE

3-66

3.8 Text

The HLGE provides the following commands to draw text:

Draws text using standard font.
Draws text using user font.

TEXT
TEXTP

Selects fat or thin text for standard font.
Defines raster text characters for user font.
Defines vector text characters for user font.

TSTYLE
TDEFIN
GTDEF

TJUST
TSIZE
TASPCT
TANGLE
TCHROT

Sets text position relative to current point.
Sets text size.
Sets text aspect ratio.
Sets drawing angle.
Sets character rotation.

RDEFIN
RFONT

defines raster text charaters for user fonts 1 to 15
selects active user raster font

The HLGE has 2 character fonts, the standard font and the user font,
and each of these fonts uses two different kinds of text. The standard
font uses thin text or fat text, and the user font uses raster text or vector
text.

To display text the user issues a TEXT or a TEXTP command followed
by the text to be displayed. The TEXT command has the following
format:

TEXTuString

\where string is a string of characters delimited by either single or double
quotes. The HLGE uses the standard character font (Figure 3.25) to
draw the characters in the string at a position relative to the 2D current
point as specified by the most recent TJUST command. The TEXTP

3-67

THE HIGH LEVEL GRAPHICS ENGINE

command is identical except that it uses the user font defined by the
RDEFIN, TDEFIN and GTDEF commands.

The TJUST command allows you to position text to the left of the
current point, to the right of the current point, or centred on the current
point in the horizontal direction; and it allows you to position the text
above, below, or centred on the current point in the vertical direction
(see Figure 3.26). The command format is as follows:

TJUSTuhorizuvert

where horiz and vert specify the position of text with respect to the
current point as follows:

horiz
start of text line is at the current point
centre of text line is a current point
end of text line is a current point

1
2
3

vert
bottom of text is at current point
centre (vertically) of text is at current point
top of text is a current point

1
2
3

If you use the standard font, you can use either fat text or thin text. Use
the TSTYLE command to select one or the other. Slim text characters
arc always one pixel wide irrespective of their size. The lines that make
up fat characters, on the other hand, become wider as the characters
become larger. Fat style characters are the same as slim characters
when the default text size is in efTect. The ‘fat’ efTect is noticeable only
ns text sizes become larger. Each character exists in both forms.

If you use the user font you can use either vector text or raster text,
provided that you have created the characters that you want to use.
Use the GTDEF command to create vector text characters and use the

3-68

TEXT

4U

8 9 A B C D E ro 71 2 3 5 64

£ f0 @ P gp0 MAM aa r E £fTXtfa k© ii iqi
?l>”T A 6" Fr 2 B R bII2 r t 7TIT•• #3CSc r*3 O as

E$ 4 D T d &TT♦ t4 *no* if r 6 a5♦ N5 e u jr
♦ &6 F V f V Ada€ r 7 G W d o - T1 g 9w

□ • hbsdqbobdfjmi: T o

mi 9 I Y i e 6) ey9 »«•
71 Jz Ft) a j*o

J*A Z
+ T* kT k { i < V* 4cfB 3-]9 L \ 1 r* £" vT n”<c l oo

7 MT r _T ♦ riD m ¥ I

4 H K> FtAE ▲ n «
7 ? 7lo o Ar MAM

'ffFO »▼

Figure 3.25: The Standard Font

3-69

THE HIGH LEVEL GRAPHICS ENGINE

TDEFIN or RDEFIN command to create raster text characters. Note
that whereas fat and thin characters with the same code coexist, raster
text characters and vector text characters with the same code do not.
That is to say that you can not create both a vector text character and
a raster text character for the same font position. If you attempt to
display a character that you have not defined, the HLGE will use the
corresponding standard font thin character.

Subsection 3.8.2 explains how to define characters for the user font.

3.8.1 Character Attributes

HLGE text may have the following attributes:

ATTRIBUTE COMMAND
color
angle
rotation
size
aspect ratio

COLOR
TANGLE
TCHROT
TSIZE
TASPCT

The color attribute applies to all text types in both fonts and is simply
the current color set with the COLOR command; however, the other
attributes do not apply to all text types. Table 3.6 indicates what the
restrictions are.

The TSIZE and TASPCT commands allow you to set the size and aspect
ratio of the text characters. The format of the TSIZE command is as
follows:

TSIZEusize

where size specifies the number of coordinate space points between the
start of one character and the start of the next in the horizontal direction.

3-70

TEXT

STANDARD FONT USER FONT
FAT TEXTTHIN TEXT VECTOR TEXT RASTER TEXT

TANGLE
tTCHROT *TSIZE

TTASPCT
* = applicable

Table 3.6: Character Attribute Use Restrictions

The height of the characters is determined by the aspect ratio command,
which has the following format:

TASPCTuratio

where ratio is character cell height divided by character cell width. Thus,
if you set width to 10 and aspect ratio to 1, you will draw character cells
10 points by 10 points in size. The as-viewed aspect ratio also depends
on the current window to viewport map and how the characters are
defined in the character font.

The TANGLE and TCHROT commands allow you to draw slanted text
in various ways. TANGLE allows you to draw text at an angle and
TCHROT allows you to rotate characters on their lower left corner.
Thus you can have both types of slanted text shown in Figure 3.27 and
variations in between. In both cases the command argument is an angle
from the x axis in counterclockwise direction.

i

3-71

■ .

THE HIGH LEVEL GRAPHICS ENGINE

The following command string draws large (50 pixels wide) thin charac-
ters rotated, on an angle, and centred on the cun-ent point. It uses the
standard character set and an aspect ratio of 1.5. The result is illustrated
in Figure 5.28.

CLEARSuOu
TJUSTu2u2u
TSIZEu50u
TSTYLEulu
TANGLEu45u
TCHROTu45u
TASPCTU1U
MOVEuOuOu
TEXTu*PG-640A,u

3-72

TEXT

3.8,2 Defining Characters For The User Font

At reset the user font is empty, but characters can be defined in it by
the RDEFIN command, TDEFIN command or the GTDEF command.

Characters created with the GTDEF command and the characters in the
standard font are formed from small character command lists similar to
the command lists used to save graphics commands, and as such they
can be rotated, scaled, and translated.

The format for the GTDEF command is as follows:

GTDEFuchunuwidthuarray

where ch is a number from 0 to 255 identifying a character position in
the standard ASCII character map, n is the number of bytes in the array
parameter, width is the width of the character in character vectors, and
array is an array of vector parameters. The height of the character cell
is fixed at 12 vectors. A vector parameter gives a direction, a distance,
and a draw/move flag. In ASCII Command Mode, ch. n, and width are
Chars and each vector parameter in array is composed of 3 Chars. In
Hex Command Mode, ch. n, and width are byte values and each vector
parameter in array is composed of a single value. The format of the '
vector parameters is shown in the following 3 diagrams:

C lar Char Char
I 1---- direction code (see diagram)
I______ length

--------- ■-----1 = pen down, 0 = pen up

ASCII Command Mode Vector Parameter Format

3-73

THE HIGH LEVEL GRAPHICS ENGINE

76543210 BIT
I I 1 I i l ! I I

^---- direction code (see diagram)
----- length minus 1
----- 1 = pen down, 0 = pen up
----- don’t care

Hex Command Mode Vector Parameter Format

Vector Parameter Direction Codes

For example, the following code defines an ‘A’:

ASCII

GTDEF 65 7 8 4
17 2
1 2 1
1 3 0
1 2 7
1 7 6
0 4 2
1 7 4

3-74

TEXT

Hex

80 41 07 08 72 40 60 4F 70 1A 74

The PG-640 allows the user to define up to 16 raster fonts in memory,
labeled from 0 to 15. The raster characters are bit maps and can not be
transformed, so you must define them as you want to see them.

User Raster Font 0

User raster font 0 characters are defined using the TDEFIN command.
For this font, each character must be defined separately. The maximum
cell sixe of these characters is 255x255 pixels. This font is the PGC
compatible user definable raster font.

The TDEFIN characters are bit maps and cannot be transformed, so
you must define them as you want to see them. The command format is
as follows:

TDEFINunuXuyuarray

where n is a number from 0 to 255 identifying a character position in
the font, x is the character cell width in screen coordinates, y is the
character cell height in screen coordinates, and array is an array of bytes
that forms the bit map of the character being defined.

User Raster Fonts 0 to 15

User raster fonts 1 to 15 are special fonts optimized for drawing speed.
Each font must be defined “a complete font at a time ”, using the
RDEF1N command. All characters in a given font in this range must
have the same cell dimension; the maximum size is 16x16 pixels.

5-75

THE HIGH LEVEL GRAPHICS ENGINE

User Raster Font Selection

Only one of the 16 user raster fonts can be active at any one time.
The raster font used to draw characters (0 to 15), with the TEXTP
and TEXTPC commands, is selected using the RFONT command. This
command also specifies the aspect ratio of the characters drawn, with
a choice of any combination of single/double height and single/double
width.

The following command string creates the character shown in Figure
5.29 and assigns it to character ‘A* (code 65).

TDEFIN 65 8 41 1 1 1 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
11111 110

3-76

TEXT

•PG-04OA PG-*640A PG-640A*
♦PG-640A PG-.640A PG-04OA, * current point
•PG-640A PG-*04OA PG-04OA*

Figure 3.20: Justification Options

Figure 3.27: Slanted Text

Figure 3.28: Text Example

3-77

THE HIGH LEVEL GRAPHICS ENGINE

Figure 3.29: TDEFIN Example

3-78

COMMAND LISTS

3.9 Command Lists

A command list is a list of commands that draws an object or performs
a sequence of other functions. Most graphics software creates command
lists which are stored and used repeatedly as required.

If you have complex objects and the command lists are stored in system
RAM, loading them into the command FIFO can take a relatively long
time, time that the system CPU could better use for other purposes.
Fortunately the HLGE allows you to store command lists in the PG-
04OA itself. The system CPU then needs only to pass one command to
the HLGE to call the command list and draw the graphic object that is
contains.

The user defines a command list by sending the HLGE a CLBEG com­
mand followed by the command list terminated with a CLEND com­
mand. The format of the CLBEG command is as follows:

CLBEGudist

where clist is a number from 0-255 identifying the command list. The
CLEND command has no argument.

Once it is defined, the user can run a command list by issuing either a
CLRUN command or a CLOOP command. The CLRUN runs a specified
command list one time; the CLOOP command runs a specified command
list a specified number of times. The format of the CLRUN command
is as follows:

CLRUNuclist

where clist is a number from 0-255 identifying the command list that is
to be run.

The format of the CLOOP command is as follows:

3-79

THE HIGH LEVEL GRAPHICS ENGINE

CLOOPuclistuCount

where clist is a number from 0-255 identifying the command list to be
run, and count is a number from 0-65555 specifying the number of times
the command list is to be run.

The following command string defines a command list, then runs it by
looping it twice. Because the last two commands in the command list
change the modeling transform, the loop gives two different views of the
same object, as shown in Figure 5.50. Note that you don’t see anything
on the screen until you issue CLRUN.

CLEARSuOu
CLBEGulu
MOVE5-100u50u0u
POLYR5u4uOuOuO u200u0|j0tj 200u50u0u 0u50u0li

DRAWR5u0u0uX00u
POLYR5u4uOuOuO u200u0u0 u200u50u0 u0u50u0u
MOVE5-100U100U0
DRAWR5u0u0u100u
MOVE5u100u100u0u
DRAWR5u0u0u100u
MOVE5u100u50u0
DRAWR5u0u0u100u
MDROTYu45u
MDTRANu0u-125u0u
CLENDu
MDIDENu
CLOOPulu2u

Once a command list has been defined, it can be read and modified by the
user. The CLRD command allows the user to read a specified command
list. The CLMOD command allows the user to modify a command list.

The CLRD function has the following format:

CLRDuClist

3-80

COMMAND LISTS

Figure 3.30: Command Liat Example

Where clist is the name of the command list to be read. When it receives
this command, the HLGE sends the command list, in hexadecimal, to
the read back buffer. The data consists of one word giving the number
of the bytes in the command list, followed by those bytes.

The CLMOD command specifies a section of a command list and replaces
that section with an array of bytes provided in the command argument.
The command has the following format:

CLMODulistuoffsetunbytesubytesu

Where list is the number of the command list to be modified, offset is
the offset in bytes from the start of the command list to the start of
the section that is to be replaced, nbytes is the number of bytes to be
replaced, and bytes is an array of replacement bytes. The number of
bytes in the replacement array (bytes) must be exactly the same as the
number of bytes in nbytes. Decause of this restriction, if you need to
remove a command without replacing it, you will have to put a NOOP
command in its place.

When using the CLMOD command, keep in mind that real coordinates

3-81

THE HIGH LEVEL GRAPHICS ENGINE
(32 bits) are not stored in memory in the same order as they are received 0^
from the Host. When you specify a real number it is in the form of:

(low integer][high integer|[low fraction](high fraction]

This number is received by the Host and stored in memory in the fol­
lowing form:

(low fraction](high fraction](low integer](high integer]

When a coordinate is stored in a command list, the firmware exchanges
the bytes so that the fractional part is stored first. When a CLRD
command is processed, a reverse exchange is made so that coordinates
appear just as they were sent.

Using the CLMOD command on a section of a real coordinate, stored in
a command list, performs no exchange. Therefore:

• Modifying the first byte of a coordinate modifies its [low fraction].

• Modifying the second byte of a coordinate modifies its (high frac­
tion].

• Modifying the third byte of a coordinate modifies its [low integer].

• Modifying the fourth byte of a coordinate modifies its [high inte­
ger].

For example:

CLBEGulu
MOVEulOu20u
CLENDu
CLRDulu

3-82

COMMAND LISTS

The read back buffer contains:

09 00 10 0A 00 00 00 14 00 00 00
I__ y fraction
__ y integer
__ X fraction

x integer
.opcode
length of command
list

CLMODuIiAjIuSOu
CLRDulu

Note that the previous CLMOD command modified the third byte in
clist, which is the low byte of the integer part of x.

The read back buffer contains:

09 00 10 IE 00 00 00 14 00 00 00
I__ y fraction
---- y integer
___x fraction

x integer
opcode
length of commmand
list

The modified byte seems to be the second byte in the command list,
but in fact it is the third byte because the CLRD command exchanges
real coordinates.

3-83

THE HIGH LEVEL GRAPHICS ENGINE

3.10 Direct Screen Operations

The HLGE has a number of commands which allow the user to bypass
the normal coordinate space/transform sequence and work directly in
the display buffer.

The ‘S* series commands, listed below, are graphics primitives that draw
directly on the screen. They are the same as the 2D primitives except
that they use screen coordinates instead of 2D coordinates. They are
faster than the 2D primitives but have the disadvantage that they limit
images to the resolution of the screen-you can not focus on different
parts of the image with the window function and you can not zoom in
on details. Pictures created with the ‘S* series commands are clipped to
the current viewport, and the end points of lines are not drawn. For
the ‘S’ series primitives to function properly the window and
viewport must have exactly the same coordinates which must
be equal to the maximum screen resolution. That is to say, the
viewport must be equal to the full screen, and the window must have
corners at 0,0 and 639,479. negative values are not allowed.

SARC
SCIRC
SDRAW
SDRAWR
SELIPS
SMOVE
SMOVER
SPOLY
SPOLYR
SRECT
SRECTR
SSECT

For those users who require something even faster than the 'S' series
commands we have provided the PDRAW command. It has a more
primitive coordinate speciffcation format that allows it to execute moves
and draws faster than the <S> series commands. The command format is
ns follows:

3-84

DIRECT SCREEN OPERATIONS

PDRAWuXiuyiuXauyau—Xnuynu

where x and y are Int screen coordinates with the most significant bit
of the y coordinate used to specify a move or a draw and the most
significant bit of the x coordinate used to specify continue or stop.

The IMAGER and IMAGEW commands allow you to transfer lines or
parts of lines of pixel values between the system memory and the display
buffer, the RASTRD and RASTWR commands allow you to move rect­
angular sections of the display buffer to and from the system memory,
and the RASTEROP command allows you to move rectangular sections
of the display memory from one part of the display memory to another.

The IMAGER command has the following format:

IMAGERulineuXlux2

where line is a y coordinate indicating a horizontal line of pixels in the
screen coordinate space, xl is an x coordinate indicating a starting point
on the line, and x2 is an x coordinate indicating an ending point (in­
clusive) on the line. The HLGE copies the pixel values in the specified
section of the specified line to the Read Back FIFO. The data format
depends on whether the HLGE is in ASCII Mode or Hex Mode.

In ASCII Mode a line is passed in the following format:

IR,x,x,x...(CR)

where HR’ is a header identifying the string as the result of an IMAGER
command, where the x’s represent ASCII decimal color indices separated
by commas, and where the carriage return character ends the string.

In Hex Mode the data is run-length encoded. When two or more con­
tiguous pixels have the same index, two bytes are sent: the first one
with the number of bytes minus one and the second byte with the index.

3-85

THE HIGH LEVEL GRAPHICS ENGINE

When 2 or more contiguous pixels have different indices, the number
of pixels minus one is sent in a byte with the most significant bit set,
then binary values of the indices for each pixel in the series are sent in
separate bytes (1 byte per pixel). Since the most significant bit in the
initial byte is used to differentiate the 2 types of code, only 7 bits remain
to give the number of pixels in the series, limiting the number of pixels
in each scries to 128.

For example, a series of pixels with the values 1111234555567
would be encoded as: 03 01 82 02 03 04 03 05 81 06 07.

The IMAGEW command has the following format:

IMAGEWurmeuXlux2udatau

where line, xl, and x2 specify a line segment in the same way as in the
IMAGER command and data is data that is to be written into that
segment. The data format is the same as for the IMAGER command
except that the first two characters in the ASCII string are ‘IW’ instead
of ‘IR\

Although the RASTRD and RASTWR commands also transfer data di­
rectly between the display memory and the system memory they differ
from IMAGER and IMAGEW in that they do a raster scan of a spec­
ified rectangular area, incorporate certain logical functions, do not use
the FIFO for data transfer, and do not provide run-length encoding.
The data transfer is made over one of the PC’s DMA channels-usually
channel 1, although channel 2 or channel 3 can be used if necessary (see
Appendix A).

The format of the RASTWR command is a follows:

RASTWRuoperudiruxOuxl uyOuyl

where oper specifies a logical operation (see Table 3.7), dir specifies ma­
jor and minor scan directions (see Table 3.8), xO.yO specify, in screen

3-86

DIRECT SCREEN OPERATIONS

coordinates, one corner of the rectangle to be scanned, and xl.yl specify
the opposite corner on the diagonal. The HLGE scans by reading and
writing a line of pixels along the major scan direction, then moving one
scan line in the minor direction and repeating the process. As it passes
over each pixel in the scan, it performs the specified logical operation
between the data coming from the DMA interface and the current data
in the pixel location and writes the result into the location. Figure 3.31
shows a typical scan, and Table 3.8 indicates the scan directions that can
be used with this command (note that the use of some scan directions
depends on the logical operation selected). The raster referred to here is
the same as the video raster used to refresh the screen but has a different
scan.

The RASTRD command is the same as the RASTWR command except
that it transfers data from the scanned area to the DMA interface, and
does not do any logical operations on the data. In both cases each
index is passed in a single byte, and until the transfer is complete, no
other commands are interpreted by the PG-640A. The number of bytes
transferred is (zi — xq + 1) x (yi — yo + l).

The following command string XORs data from the DMA interface with
data in the specified rectangle and writes the results into the rectangle.
Figure 3.31 shows the scan directions. Before sending such a command
string to the command FIFO, the user must program the DMA channel
for a memory to I/O transfer of 60000 bytes, and the area of system
memory specified for the transfer must contain the data that he wants
to write into the rectangle.

R A ST W RU3U1 u 100u400u 100u300u

The HLGE has a third raster command which uses the same general
format to copy rectangular areas from one part of the screen to another.
It is the RASTOP command and has the following format:

RASTOPuoperuSrcdirudestdifuXouXiuyou yiuXouyo

3-87

THE HIGH LEVEL GRAPHICS ENGINE

Figure 3.31: Raster Scan

RASTER FUNCTIONS
Function Code Operation

Copy0
OR1
AND2
XOR3

Table 3.7: Logic Operations

3-88

DIRECT SCREEN OPERATIONS

Scanning Direction Used By
Code Major RASTRD RASTOPMinor RASTWR

v v VTo =>
V1 V1 => \

■ V V1 t
•Jl3
y/*4
V6

* Vo
¥ iL7

* only when logic operation 0 is selected

Table 3.8: Scan Directions

where oper specifies a logical operation, srcdir is the scan direction in the
source rectangle, destdir is the scan direction in the destination rectangle,
Xo. yo. Xi. and yi specify the source rectangle, and Xq. yj specify the
lower left corner of the destination rectangle.

The following command string copies the contents of rectangle A in
Figure 3.32 to rectangle B. Note that by using different source and
destination scan directions we are able to draw a mirror image.

RASTOPuOulu5ulOOu300 u100u:300u400ul00u

3-89

THE HIGH LEVEL GRAPHICS ENGINE

Figure 3.32: RASTOP Example

3-90

THE TEXT WINDOW

3,11 The Text Window

The HLGE has a special feature which allows you to have a window
into the CGA Emulator screen while looking at the HLGE screen. The
window can be moved to various positions on both screens and does not
affect underlying graphics on the HLGE screen. It allows the user to use
the CGA Emulator and the HLGE at the same time without adding a
second monitor.

The text window has some restrictions. (l)The CGA Emulator must be
in an alphanumeric video mode. (2)The text window is not an exact
copy of the CGA emulator screen; color and intensity attributes are
ignored. One foreground color is used throughout the text window; the
background is transparent. The cursor is still visible in the text window,
as is the blink attribute.

\

The text window is controlled by three HLGE commands: TWPOS,
which positions the window, TWVIS, which controls visibility, and TWCOL,
which sets a foreground color.

The format of the TWPOS command is as follows:

TWPOSuXouXiuyouYiuCouCi

where Xo. yo and Xj, yj specify, in screen coordinates, opposite corners of
a rectangular area of the HLGE screen; and eo and ei specify the upper
left corner of a corresponding rectangle on the CGA screen. Values of
Xo and Xj + 1 must be on 16-pixel boundaries(ie: divisible by 16).

The Xo, Xi, yo, and yi parameters are specified in pixels; the point
of origin of the HLGE screen is the lower left corner. The e0 and ej
parameters are specified in character cells based on the CGA 80x25
video mode; the point of origin of the CGA screen is the upper left
corner. The relationship of eo and ej to the x and y coordinates of the
upper left corner of the CGA rectangle depends on the current CGA
video mode as follows:

3-91

THE HIGH LEVEL GRAPHICS ENGINE

VIDEO MODE RELATION OF X AND Y TO eo AND e,
80 x 25
40x25

r = c0 , y = Cjl
* = «o, V = 2«i

The reason this relationship is true is because a line of text in the 40 x 25
CGA mode occupies half as many bytes of memory as a line of text in
the 80 X 25 CGA mode. If you specify Cj = 4 when the CGA mode is
40 X 25 then the CGA rectangle would actually start at line y = 8.

The TWVIS command sets a flag which determines whether the HLGE
displays the window defined by the TWPOS command. Specify a fore­
ground color using the TWCOL command; this command has the for­
mat! TWCOLurugub

The following command string defines the window shown in Figure 5.55.

TWPOSu512u527u256u271u20u10 u
TWVISulu

CGA EMULATOR SCREEN

HLGE SCREEN

Figure 5.55: The Emulator Window

You also have the option of full-screen CGA emulation using the DISPLA
command: DISPLAyflag

Depending on the value of flag either the HLGE screen or the CGA

3-92

THE TEXT WINDOW

u displayed on your monitor. Full-screen emulation is the only
way to see the CGA screen exactly as is.
screen

i

3-93

m£
THE HIGH LEVEL GRAPHICS ENGINE

3.12 Read Back Commands

The PG-640A supports a number of read back commands that will allow
the user to determine the exact values of the High Level Graphics En­
gine’s parameters. The read back commands are: Command List Read
(CLRD), Flag Read (FLAGRD), Image Read (IMAGER), LUT Read
(LUTRD), and Matrix Read (MATXRD). These commands are detailed
in the command summary chapter.

When a read back command is executed, the HLGE puts the requested
information in the Read Back Buffer. When in ASCII mode, the data
is returned as ASCII decimal numbers terminated by a carriage return.
Some commands return multiple values; the individual command de­
scriptions give the data formats in both ASCII and Hex communication
modes.

Note that if a read back is requested and the read back buffer is full, the
HLGE will halt and wait for you to empty the buffer.

3-94

ERROR HANDLING

3.13 Error Handling

If the user has set the Error Enable Flag in the communications area,
the PG-640A will return error messages or codes in the current commu­
nication mode. In ASCII mode the PG-640A will return ASCII strings
containing an error message, in Hex mode a single byte is returned con­
taining an error code. The return messages and codes are summarized
in Table 3.9.

The HLGE writes error messages into the Error FIFO. If the FIFO
becomes full before the message is complete the HLGE waits until there
is room in the FIFO. While it is waiting, the HLGE will not accept any
commands.

Hex Code ASCII String Means
Range
Integer
Memory
Overflow

parameter out of range
wrong data type-need integer
ran out of memory
arithmetic overflow
wrong data type- need digit
opcode not recognized
recursion in command list
commands lists nested more than 16 deep
string or command list too long
area fill error
missing parameter

1
V
3
4

Digit
Opcode
Running
Stack
Too long
Area
Missing

5*
6
7
8
9
A

B*

* These errors do not occur in Hex Mode

Table 3.9: Summary of Error Codes and Messages

3-95

THE HIGH LEVEL GRAPHICS ENGINE

3.14 Graphics Input Support

Many applications will require the use of a graphics input device such
as a mouse, joystick, or trackball. The graphics input device will be
interfaced to the user’s software, which will use it to move a cursor, to
frame areas of text, to draw lines, or to implement some other application
dependent function. For example, in a computer aided design application
the operator might use a mouse to move a cursor to specify points that
need to be interconnected on a design.

The HLGE provides the following 3 commands to help the applications
software implement graphics input functions:

XHAIR
XMOVE
RBAND

XHAIR displays a cross hair cursor, XMOVE moves the cursor, and
RBAND performs two kinds of rubberbanding. All 3 commands op­
erate in screen space only.

The format of XHAIR is as follows:

XHAIRuflaguXsizeuysize

where flag enables the cross hair display at the current cross hair position,
and xsize and ysize determine its size. The flag parameter can be Chars
0 through A.

0: Cross hair display disable.
1: Cross hair display enabled, clipped to screen space.
£: Cross hair display with dimensions of 100 by 100 is enabled,

clipped to screen space.
3: Cross hair display enabled, clipped to current view port.

3 - 90

GRAPHICS INPUT SUPPORT

4: Cross hair display with dimensions of 100 by 100 is enabled,
clipped to current view port.

The xsize and ysize parameters must be given in screen coordinates and
determine the x and y dimensions of the cross hair respectively. When
flag is 0, 2, or 4, x size and y size must not be sent.

The HLGE draws the cross hair in complement drawing mode, so its
color is affected only by what is already on the screen and not by the
current index.

The XMOVE command has the following format:

XMOVEuXuy

where X and y are the screen coordinates of a new cross hair position.
The XHAIR command has no effect on this command. That is to say
XMOVE, moves the cross hair whether or not it is currently displayed.

The RBAND command has the following format:

RBANDuflag

where flag is a Char from 0 through 2 that affects rubberbanding as
follows:

0: Disables rubberbanding.

1: Enables vector rubberbanding. The current cross hair position,
at the time when rubberbanding is enabled, becomes the anchor
point. The HLGE draws a line between the anchor point and
each new cross hair position. Each time that it draws a line from
the anchor point to a new cross hair position it erases the line
that it drew from the anchor point to the previous cross hair
position. When rubberbanding is disabled, the HLGE erases the
most recent rubber band vector and the cross hair is left at the
coordinate pair most recently entered.

3-97

THE HIGH LEVEL GRAPHICS ENGINE

2: Enable rectangle rubberbanding. This rubberbanding mode is
the same as vector rubberbanding except that instead of drawing
a line between the anchor point and the cross hair position, the
HLGE draws a rectangle with one corner at the anchor point and
the diagonally opposite corner at the current cross hair position.
Note, however, that since the rectangle is drawn in complement
mode, you will lose the part of the rectangle that overlaps the
cross hair, if the cross hair display is enabled. For this reason it
is best to disable cross hair display when using rectangle rubber­
banding. This mode is useful for framing parts of the display that
the application program treats in some special way.

The following sequence of commands illustrates the use of the graphics
input commands. The first 2 commands enable the cross hair display
and move the cross hair to screen coordinates 100, 200. The next two
commands enable vector rubberbanding, establishing the anchor point,
and move the cross hair to 500, 400. The rubberbanding function draws
a line from the anchor point to the new cross hair position. The last com­
mand moves the cross hair to 500,50, and the rubberbanding function
erases the first line and draws a new line to the new cross hair position.
Figure 5.34 shows the process.

XHAIRululOOulOOu
XMOVEu200u250u
RlUNDulu
XMOVEu500u400u
XMOVEu500u50u

5-98

GRAPHICS INPUT SUPPORT

Figure 3.34: Graphics Input Example

3-99

Chapter 4

Command Descriptions

The following pages contain descriptions of the commands used by the
high level graphics engine. These commands are arranged in alphabetical
order by command name and use the conventions set out in Chapter 3
to distinguish hexadecimal numbers, command names, and parameters
from regular text. The parameter types use the definitions that are laid
out in Section 3.2.

4 - 1

ARC
(Arc)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM : ARC radius anglel angle2
SHORT FORM: AR radius anglel angle2
HEX FORM : 3C radius anglel angle2

PARAMETER TYPE : radius = Real
anglel = Int
angle2 = Int

DESCRIPTION : ARC draws a circular arc using the currently selected
color. The center is at the 2D current point. The start and finish
angles are specified in the command. The angle can be any Int
value (angles greater than 300° and less than -360° are handled
as modulo 300). Negative radii will result in 180° being added to
both angles. This command does not affect the 2D current point.

EXAMPLE :

CODE :
ASCII: AR 100.00 0 180
HEX : 3C 04 00 00 00 00 00 B4 00

RESULT : An arc with radius 100 from 0° to 180° (a semi-circle)
is drawn about the 2D current point.

ERRORS : Overflow

RELATED MATERIALS : CIRCLE, COLOR, LINFUN, LINPAT, Sec­
tion 3.0

4-2

AREA
(Area Fill)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: AREA
SHORT FORM: A
HEX FORM: CO

PARAMETER TYPE : None

DESCRIPTION : AREA sets all the pixels in a closed area to the cur­
rent color. The closed area starts from the 2D current point
and continues outward in all directions until a boundary with a
color different from that of the starting pixel’s original color is
reached. The data tested is ANDed with the fill mask (F1LMSK)
and the bit plane mask (MASK) before comparing colors. The
start pixel’s original color should not be the current color.

EXAMPLE :

CODE :
ASCII: A
HEX : CO

RESULT : The bounded area that contains the 2D current point
is changed to the current color.

ERRORS : None

RELATED MATERIALS : AREAPT, FILMSK, MASK, Section 3.7

4-3

AREABC
(Area Fill to Boundary Color) COMMAND

DESCRIPTIONS
COMMAND :

LONG FORM : AREABC index
SHORT FORM : AB index
HEX FORM : Cl index

PARAMETER TYPE: index = Char

DESCRIPTION: AREABC fills a closed area bounded by color index
with the current color. The closed area starts from the 2D current
point and continues outward in all directions until reaching a
boundary of pixels of color index. All pixel data read is ANDed
with the fill mask (FILMSK) and the bit plane mask (MASK)
before testing for the boundary.

EXAMPLE:

CODE :
ASCII: AB 100
HEX : Cl 64

RESULT : The color of the area containing the 2D current point
and bounded by color index is changed to the current color.

ERRORS : Boundary = current color

RELATED MATERIALS : AREAPT, COLOR, FILMSK, MASK, Sec­
tion 3.7

4-4

AREAPTCOMMAND
DESCRIPTIONS (Area Pattern)

COMMAND :

LONG FORM: AREAPT pattern
SHORT FORM: AP pattern
HEX FORM: E7 pattern

PARAMETER TYPE: pattern = 16 Unsigned Inta

DESCRIPTION: AREAPT sets the area pattern mask. The pattern
mask defines a 16 by 16 pixel array which is repeated horizontally
and vertically when drawing filled figures. Each value in pattern
is 16 bits long and sets one row of the pattern mask. Since there
are 16 words in pattern, the user is able to define the value of each
pixel in the pattern mask. Pixels that are where the mask is set
to 1 are changed to the current color; where the mask is 0, the
pattern is transparent. Setting all the bits in the mask (sending
16 words of 65535) causes areas to be filled solidly; this is the
default after a reset. The area pattern is used by the following
commands when drawing a filled primitive:

CIRCLE, ELIPSE, POLY, POLYR, POLY3, POLYR3, RECT,
RECTR, SECTOR.

EXAMPLE:

CODE:

ASCII: AP 1 2 4 8
16 32 64 128
256 512 1024 2048
4096 8192 16384 32768

HEX : E7 00 01
00 10
01 00
10 00

00 02
00 20
02 00
20 00

00 04
00 40
04 00
40 00

00 08
00 80
08 00
80 00

i

4-5

AREAPT COMMAND
DESCRIPTIONS(Area Pattern)

RESULT:

16 x 16
pixel section

ERRORS : None

RELATED MATERIALS : AREA, AREABC, BCOLOR, COLMOD, Sec­
tion 3.7

4-6

BCOLOR
(Set Background Color)

COMMAND
DESCRIPTIONS

COMMAND:

LONG FORM: BCOLOR index
SHORT FORM : BC index
HEX FORM: CB index

PARAMETER TYPE : index = Char [0..255)

DESCRIPTION : This command sets the index of the background index
to be used when COLMOD is set to 0.

EXAMPLE:

CODE:
ASCII: BCOLOR 24
HEX : CB 18

RESULT: The background index is changed to 24.

ERRORS : None

RELATED MATERIALS : COLMOD, AREAPT, LINPAT,TEXT, Sec­
tion 3.5, Section 3.8

\

4-7

BLINK
(Blink)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM : BLINK index red green blue ontime offtime
SHORT FORM : BL index red green blue ontime offtime
HEX FORM: C8 index red green blue ontime offtime

PARAMETER TYPE : index = Char
red = Char [0..15]
green = Char [0..15]
blue = Char [0..15]
ontime = Char
offtime = Char

DESCRIPTION : BLINK causes all the pixels having the color in the
currently selected lookup table specified by index to blink on and
off. The periods, in ~ seconds, are specified by ontime and off­
time. During the on time, the pixel will have the original color
- during the off time the color will be the one defined by red,
green and blue. This command only specifies the high nibble of
red, blue, and green values; BLINKX is the preferred form of the
command. The low nibbles are set to zero.
Up to four indices can be set to blink at any one time. A blink is
cancelled by issuing a second BLINK command for an index with
the other parameters equal to zero.
Warning: Do not perform LUT changes on indices that are cur­
rently blinking.

EXAMPLE :

CODE:
ASCII: BL 15 0 0 0 30 30
HEX : C8 OF 00 00 00 IE IE

RESULT : White (index 15) blinks to black once a second.

ERRORS : Too many blinks specified, Color already blinking

RELATED MATERIALS : LUT, LUTX, LUTINT, Subsection 3.5.3

4-8

BLINKX
(Blink - 8 Bit)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: BLINKX index red green blue ontime offtime
SHORT FORM: BLX index red green blue ontime offtime
HEX FORM: E6 index red green blue ontime offlime

PARAMETER TYPE: index = Char
red = Char
green = Char
blue = Char
ontime = Char
offtime = Char

DESCRIPTION : BLINKX causes all the pixels having the color in the
currently selected lookup table specified by index to blink on and
off. The periods, in ^ seconds, are specified by ontime and off­
time. During the on time, the pixel will have the original color -
during the off time the color will be the one defined by red. green
and blue. Up to four indices can be set to blink at any one time.
A blink is cancelled by issuing a second BLINKX command for
an index with the other parameters equal to zero.

Warning: Do not perform LUT changes on indices that are cur­
rently blinking.

EXAMPLE:

CODE:

ASCII: BLX 15 0 0 0 SO 30
HEX : E5 OF 00 00 00 IE IE

RESULT: White (index 15) blinks to black once a second.

ERRORS : Too many blinks specified, Color already blinking

RELATED MATERIALS : LUT, LUTINT, LUTX, VDISP, Subsection
3.5.3

4-9

CA COMMAND
DESCRIPTIONS(Communications ASCII)

COMMAND :

LONG FORM: CAU
SHORT FORM: CAU
HEX FORM : 43 41 20

PARAMETER TYPE: None

DESCRIPTION: CA seta the communication mode to ASCII. This
command may be given when in either ASCII mode or Hex mode.
Note that the Hex and ASCII forms of this command are identi­
cal.

EXAMPLE:

CODE:
ASCII: CAU
HEX ; 43 41 20 or D2

Note: You can user either of the 2 hex formats
given above to issue this command; however, the
PG-640AaIways uses D2 in command lists that it
creates.

RESULT : The communications mode is set to ASCII.

ERRORS : None

RELATED MATERIALS : CX, Section 3.2

4-10

CIRCLE
(Circle)

COMMAND
DESCRIPTIONS
COMMAND:

LONG FORM: CIRCLE radius
SHORT FORM : Cl radius
HEX FORM: 38 radius *

PARAMETER TYPE: radius = Real

DESCRIPTION: Cl draws a circle with radius radius centered on the
2D current point. The circle is filled if the PRMFIL flag is set.
This command does not affect the 2D current point.

EXAMPLE :

CODE:
ASCII: Cl 100
HEX : 38 04 00 00 00

RESULT : A circle with radius 100 is drawn from the 2D current
point.

ERRORS : Overflow

RELATED MATERIALS: AREAPT, ARC, ELIPSE, LINFUN, LIN-
PAT, PRMFIL, SECTOR, Section 3.0

4-11

CLBEG
(Command List Begin)

COMMAND:

LONG FORM: CLBEG ciist
SHORT FORM: CB ciist
HEX FORM: 70 ciist

COMMAND
DESCRIPTIONS

PARAMETER TYPE : ciist = Char

DESCRIPTION : CLBEG begins the definition of the command list
number ciist. Commands are saved, without being executed, in
the command list definition area. Defining a list using an already
existing ciist will overwrite the old command list. A command
list may be up to 64Kbytes long.

EXAMPLE :

CODE :
ASCII; CB 2
HEX : 70 02

RESULT : Command list 2 is started.

ERRORS : Not enough memory, command list running, ciist > 64K in
size

RELA TED MA TERIALS : CLEND, CLOOP, CLDEL, CLMOD, CLRD,
CLRUN, Section 3.9

4-12

CLDEL
(Command List Delete)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM; CLDEL clist
SHORT FORM : CD clist
HEX FORM : 74 clist

PARAMETER TYPE: clist = Char

DESCRIPTION: CLDEL deletes the definition of the command list
specified by clist.

EXAMPLE:

CODE:
ASCII: CD 2
HEX : 74 02

RESULT: Command list 2 is deleted.

ERRORS : Command list running

RELATED MATERIALS : CL BEG, CLEND, Section 3.9

4-13

CLEARS COMMAND
DESCRIPTIONS(Clear Screen)

COMMAND :

LONG FORM: CLEARS index
SHORT FORM: CLS index
HEX FORM: OF index

PARAMETER TYPE : index = Char

DESCRIPTION : CLEARS sets all the pixels in the display buffer to
the color designated by index regardless of the value of MASK.
The current color is not changed.
Note: This command does not affect only the visible VRAM,
but also the hidden space. If you want to clear only the visible
buffer, use the FLOOD command.

EXAMPLE:

CODE:
ASCII: CLS 17
HEX : OF 11

RESULT : Screen is filled with color 17.

ERRORS : None

RELATED MATERIALS : FLOOD, Section 3.1, Section 3.7

4-14

CLEND
(Command List End)

COMMAND
DESCRIPTIONS
COMMAND :

LONG FORM: CLEND
SHORT FORM: CE
HEX FORM: 71

PARAMETER TYPE : = None

DESCRIPTION: CLEND ends the command list currently being de­
fined. After a CLEND, the controller resumes executing com­
mands as they are received.

EXAMPLE :

CODE :
ASCII: CE
HEX : 71

RESULT: The command list being defined is ended.

ERRORS : None

RELATED MATERIALS : CLBEG, CLDEL, Section 3.9

4-15

COMMAND
DESCRIPTIONS

CLIPH
(Clip Hither)

COMMAND :

LONG FORM: CLIPH flag
SHORT FORM: CH flag
HEX FORM: AA flag

PARAMETER TYPE : flag = Char |0..l|

DESCRIPTION : CLIPH enables or disables hither plane clipping. Set­
ting flag to 0 disables hither plane clipping; setting flag to 1 en­
ables it.

EXAMPLE:

CODE:
ASII: CH X
HEX : AA 01

RESULT : Hither clipping is enabled.

ERRORS : None

RELATED MATERIALS : DISTH, Subsection 3.4.2

4-16

CLIPY
(Clip Yon)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: CLIPY flag
SHORT FORM : CY flag
HEX FORM: AB flag

PARAMETER TYPE : flag = Char [0..1]

DESCRIPTION: CLIPY enables or disables yon plane clipping. Set­
ting flag to 0 disables yon plane clipping; setting flag to 1 enables
it.

EXAMPLE :

CODE:
ASCII: CY 1
HEX : AB 01

RESULT : Yon clipping is enabled.

ERRORS : None

RELATED MATERIALS : DISTY, Subsection 3.4.2

4-17

COMMAND
DESCRIPTIONS

CLOOP
(Command List Loop)

COMMAND :

LONG FORM: CLOOP clist count
SHORT FORM: CL clist count
HEX FORM: 73 clist count

PARAMETER TYPE: clist = Char
count = Unsigned Int

DESCRIPTION : CLOOP executes the command list clist. count times.

EXAMPLE:

CODE:
ASCII: CL 4 300
HEX : 73 04 2C 01

RESULT : Command list 4 is executed 300 times.

ERRORS : Command list running, stack full

RELATED MATERIALS : CLRUN, Section 3.9

4-18

CLMOD
(Command List Modify)

COMMAND
DESCRIPTIONS

COMMAND:

LONG FORM: CLMOD clist. offset, nbytes. bytes
SHORT FORM: CM clist. offset, nbytes. bytes
HEX FORM: 78 clist. offset, nbytes. bytes

PARAMETER TYPE: clist = Char
offset = Unsigned Int
nbytes = Unsigned Int
bytes = nbyte’s of Char

DESCRIPTION: CLMOD replaces nbytes bytes in command list clist,
starting at byte number offset from the start of the command
list, with the bytes contained in bytes. Note that bytes cannot be
added or deleted, only replaced.

EXAMPLE:

CODE :
ASCII: CM 3 7 2 175 8
HEX : 78 03 07 00 02 00 AF 08

RESULT: The two bits in command list 3 with offsets 7 and 8
are replaced with CONVRT and POINT commands.

ERRORS : None

RELATED MATERIALS : CLRD, NOOP, Section 3.9

4-19

COMMAND
DESCRIPTIONS

CLRD
(Command List Read)

COMMAND :

LONG FORM: CLRD clist
SHORT FORM: CRD clist
HEX FORM : 76 clist

PARAMETER TYPE : clist = Char

DESCRIPTION : CLRD sends the information stored in command list
clist (hex form of the command) to the output channel. The first
word in the data stream represents the number of bytes in the
command list. It is followed by the bytes as they are stored.

EXAMPLE:

CODE:
ASCII: CRD 7
HEX : 76 07

RESULT : Command list 7 is listed to the read back buffer in
hex.

ERRORS : None

RELATED MATERIALS : CLBEG, CLEND, CLDEL, Section 3.9

4-20

CLRUNCOMMAND
DESCRIPTIONS (Execute Command List)

COMMAND :

LONG FORM: CLRUN clist
SHORT FORM: CR clist
HEX FORM: 72 clist

PARAMETER TYPE: clist = Char

DESCRIPTION : CLRUN executes the commands in command list clist.

EXAMPLE:

CODE:
ASCII: CR 3
HEX : 72 03

RESULT : Command list 3 is executed.

ERRORS : Command list running, stack full

RELATED MATERIALS : CLBEG, CLEND, Section 3.9

4 - 21

COLMOD
(Color Mode)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM : COLMOD mode
SHORT FORM: CLM mode
HEX FORM: CA mode

PARAMETER TYPE : mode = Char |0 or 1]

DESCRIPTION: Under certain conditions primitives may generate
both a background and a foreground. When we draw
a patterned line, for example, the pattern is made up
of a foreground and a background, a character cell
has a foreground and a background, and any of the
commands that produce filled areas produce a fore­
ground and a background if the fill is in the form of
a pattern. In such a case, the COLMOD command
determines whether the background is transparent or
is the color last specified by the BCOLOR command.

When mode is 0, this command sets the board to Re­
place Color Mode, with the result that backgrounds
are given the background color set by the most recent
BCOLOR command.

When mode is 1, this command sets the board to
Foreground Color Mode, with the result that back­
grounds are drawn to be transparent.

Note that no background is drawn if the charac­
ter type is graphicfvector text) and the cell rotation
(TCHROT) is not a multiple of 90o.

Default is Foreground Color Mode.

EXAMPLE :

CODE :

ASCII: COLMOD 0
HEX : CA 00

RESULT: The board enters Replace Color Mode.

4-22

COLMOD
(Color Mode)

COMMAND
DESCRIPTIONS
ERRORS : Range

RELATED MATERIALS : BCOLOR, AREAPT, LINPAT,TEXT, Sec-
tion 3.5, Section 3.8

4 - 23

COMMAND
DESCRIPTIONS

COLOR
(Color)

COMMAND :

LONG FORM: COLOR index
SHORT FORM: C index
HEX FORM: 00 index

PARAMETER TYPE : index = Char

DESCRIPTION : COLOR sets the current color to index.

EXAMPLE:

CODE:
ASCII: C 12
HEX : 06 OC

RESULT: The current color is set to color 12.

ERRORS : Value out of range(ASC!I only)

RELATED MATERIALS : Section 3.5

4-24

CONVRTCOMMAND
DESCRIPTIONS (Convert)

COMMAND:

LONG FORM: CONVRT
SHORT FORM : CV
HEX FORM: AF

PARAMETER TYPE: None

DESCRIPTION: CONVRT maps the 3D current point to the 2D cur­
rent point.

EXAMPLE:

CODE:
ASCII: CV
HEX : AF

RESULT: The 3D current point is mapped to 2D and placed in
the 2D current point.

ERRORS : Overflow

RELATED MATERIALS : Section 3.6.3, Section 3.7

4-25

cx
(Communications Hexadecimal) COMMAND

DESCRIPTIONS

COMMAND :

LONG FORM : CXU
SHORT FORM : CXU
HEX FORM : 43 B8 20

PARAMETER TYPE: None

DESCRIPTION : CX sets the communication mode to hexadecimal.
This command may be given when in either ASCII mode or Ilex
mode. Note that the Hex and ASCII forms of this command are
identical.

EXAMPLE :

CODE :

ASCII : CXU
HEX : 43 68 20 OR D1

Note: You can user cither of the 2 hex formats
given above to issue this command; however, the
PG-G40Aalways uses D1 in command lists that it
creates.

RESULT : The communication mode is set to hexadecimal.

ERRORS : None

RELATED MATERIALS : CA, Subsection 3.2.3

4-20

DISPLA
(Display)

COMMAND
DESCRIPTIONS

COMMAND:

LONG FORM: DISPLA flag
SHORT FORM: DI flag
HEX FORM: DO flag

PARAMETER TYPE : flag = Char [0..l|

DESCRIPTION : DISPLA displays either the high level graphics screen
(flag = 0) or the emulator graphics screen (flag =
l). In either case, high level graphics commands are
accepted and executed. If the emulator enable dip
switch is off, high level graphic will always be dis­
played

EXAMPLE :

CODE:
ASCII: DI 1
HEX : DO 01

RESULT : Emulator screen is displayed.

ERRORS : None

RELATED MATERIALS : Section 3.3, Appendix A.

4-27

DISTAN COMMAND
DESCRIPTIONS(Distance)

COMMAND :

LONG FORM: DISTAN dist
SHORT FORM: DS dist
HEX FORM : B1 dist

PARAMETER TYPE : dist = Real

DESCRIPTION : DISTAN sets the distance from the eye to the view­
ing reference point. This only affects 3D drawing. The default
distance is 500.

EXAMPLE:

CODE :
ASCII: DS 1200
HEX : B1 BO 04 00 00

RESULT : Distance to viewing reference point is set to 1200.

ERRORS : None

RELATED MATERIALS : PROJCT, Subsection 3.4.2

4-28

DISTHCOMMAND
^ DESCRIPTIONS

COMMAND :

(Distance Hither)

LONG FORM: DISTH dist
SHORT FORM : DH dist
HEX FORM: A8 dist

PARAMETER TYPE : dist = Real

DESCRIPTION: DISTH seta the distance from the viewing reference
point to the hither clip plane. When hither clipping is enabled, no
points farther from the viewer than the hither plane are displayed.
The hither plane is parallel to the viewplane. Hither clipping
affects only 3D drawing.

EXAMPLE :

CODE :
ASCII: DH -12.00
HEX : A8 F4 FF 00 00

RESULT: The hither plane is defined to be 12.00 units in front
of the viewplane.

ERRORS : None

RELATED MATERIALS : CLIPH, Subsection 3.4.2

4-29

COMMAND
DESCRIPTIONS

DISTY
(Distance Yon)

COMMAND:

LONG FORM: DISTY dist
SHORT FORM: DY dist
HEX FORM: AO dist

PARAMETER TYPE: dist = Real

DESCRIPTION : DISTY sets the distance from the viewing reference
point to the yon clip plane. When yon clipping is enabled, no
points closer to the viewer than the yon plane are displayed. The
yon plane is parallel to the viewplane. Yon clipping affects only
3D drawing.

EXAMPLE:

CODE:
ASCII: DY 12.00
HEX : AO OC 00 00 00

RESULT: The yon plane is defined to be 12.00 units behind the
viewplane.

ERRORS : None

RELATED MATERIALS : CLIPY, Subsection 3.4.2

4-30

DRAW
(Draw)

COMMAND
£ DESCRIPTIONS

COMMAND :

LONG FORM: DRAW x y
SHORT FORM: Dxy
HEX FORM: 28 x y

PARAMETER TYPE : x = Real
y = Real

DESCRIPTION: DRAW draws a line from the 2D current point to
(x.y) and positions the 2D current point at {x.y}. Both the first
and the last pixels of the line are drawn.

EXAMPLE :

CODE :
ASCII: D 10.0 12.0
HEX : 28 0A 00 00 00 0C 00 00 00

RESULT : A line is drawn from the 2D current point to {10.0,12.0}.

ERRORS : Arithmetic overflow

RELATED MATERIALS : DRAWR,LINFUN, LINPAT,MOVE, MOVER
Section 3.6

4-31

DRAWR COMMAND
DESCRIPTIONS(Draw Relative)

COMMAND :

LONG FORM: DRAWR Ax Ay
SHORT FORM: DR Ax Ay
HEX FORM : 29 Ax Ay

PARAMETER TYPE : Ax = Real
Ay = Real

DESCRIPTION : DRAWR draws a line from the 2D current point to
({Ax.Ay) + 2D current point). The 2D current point is moved
to the end of the line. Both the first and the last pixels of the
line are drawn.

EXAMPLE :

CODE :
ASCII: DR. 100.00 200.00
HEX : 20 04 00 00 00 C8 00 00 00

RESULT : A line is drawn from the 2D current point to (the 2D
current point + {100.00,200.00}).

ERRORS : Arithmetic overflow

RELATED MATERIALS : DRAW, LINFUN, LINPAT, MOVE, MOVER,
Section 3.0

V

4-32

DRAW3
(Draw in 3D)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: DRAWS x y 2
SHORT FORM: DS x y 2
HEX FORM; 2A x y 2

PARAMETER TYPE : x = Real
y = Real
2 = Real

DESCRIPTION: DRAWS draws a line from the 3D current point to
{x.y.2} and moves the current point to {x.y.2}.

EXAMPLE:

CODE:
ASCII: DS 5.0 10.0 12.0
HEX : 2k 06 00 00 00 0k 00 00 00 0C 00 00 00

RESULT : A line is drawn from the 3D current point to {5.0,10.0,12.0

ERRORS : Arithmetic overflow

RELATED MATERIALS : DRAWR3, LINFUN, LINPAT, MOVES,
MOVERS, Section 3.6

4-33

DRAWR3 COMMAND
DESCRIPTIONS(Draw Relative in 3D)

COMMAND:

LONG FORM: DRAWR3 Ax Ay Az
SHORT FORM : DR3 Ax Ay Az
HEX FORM: 2B Ax Ay Az

PARAMETER TYPE : Ax = Real
Ay = Real
Az = Real

DESCRIPTION : DRAWR3 draws a line from the 3D current point to
({Ax.Ay.Az} + the current point) and moves the current point
to the end of the line.

V EXAMPLE:

CODE:
ASCII: DR3 5.0 10.0 12.0
HEX : 2B 05 00 00 00 0A 00 00 00 0C 00 00 00

RESULT : A line is drawn from the 3D current point to ({5.0,10.0,12.0}
+ 3D current point).

ERRORS : Arithmetic overflow

RELATED MATERIALS : DRAWS, LINFUN, LINPAT,MOVES, MOVER3,
Section 3.6

4-34

ELIPSE
(Ellipse)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: ELIPSE xradius yradius
SHORT FORM: EL xradius yradius
HEX FORM: 30 xradius yradius

PARAMETER TYPE: xradius = Real
yradius = Real

DESCRIPTION: ELIPSE draws a 2D ellipse centered on the 2D cur­
rent point. Its x and y radii, which are parallel to the screen’s x
and y axes, are given by xradius and yradius. The ellipse will be
filled if drawn while the PRMFIL flag is set. This command does
not affect the 2D current point.

EXAMPLE :

CODE :
ASCII : EL 32.00 128.00
HEX : 30 20 00 00 00 80 00 00 00

RESULT : An ellipse is drawn with x radius 32 and y radius 128.

ERRORS : Overflow

RELATED MATERIALS : AREAPT, LINFUN, LINPAT, PRMFIL, Sec- -
tion 3.6

4 - 35

FILMSK
(Fill Mask)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM: FILMSK mask
SHORT FORM : FM mask
HEX FORM : EF mask

PARAMETER TYPE : mask = Char

DESCRIPTION : FILMSK defines the area fill mask to be the value
mask. When an area fill command tests for a boundary index,
pixel data is ANDed against this mask as well as MASK. Default
value is no mask.

EXAMPLE:

CODE :
ASCII: FM 126
HEX : EF 7E

RESULT : Area fill mask is set to 126.

ERRORS : None

RELATED MATERIALS : AREA, AREABC, MASK, Section 3.7

4-36

FLAGRD
(Flag Read)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: FLAGRD flag
SHORT FORM : FRD flag
HEX FORM : 61 flag

PARAMETER TYPE: flag = Char |l..30]

DESCRIPTION: FLAGRD places the current value of the flag speci­
fied by flag into the read back buffer. Data are read
back using the current communications mode using
the same format as the instructions that wrote them.
The values of flag are specified in the table on the
following page.

EXAMPLE :

CODE :

ASCII: FRD 25
HEX : 61 19

RESULT : The amount of free memory is placed in the read back
buffer.

ERRORS : No such flag

RELATED MATERIALS : RESETF, Section 3.12

4-37

FLAGRD
(Flag Read)

COMMAND
DESCRIPTIONS

Type of ValueFlag Name
16 Ints
1 Char
1 Char

AREAPT
CLIPH
CLIPY

COLOR
DISPLA
DISTAN
DISTH
DISTY

FILMSK
LINFUN
LINPAT
MASK

MDORG
2- D current point
3- D current point

PRMFIL
PROJCT
TANGLE
TJUST
TSIZE

VWPORT
VWRPT

WINDOW
transformed 3- D current point

free memory
current position of XHAIR

2-D position of XHAIR
Screen Current Point

free memory
TWVIS
TWPOS
TSTYLE
TASPCT
TCHROT
COLMOD
BCOLOR

I
2
3

1 Char
1 Char
1 Real
1 Real
1 Real
1 Char
1 Char

1 Int
1 Char
3 Reals
2 Reals
3 Real8
1 Char

1 Int
1 Int

2 Chars
1 Real
4 Ints

3 Reals
4 Reals
3 Reals

1 Int
2 Ints

2 Reals
2 Ints

1 Real*
1 Char
6 Ints

1 Char
1 Real
1 Int

1 Char
1 Char

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
41
42

* This value is treated as a double precision integer

4-38

FLOOD
(Flood)

COMMAND
DESCRIPTIONS

COMMAND:

LONG FORM: FLOOD index
SHORT FORM : F index
HEX FORM : 07 index

PARAMETER TYPE : index = Char

DESCRIPTION : FLOOD sets all the pixels in the defined viewport to
the color specified by index. The current color is not changed and
the command is subject to MASK.

EXAMPLE :

CODE:
ASCII: F 12
HEX : 07 0C

RESULT : The rectangular area defined by the viewport is filled
with color 12.

ERRORS : None

RELATED MATERIALS : CLEARS, MASK, Section 3.7

4-39

GTDEF COMMAND
DESCRIPTIONS(Graphics Text Font Define)

COMMAND:

LONG FORM: GTDEF ch n widlh array
SHORT FORM: GTD ch n width array
HEX FORM: 89 ch n width array

PARAMETER TYPE: ch = Char
n = Char
width = Char (1..12)
array = n values

DESCRIPTION : GTDEF defines the character given by ch in the user
font as a series of vector plots stored in the n values of array. The
width of the character cell is given by width and the height is
fixed at 12. The starting point for the definition is at {0,3} of the
character cell. Each value in the array consists of three parts: the
pen action, the length, and the direction. The pen action may
be move (pen action = 0) or write (pen action = 1). The length
may take a value from one to eight. The direction can be from 0
to 7 and is summarized in the diagram below.

3 2 1
\ t /

4 — -♦ 0
/ 1 \

5 6 7

Each of these values is specified by a separate number when in
ASCII mode. In Hex mode, the values are packed into a single
byte with the three low bits containing the direction, the next
three bits containing the length less one and the seventh bit con­
taining the pen action. The format of the vector parameter is
shown in the following diagram:

4-40

GTDEF
(Graphics Text Font Define)

COMMAND
DESCRIPTIONS

70-5 43210 BIT
I I I I I I I I I

‘-----direction code (see diagram)
------length minus 1
------1 = pen down, 0 = pen up
----- don’t care

Notes :

• Any previous definition is lost. To reset a character to its
default value specify n as 00.

• Specifying characters using this command (rather than TDEFIN
will allow the characters to be enlarged and rotated.

• If you plan to define an entire font, it is faster to reset all
previous characters starting by the last character (255, 254,
253, ..., 0) and then define the character font starting at 0,
1, 2, ..., 255.

EXAMPLE:

CODE:

ASCII: GTD 65 7 8 1 7 2
1 2 1
I 3 0
12 7
1 7 6
04 2
1 7 4

HEX : 80 41 07 08 72 40 60 4F 76 1A 74
RESULT: The letter “A" is defined.

ERRORS : Not enough memory, Bad definition

RELATED MATERIALS : Section 3.8

4-41

IMAGER
(Image Read)

COMMAND:

COMMAND
DESCRIPTIONS

LONG FORM: IMAGER line xl x2
SHORT FORM: IR line xl x2
HEX FORM : D8 line xl x2

PARAMETER TYPE : line = Unsigned Int [0..479]
xl = Unsigned Int [0..639]
x2 = Unsigned Int [0..639)

DESCRIPTION : IMAGER reads pixel values from the image currently
being displayed and sends these values to the read
back buffer. Parameters line, xl and x2 are mea­
sured in pixels from the lower left corner of the screen.
When the communication mode is set to ASCII, the
values of the pixels are sent as ASCII numbers sep­
arated by commas. When the communication mode
is set to hex, then the output is sent in run-length
encoded format (see Section 3.10).

EXAMPLE:

CODE:

ASCII: IR 50 0 256
HEX : D8 32 00 00 00 00 01

RESULT: The values of pixels 0 through 256 from line 50 are
sent to the read back buffer.

ERRORS : Value out of range

RELATED MATERIALS : CA, CX, IMAGEW, Section 3.10

4-42

IMAGEW
(Image Write)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: IMAGEW line xl x2 data
SHORT FORM: IW line xl x2 data
HEX FORM : DO line xl x2 data

PARAMETER TYPE: line = Unsigned Int [0..479)
xl = Unsigned Int [0..639]
x2 = Unsigned Int [0..839]
data = ASCII: string of Chars

Hex: run length en­
coded string

DESCRIPTION : IMAGEW writes pixel values to the image currently
being displayed. Parameters line, xl and x2 are mea­
sured in pixels from the lower left corner of the screen.
When the communication mode is set to ASCII, the
values of the pixels are expected to be ASCII num­
bers separated by blanks. When the communication
mode is set to hex, the input is expected be in run-
length encoded format. In run length encoded form
the user sends either byte pairs or a count and a string
of bytes. When the high bit of the first byte is not
set, a byte pair is expected: the first byte represents
the count less one, the second byte the pixel value to
be repeated count times. If the high bit is set, then
the first byte is the length less one of the byte string
which follows. In both cases the count and the length
only use the low seven bits for the value. See Section
3.10 for more information on run-length encoding.

EXAMPLE :

CODE :

ASCII ;IW 50 0 JO 00000000000
HEX : D9 32 00 00 00 0A 00 0B 00

RESULT : The values of pixels 0 through 10 of line 50 are set to
0

4-43

COMMAND
DESCRIPTIONS

IMAGEW
(Image Write)

ERRORS : Value out of range

RELATED MATERIALS: CA, CX, IMAGER, Section 3.10, Section
3.14.

4-44

LINFUNCOMMAND
£ DESCRIPTIONS

COMMAND:

LONG FORM: LINFUN function
SHORT FORM: LF function
HEX FORM: EB function

PARAMETER TYPE; function = Char [0..4]'

DESCRIPTION: LINFUN sets the drawing function to the function
specified by the following table.

(Line Function)

Modefunction
Replace Mode

Complement Mode
XOR

0
1
2

OR3
AND4

When Replace Mode is selected, drawing is done in the current
color. Choosing Complement Mode will complement each pixel
as it is drawn - the current color will be ignored. The remaining
modes perform the specified logic operation between the pixel and
the current color. Drawing is subject to MASK.

EXAMPLE:

CODE:
ASCII: LF 0
HEX : EB 00

RESULT: Drawing is performed in the current color.

ERRORS : None

RELATED MATERIALS : MASK, Subsection 3.5.1

4-45

COMMAND
DESCRIPTIONS

LINPAT
(Line Pattern)

COMMAND :

LONG FORM: LINPAT pattern
SHORT FORM : LP pattern
HEX FORM: EA pattern

PARAMETER TYPE: pattern = Unsigned Int

DESCRIPTION: LINPAT sets the line drawing pattern mask to pat­
tern. Each of the 16 bits in pattern represents a pixel in sub­
sequently drawn lines. The pattern is repeated along the entire
length of the line drawn when using one of the following com­
mands (and PRMFIL is not set, in the case of closed figures):
ARC, CIRCLE, DRAW, DRAWR, DRAWS, DRAWR3, ELIPSE,
POLY, POLYR, POLYS, POLYRS, RECT, RECTR, SECTOR.

EXAMPLE:

CODE:
ASCII; LP 255
HEX : EA FF 00

RESULT: Dashed lines are drawn when the above commands
are used.

ERRORS : None

RELATED MATERIALS : BCOLOR, COLMOD, LINFUN, PRMFIL,
Subsection 3.5.S

4-46

LUT
(Lookup Table)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: LUT index r g b
SHORT FORM: L index r g b
HEX FORM : EE index r g b

PARAMETER TYPE: index = Char
r = Char [0..15]
g = Char (0..15)
b = Char (0..15J

DESCRIPTION: LUT loads the three RGB intensity values into the
LUT entry specified by index. The values sent by this command
are loaded into the high order nibbles of the lookup table entry;
the low order nibbles are set to aero. The LUTX is the preferred
form of the command.

EXAMPLE :

CODE:
ASCII: L 15 2 4 8
HEX : EE OF 02 04 08

RESULT: LUT entry 15 is set to r = 32, g = 64 and b = 128.

ERRORS : Out of range

RELATED MATERIALS : LUTINT, LUTRD, LUTSAV, LUTSTO, LUTX
LUTXRD, Subsection 3.5.2

4-47

LUTINT COMMAND
DESCRIPTIONS(Lookup Table Initialization)

COMMAND:

LONG FORM: LUTINT state
SHORT FORM: LI state
HEX FORM: EC state

PARAMETER TYPE : state = Char

DESCRIPTION: LUTINT sets the LUT to the state specified by the
following table.

state Description
Color cone distribution
Foreground/background colors in the low
4 bits of a ralue code will be visible only if
the high 4 bits are 0 (or invisible)
Value codes interpreted asRRGGGBBB
Value codes interpreted asRRRGGBBB
Value codes interpreted asRRRGGGBB
6 level RGB
Alternately load from LUT storage area 0 and 1
Load LUT from LUT storage area 1
Load LUT from LUT storage area 0_________

0
1

2
3
4
5

253
254
255

EXAMPLE :

CODE:

ASCII: LI 255
HEX : EC FF

RESULT : LUT is loaded from LUT storage area.

ERRORS : Value out of range

RELA TED MATERIALS : LUT, LUTRD, LUTSAV, LUTSTO, LUTX,
LUTXRD, Subsection 3.5.3

4-48

\

LUTRD
(Lookup Table Read)

COMMAND
DESCRIPTIONS
COMMAND :

LONG FORM: LUTRD index
SHORT FORM: LRD index
HEX FORM : BO index

PARAMETER TYPE: index = Char

DESCRIPTION : LUTRD reads high order nibbles of the red, green and
blue values of the LUT entry specified by index and
sends them to the output buffer. In ASCII mode, the
three values are ASCII numbers separated by com­
mas and terminated by a carriage return. In Hex
mode, the high order nibbles of LUT values are sent
in the low order nibbles of three bytes, one byte for
each color. LUTXRD is the preferred form of the
command.

EXAMPLE:

CODE:
ASCII: LRD 25
HEX : 50 10

RESULT: Values of the high nibbles of the LUT entry 10 are
returned.

ERRORS : None

RELATED MATERIALS: CA, CX, LUT, LUTINT, LUTSAV, LUT-
STO, LUTX, LUTXRD, Subsection 3.5.3

4-49

LUTSAV
(Lookup Table Save)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM: LUTSAV
SHORT FORM: LS
HEX FORM: ED

PARAMETER TYPE: None

DESCRIPTION: LUTSAV writes all 256 LUT entries to LUT stor­
age area 0. These values may be reloaded into the LUT using a
LUTINT 255 command. Each LUTSAV command overwrites any

* LUT data previously saved.

EXAMPLE:

CODE :
ASCII: LS
HEX : ED

RESULT : LUT data is stored in the LUT storage area.

ERRORS : None

RELATED MATERIALS : LUT, LUTINT, LUTRD, LUTSTO, LUTX,
LUTXRD, Subsection 3.5.S

4-50

LUTSTO

(LUT Store)
COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: LUTSTO flag
SHORT FORM: LST flag
HEX FORM: CO flag

PARAMETER TYPE: flag = Char [0..1]

DESCRIPTION : LUTSTO saves the current lookup table in one of two
user areas. Note that LUTSAV and LUTSTO 0 are identical. Ta­
ble 0 can be recalled by LUTINT 255 and Table 1 by LUTINT
254. Each LUTSTO command overwrites any LUT data previ­
ously saved in the specified user area.

EXAMPLE:

CODE:
ASCII: LST 1
HEX : CO 01

RESULT : The current LUT values are stored in Table 1.

ERRORS : None

RELATED MATERIALS : LUT, LUTINT, LUTSAV, LUTSTO, LUTX,
LUTXRD, Subsection 3.5.3

4-51

LUTX
(Lookup Table - 8 Bit)

COMMAND :

LONG FORM: LUTX index r g b
SHORT FORM: LX index r g b
HEX FORM: EC index r g b

PARAMETER TYPE : index = Char
r = Char (0..255]
g = Char [0..255]
b = Char [0..255]

DESCRIPTION : LUTX loads the three eight-bit RGB intensity values
into the lookup table entry specibed by index.

COMMAND
DESCRIPTIONS

EXAMPLE:

CODE:
ASCII: LX 15 2 4 8
HEX : EC OF 02 04 08

RESULT : Lookup table entry 15 is set to r = 2, g = 4 and b =
8.

ERRORS : None

RELATED MATERIALS : LUTINT, LUTRD, LUTSAV, LUTSTO, LUTXRD,
Subsection 3.5.S

4 - 52

LUTXRD
(Lookup Table Read - 8 Bit)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: LUTXRD index
SHORT FORM: LXR index
HEX FORM : 63 index

PARAMETER TYPE: index = Char

DESCRIPTION : LUTXRD reads the red, green and blue values of the
LUT entry specified by index and sends them to the output buffer.
In ASCII mode, the three values are ASCII numbers separated
by commas and terminated by a carriage return. In Hex mode,
the LUT values are sent in three bytes, one byte for each color.
Each LUT value is in the range 0 to 255.

EXAMPLE:

CODE:
ASCII: LXR 25
HEX : 63 19

RESULT : Values of LUT entry 19 are returned.

ERRORS : None

RELATED MATERIALS : CA, CX, LUTX, LUTINT, LUTSAV, LUT-
STO, Subsection 3.5.3

4-53

MASK
(Mask)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM : MASK planemask
SHORT FORM : MK planemask
HEX FORM: E8 planemask

PARAMETER TYPE : planemask = Char

DESCRIPTION : MASK sets the 8-bit read/write pixel data bit plane
mask to the value contained in planemask. Each bit in planemask
will enable the corresponding bit plane in the video buffer to be
read or written. Zeroes written to all 8 bits will prevent data
from being written to any pixel data bit plane and will cause 0’s
to be returned when pixel data are read.

EXAMPLE:

CODE:
ASCII : MK 255
HEX : E8 FF

RESULT : AH bit planes can be read or written.

ERRORS : None

\ RELATED MATERIALS : Subsection 5.5.4

4-64

MATXRD
(Matrix Read)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: MATXRD matrix
SHORT FORM : MRD matrix
HEX FORM: 62 matrix

PARAMETER TYPE : matrix = Char [1..2J

DESCRIPTION : MATXRD copies the contents of the matrix specified
by matrix to the read back buffer. When matrix is 1, the contents
of the 3D modelling transformation matrix are copied, when ma­
trix is 2 the contents of the 3D viewing transformation matrix
are copied. In ASCII mode, the matrix elements are written in
four lines, each of which has four entries separated by commas
and terminated by a carriage return. In Hex mode, each matrix
element is written as four bytes with the following reading order.

12 3 4
5 6 7 8
9 10 11 12
13 14 15 16

EXAMPLE:

CODE:
ASCII: MRD 2
HEX : 62 02

RESULT: The contents of the viewing transformation matrix
are copied to the Data Out Register.

ERRORS : Value out of range

RELATED MATERIALS : CA, CX, Section 3.4.2

4-55

MDIDEN
(Modelling Identity)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM: MDIDEN
SHORT FORM : MDI
HEX FORM: 90

PARAMETER TYPE: None

DESCRIPTION: MDIDEN seta the modelling transformation matrix
to the identity matrix.

EXAMPLE:

CODE :
ASCII: MDI
HEX : 90

RESULT: The modelling transformation matrix is set to the
identity matrix.

ERRORS : None

RELATED MATERIALS : DRAWS, DRAWRS, MDMATX, MOVES,
MOVERS, POINTS, POLYS, POLYRS, Subsection 3.4.2

4-56

MDMATX
(Modelling Matrix)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: MDMATX array
SHORT FORM: MDM array
HEX FORM : 07 array

PARAMETER TYPE : array = 16 Reals

DESCRIPTION : MDMATX loads the modelling matrix directly from
the data in array.

EXAMPLE:

CODE:
ASCII: MDM 36.25 12.00 128 2 0 36.75 100 0

72.5 0 2.5 0 100.25 0 0 0
HEX : 07 24 00 00 40

0C 00 00 00
80 00 00 00
02 00 00 00
00 00 00 00
24 00 00 CO
64 00 00 00
00 00 00 00
62 00 00 80
00 00 00 00
02 00 00 80
00 00 00 00
64 00 00 40
00 00 00 00
00 00 00 00
00 00 00 00

RESULT: The modelling matrix is set to the above data.

ERRORS : Arithmetic overflow

RELATED MATERIALS : MDORG, MDROTX, MDROTY, MDROTZ,
MATXRD, Subsection 3.4.2

4-57

MDORG
(Modelling Origin)

COMMAND :

LONG FORM: MDORG ox oy oz
SHORT FORM: MDO ox oy oz
HEX FORM: 01 ox oy oz

PARAMETER TYPE : ox = Real
oy = Real
oz = Real

DESCRIPTION: MDORG defines the origin section of the modelling
transformation matrix used in modelling transformation scaling
and rotating.

COMMAND
DESCRIPTIONS

EXAMPLE:

CODE:
ASCII: MDO 0.0 12.5 1.0
HEX ; 01 00 00 00 00 OC 00 00 80 01 00 00 00

RESULT; Origin is defined as x = 0, y = 12.5 and z = 1.

ERRORS : None

RELATED MATERIALS : MDROTX, MDROTY, MDROTZ, MATXRD,
Subsection 3.4.2

4-58

MDROTX
(Modelling Rotate X Axis)

COMMAND
DESCRIPTIONS

COMMAND:

LONG FORM: MDROTX angle
SHORT FORM: MDX angle
HEX FORM: 03 angle

PARAMETER TYPE : angle = Int

DESCRIPTION : MDROTX rotates the object about the x axis by an­
gle-

EXAMPLE:

CODE:
ASCII: MDX 45
HEX : 03 2D 00

RESULT : The object is rotated by 45° about the x axis.

ERRORS : Arithmetic overflow

RELATED MATERIALS : MDMATX, MDORG, MDROTY, MDROTZ,
Subsection 3.4.2

4-59

MDROTY
(Modelling Rotate Y Axis)

COMMAND :

LONG FORM : MDROTY angle
SHORT FORM: MDY angle
HEX FORM : 04 angle

PARAMETER TYPE : angle = Int

DESCRIPTION : MDROTY rotates the object about the y axis by an-

COMMAND
DESCRIPTIONS

gle.

EXAMPLE:

CODE:
ASCII: MDY 45
HEX : 04 2D 00

RESULT : The object is rotated by .45° about the y axis.

ERRORS : Arithmetic overflow

RELATED MATERIALS : MDMATX, MDORG, MDROTX, MDROTZ,
Subsection 3.4.2

4-60

MDROTZ
(Modelling Rotate Z Axis)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: MDROTZ angle
SHORT FORM : MDZ angle
HEX FORM: 06 angle

PARAMETER TYPE : angle = Int

DESCRIPTION: MDROTZ rotates the object about the z axis by an­
gle.

EXAMPLE:

CODE:
ASCII: MDZ 45
HEX : 06 2D 00

RESULT : The object is rotated by 45° about the

ERRORS : Arithmetic overflow

RELATED MATERIALS ; MDMATX, MDORG, MDROTX, MDROTY,
Subsection 3.4.2

z axis.

4-61

MDSCAL
(Modelling Scale)
COMMAND :

LONG FORM : MDSCAL sx sy sz
SHORT FORM: MDS sx sy sz
HEX FORM: 02 sx sy sz

PARAMETER TYPE : sx = Real
sy = Real
sz = Real

DESCRIPTION : MDSCAL changes the scaling component of the mod­
elling matrix for 3D drawing.

COMMAND
DESCRIPTIONS

EXAMPLE:

CODE:
ASCII: MDS 2 4 8
HEX ; 02 02 00 00 00 04 00 00 00 08 00 00 00

RESULT: Scaling component is set to (2,4,8).

ERRORS: Arithmetic overflow

RELATED MATERIALS : MDMATX, Subsection 3.4.2

4-62

MDTRANCOMMAND
DESCRIPTIONS (Modelling Translation)

COMMAND :

LONG FORM: MDTRAN tx ty tz
SHORT FORM : MDT tx ty tz
HEX FORM: 06 tx ty tz

PARAMETER TYPE: tx = Real
ty = Real
tz = Real

DESCRIPTION: MDTRAN moves the translation component of the
modelling matrix for 3D drawing by {tx.ty.tz}.

EXAMPLE :

CODE:
ASCII: MDT 2 4 8
HEX : 08 02 00 00 00 04 00 00 00 08 00 00 00

RESULT : Translation component is set to (2,4,8).

ERRORS : Arithmetic overflow

RELATED MATERIALS : MDMATX, Subsection 3.4.2

4-63

MOVE
(Move)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM : MOVExy
SHORT FORM: Mxy
HEX FORM : 10 x y

PARAMETER TYPE : x = Real
y = Real

DESCRIPTION : MOVE moves the 2D current point to {x.y}.

EXAMPLE:

CODE :
ASCII : M 10.0 12.0
HEX ; 10 0A 00 00 00 0C 00 00 00

RESULT : The current point is moved to {10.0,12.0}.

ERRORS : Arithmetic overflow

RELATED MATERIALS : MOVER, Section 3.6

4-64

MOVERCOMMAND
DESCRIPTIONS (Move Relative)

COMMAND:

LONG FORM: MOVER Ax Ay
SHORT FORM: MR Ax Ay
HEX FORM : 11 Ax Ay

PARAMETER TYPE : Ax = Real
Ay = Real

DESCRIPTION : MOVER moves the 2D current point to ({Ax.Ay} +
the current point).

EXAMPLE:

CODE:
ASCII: MR 10.0 12.0
HEX : 11 OA 00 00 00 0C 00 00 00

RESULT : The current point is moved to ({10.0,12.0} + the
rent point).

ERRORS : Arithmetic overflow

cur-

RELATED MATERIALS : MOVE, Section 3.6

4-65

M0VE3
(Move in 3D)

COMMAND :

LONG FORM: MOVES x y z
SHORT FORM : MS x y z
HEX FORM : 12 x y z

PARAMETER TYPE : x = Real
y = Real
z = Real

DESCRIPTION : MOVES moves the SD current point to {x.y.z}.

EXAMPLE:

CODE:

COMMAND
DESCRIPTIONS

ASCII: MS 5.0 10.0 12.0
HEX : 12 05 00 00 00 OA 00 00 00 0C 00 00 00

RESULT : The 3D current point is moved to {5.0,10.0,12.0}.

ERRORS : Arithmetic overflow

RELATED MATERIALS : MOVERS, Section 3.6

4-66

M0VER3COMMAND
DESCRIPTIONS (Move Relative in 3D)

' COMMAND :

LONG FORM: MOVERS Ax Ay Az
SHORT FORM: MRS Ax Ay Az
HEX FORM: 13 Ax Ay Az

PARAMETER TYPE : Ax = Real
Ay = Real
Az = Real

DESCRIPTION: MOVERS moves the 3D current point by the dis­
placement {Ax.Ay.Az}.

EXAMPLE:

CODE:
ASCII: MRS 5.0 10.0 12.0
HEX : 13 05 00 00 00 OA 00 00 00 OC 00 00 00

RESULT: The SD current point is moved to ({5.0,10.0,12.0} +
3D current point).

ERRORS : Arithmetic overflow

RELATED MATERIALS : MOVES, Section 3.6

4-67

COMMAND
DESCRIPTIONS

NOOP
(No Operation)

COMMAND :

LONG FORM: NOOP
SHORT FORM: NOP
HEX FORM: 01

PARAMETER TYPE: None

DESCRIPTION: NOOP does nothing. It can be used to hold a byte
when editing command lists.

EXAMPLE :

CODE:
ASCII: NOP
HEX : 01

RESULT: Nothing.

ERRORS : None

RELATED MATERIALS : CLMOD* Section S.9

4-68

PDRAW
(Poly Draw)

COMMAND
DESCRIPTIONS

COMMAND:

LONG FORM: PDRAW xi. yi. x2. y2. • • •. xn. yn
SHORT FORM: PD xt. yi. x2. y2.
HEX FORM: FF Xj. yi. x2. y3.

•. xn. y„

*• Xn. yn

PARAMETER TYPE: x, = Int
y< = Int

DESCRIPTION : PDRAW executes a stream of high speed screen moves
and vector draws. This command operates in screen mode and
consequently affects the 2D current point. The high bit of the x
and y coordinates are used as flags. If the high bit of x< is set
to 1 then the command stream is terminated with the it,k coor­
dinate pair. Otherwise the coordinate pair is accepted as a move
or draw command. The high bit of the y coordinate is used to
distinguish between a current point move (high bit set to 1) and
a vector draw (high bit set to 0). The PDRAW command allows
the highest drawing speeds to be attained.
Note: An easy way to calculate the value of a decimal number
with the high bit set is: n$et = n0 — 32768. For example, to move
to {125,340} one would use the z = 125 and y = 340 — 32768 =
-32428.

EXAMPLE:

CODE:

ASCII: PD 96 -32672 0 0-1 0
HEX : FF 60 00 60 80 00 00 00 00 FF FF 00 00

RESULT: The current point will be moved to {96,96} and a
vector will be drawn to {0,0}.

ERRORS : None

RELATED MATERIALS : Section 3.10

4-69

POINT
(Point)

COMMAND
DESCRIPTIONS

COMMAND:

LONG FORM: POINT
SHORT FORM: PT
HEX FORM: 08

PARAMETER TYPE: None

DESCRIPTION : POINT sets the pixel located at the 2D current point
to the current color. This command does not move the 2D current
point.

EXAMPLE:

CODE:
ASCII: PT
HEX : 08

RESULT : The pixel at the 2D current point is set to the current
color.

ERRORS : None

RELATED MATERIALS : LINFUN, LINPAT, Section 3.6

4-70

P0INT3
(Point in 3D)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM : POINTS
SHORT FORM : PT3
HEX FORM: 00

PARAMETER TYPE: None

DESCRIPTION : POINTS sets the pixel located at the SD current point
to the current color. This command does not move the 3D current
point.

EXAMPLE:

CODE:
ASCII: PT3
HEX: 00

RESULT : The pixel at the SD current point is set to the current
color.

ERRORS : None

RELATED MATERIALS : LINFUN, LINPAT, Section 3.6

4-71

POLY
(Polygon)

COMMAND :

LONG FORM: POLY n xx yx x3 y3 *
SHORT FORM : P n xx yi x3 y3 • • • xn yn
HEX FORM: 30 n Xi yi x3 y3 •

PARAMETER TYPE : n = Char
x,- = Real
y % = Real

DESCRIPTION : POLY draws a closed polygon in 2D. Parameter n is
the number of vertices and {Xi,y<} the coordinates of the vertices.
The polygon will be filled if the PRMF1L flag is set and subject
to the LINPAT if PRMFIL is not set. The 2D current point will
not be changed.

COMMAND
DESCRIPTIONS

Xn yr*

X„ yn

EXAMPLE:

CODE:
ASCII : P 4 0 0 10 0 16 16 0 16
HEX : 30 04 00 00 00 00 00 00 00 00 10

00 00 00 00 00 00 00 10 00 00
00 10 00 00 00 00 00 00 00 10
00 00 00

RESULT: A square, 16 by 16, is drawn.

ERRORS : Not enough memory, arithmetic overflow

RELATED MATERIALS : AREAPT, LINFUN, LINPAT,POLYR, PRM­
FIL, Section 3.6

4-72

POLYR
(Polygon Relative)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: POLYR n Axi Ayx Ax2 Ay2 ••• Axn Ayn
SHORT FORM: PR n Ax! Ayx Ax2 Ay2 • • • Axn Ayn
HEX FORM: 31 n Axi Ayi Ax2 Ay2

PARAMETER TYPE : n = Char
Ax< = Real
Ay i = Real

DESCRIPTION: POLYR drawa a closed polygon in 2D. Parameter n
is the number of vertices and {Ax,-,Ay,} the displacements from
the current point of the vertices. The polygon will be filled if the
PRMFIL flag is set and subject to the L1NPAT if PRMFIL is not
set. The 2D current point will not be changed.

• Axn Ayn

EXAMPLE:

CODE:

ASCII; PR 4 0 0 16 0 16 16 0 16
HEX : 31 04 00 00 00 00 00 00 00 00 10

00 00 00 00 00 00 00 10 00 00
00 10 00 00 00 00 00 00 00 10
00 00 00

RESULT : A square, 16 by 16, is drawn with the lower left corner
on the current point.

ERRORS : Not enough memory, arithmetic overflow

RELATED MATERIALS : AREAPT, LINFUN, LINPAT, POLY, PRM­
FIL, Section 3.6

4-73

P0LY3
(Polygon in 3D)

COMMAND :

LONG FORM : POLYS n xl yl zx
SHORT FORM: PS n Xi yi Zj • • • xn yn zn
HEX FORM : 32 n Xi yx Zi

PARAMETER TYPE: n = Char
Xi = Real
y ,• = Real
z i = Real

DESCRIPTION : POLYS draws a closed polygon where n is the number
of vertices and {x^y^z,*} the coordinates of the vertices. The
polygon is filled if the PRMFIL flag is set and subject to the
LINPAT if PRMFIL is not set. The SD current point is not
changed.

EXAMPLE :

COMMAND
DESCRIPTIONS

Xn yn Zn

Xn yn Zn

CODE :
ASCII : PS 4 0 0 0 16 0 0 16 0 16 0 0 10
HEX : 32 04 00 00 00 00 00 00 00 00 00

00 00 00 10 00 00 00 00 00 00
00 00 00 00 00 10 00 00 00 00
00 00 00 10 00 00 00 00 00 00
00 00 00 00 00 10 00 00 00

RESULT: A square, 10 by 10, is drawn along the xi plane.

ERRORS : Not enough memory, arithmetic overflow

RELATED MATERIALS : AREAPT, LINFUN, LINPAT, POLYRS, PRM­
FIL, Section 3.0

4-74

P0LYR3
(Polygon Relative in 3D)

COMMAND
DESCRIPTIONS

COMMAND:

LONG FORM: POLYR3 n Ax! Ayi Azj • • • Axn Ayn Azn
SHORT FORM: PR3 n Axj Ayi Azi • • • Axn Ayn Azn
HEX FORM: 33 n Axj Ayj Azi ••• Axn Ay* Azn

PARAMETER TYPE: n = Char
Ax< = Real
Ay,- = Real
AZj = Real

DESCRIPTION : POLYR3 draws a closed polygon where n is the num­
ber of vertices and {Ax,-,Ay,-,Az,-} the displacements from the
current point of the vertices. The polygon is filled if the PRMFIL
flag is set and subject to LINPAT if PRMFIL is not set. The 3D
current point is not changed.

EXAMPLE :

CODE :
ASCII: PR3 4 0 0 0 16 0 0 16 0 16 0 0 16
HEX : 33 04 00 00 00 00 00 00 00 00 00

00 00 00 10 00 00 00 00 00 00
00 00 00 00 00 10 00 00 00 00
00 00 00 10 00 00 00 00 00 00
00 00 00 00 10 00 00 00

RESULT : A square, 16 by 16, is drawn along the xz plane with
the starting point being the current point.

ERRORS : Not enough memory, arithmetic overflow

RELATED MATERIALS : AREAPT, LINFUN, LINPAT, POLY3, PRM­
FIL, Section 3.6

4-75

PRMFIL COMMAND
DESCRIPTIONS(Primitive Fill)

COMMAND :

LONG FORM: PRMFIL flag
SHORT FORM: PF flag
HEX FORM: EO flag

PARAMETER TYPE: flag = Char [0..1]

DESCRIPTION : PRMFIL sets the primitive fill flag to flag. When
PRMFIL is set to 0, closed figures are drawn in outline only; when
PRMFIL is set to 1, closed figures are filled with the current color
in the current area pattern. PRMFIL affects the following com­
mands: CIRCLE, ELIPSE, POLY, POLYR, POLYS, POLYRS,
RECT, RECTR, SECTOR, SCIRC, SELIPS, SPOLY, SPOLYR,
SRECT, SRECTR, and SSECT.

EXAMPLE :

CODE:
ASCII: PF 0
HEX : EQ 00

RESULT : Closed figures are drawn in outline only.

ERRORS : None

RELATED MATERIALS : AREAPT, BCOLOR, COLOR, COLMOD,
Section 3.7

4-76

PROJCTCOMMAND
DESCRIPTIONS (Projection)

COMMAND :

LONG FORM: PROJCT angle
SHORT FORM: PRO angle
HEX FORM: BO angle

PARAMETER TYPE: angle = Int [0..179]

DESCRIPTION: PROJCT sets the viewing angle used in 3D to 2D
transformations. When angle is 0°, an orthogonal projection is
produced; otherwise, a perspective projection is produced. The
default is 60°.

EXAMPLE:

CODE :

ASCII: PRO 0
HEX : BO 00 00

RESULT : Orthogonal projections are produced.

ERRORS : Value out of range, arithmetic overflow

RELATED MATERIALS : DISTAN, Subsection 3.4.2

4-77

RASTOP COMMAND
DESCRIPTIONS(Raster Operations)

COMMAND :

LONG FORM: RASTOP oper srcdir destdir x0 Xx y0 yi x’0 y'o
SHORT FORM : ROP oper srcdir destdir x0 Xx y0 yi x’0 y’o
HEX FORM: DA oper srcdir destdir x0 Xx y0 yi x'o y’o

PARAMETER TYPE: oper = Char (0..3|
srcdir = Char [0..7]
destdir = Char [0..7]
Xo = Unsigned Int [0..639]
Xx = Unsigned Int [0..639]
yo = Unsigned Int [0..479]
yx = Unsigned Int [0..479]
x'o = Unsigned Int [0..639]
y’o = Unsigned Int [0..479]

DESCRIPTION : RASTOP copies a rectangular area of the screen,
with lower left corner {xo.yo} and upper right corner {xi.yi}
(specified in pixels), to another area of the screen starting at lower
left corner {x’o.y'o}- The corners are included in the region and
both rectangles must be on the screen (including hidden space).
All bit planes are copied (subject to normal masking as specified
by the MASK command). If the rectangles overlap, the user must
select appropriate major and minor directions to ensure that the
area is copied properly. The raster operation function is selected
according to the following table and performed on a pixel by pixel
basis on the source and the destination regions.

Raster Operation Functions
Operationoper

0 copy
or (V)

and (.)
xor

1
2

(®)3

The direction of scanning of the source (input) region is specified
by srcdir; the direction of scanning of the destination (output)
region is specified by destdir. Both are selected using the following
table:

4-78

RASTOPCOMMAND
DESCRIPTIONS (Raster Operations)

Scanning Direction
Minor DirectionMajor Directiondirection

To =>
11 =>
T2 <=
i3 <=

n4
5

it6
7

EXAMPLE :

CODE:

ASCII: ROP 0 0 0 320 639 240 479 0 0
HEX : DA 00 00 00 40 01 7F 02 F0 00 DF

01 00 00 00 00

RESULT : The upper right side of the screen is duplicated at the
lower left.

ERRORS : Invalid operation, Invalid direction, Will not fit on screen

RELATED MATERIALS : Section 3.10

4-79

RASTRD
(Raster Read)

COMMAND :

LONG FORM: RASTRD dir Xo Xi y0 yi
SHORT FORM : RRD dir x0 x2 y0 yi
HEX FORM: DB dir x0 Xi y0 yi

COMMAND
DESCRIPTIONS

PARAMETER TYPE : dir = Char [0..3]
Xo = Unsigned Int (O..039)
Xi = Unsigned Int [O..039]
yo = Unsigned Int [0..479]
yi = Unsigned Int (0..479]

DESCRIPTION : RASTRD copies a rectangular area of the screen,
with corners {xo.yo} and {xltyi} to the system mem­
ory of the system unit. This operation uses the DMA
(Direct Memory Access) controller of the system unit.
The corners of the area, specified in pixels, are in­
cluded in the region and all bit planes are copied
(subject to normal masking as specified by the MASK
command).

This command will transfer (xi - Xo + 1) X (yi - yo
+ 1) bytes. Until all data has been transferred, no
commands will be interpreted by the board. To abort
an incomplete RASTRD, issue a cold reset by writing
a 1 to the Cold Reset Flag.

The direction of scanning the region is specified ac­
cording to the following table:

Scanning Direction
direction Major Direction Minor Direction

t0 =>
11 =>
r2 <=
i3 <=

Note:

As this command uses the DMA Controller (8-bit
channel 1, 2, or 3) of the PC XT/AT (programmed
by the user), transfers are limited to 04 Kbytes.

4 - 80

RASTRD
(Raster Read)

COMMAND
DESCRIPTIONS

EXAMPLE:

CODE:
ASCII: RRD 0 0 639 0 479
HEX : DB 00 00 00 7F 02 00 00 DF 01

RESULT : Entire screen is read.

ERRORS : Value out of range

RELATED MATERIALS : RASTWR, Section 3.10

4-81

RASTWR
(Raster Write)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM : RASTWR oper dir Xo X! y0 yi
SHORT FORM : RWR opcr dir Xo X! y0 yi
HEX FORM: DC oper dir xo Xi y<j yi

PARAMETER TYPE: oper = Char [0..3]
dir = Char (0..3]
Xo = Unsigned Int (0..639)
Xi = Unsigned Int [0..639)
yo = Unsigned Int [0..479]
yi = Unsigned Int [0..479)

DESCRIPTION : RASTWR copies a rectangular area of the screen,
with corners {xo.yo} and {xi.yi} from the system
memory of the system unit. This uses the DMA (Di­
rect Memory Access) controller of the system unit.
The corners of the area, specified in pixels, are in­
cluded in the region. All bit planes are copied (sub­
ject to normal masking as specified by the MASK
command).

4-82

RASTWR
(Raster Write)

COMMAND
DESCRIPTIONS

The pixel combination operation performed (between
old and new pixels) is specified using the following
table. Operation 0 will not use the old pixels, but will
directly copy new pixel data into the screen memory.

Raster Write Function
Operationoper

0 copy
or (V)

and (a)
xor (0)

1
2
3

This command will transfer (xi - x0 + l) x (yl -
yo + l) bytes. Until this data is transferred, no
commands will be interpreted by the HLGE. To abort
an incomplete RASTWR, issue a cold reset.
The direction of scanning the region is specified ac­
cording to the following table:

Scanning Direction
Major Directiondir Minor Direction

0 t=>
1* 1=>
7* T<=
3* i

* Applicable only for oper = 0

Note:
As this command uses the DMA Controller (8-bit
channel 1, 2, or 3) of the PC XT/AT (programmed
by the user), transfers are limited to 64 Kbytes.

4 - 83

RASTWR
(Raster Write)

EXAMPLE :

CODE:

COMMAND
DESCRIPTIONS

ASCII: RWR 0 0 0 039 0 479
HEX : DC 00 00 00 00 7F 02 00 00 DF 01

RESULT: A 640 by 480 pixel section of the screen is written to
from the bus memory.

ERRORS : Value out of range

RELATED MATERIALS : RASTRD, Section 3.10

4-84

RBANDCOMMAND
DESCRIPTIONS (Rubber Band Cross Hair)

COMMAND :

LONG FORM: RBAND flag
SHORT FORM: RB flag
HEX FORM : El flag

PARAMETER TYPE: flag = Char [0..2]

DESCRIPTION: RBAND enables the rubber band vector (flag = I),
the rubber band rectangle (flag = 2), or disables both (flag = 0).

The cross hair coordinates, at the time when either the rubber
band vector or the rubber band rectangle is enabled, becomes
the anchor point. When a new set of cross hair coordinates is
entered, a vector or a rectangle is drawn from the anchor to the
new coordinates in complement mode. As the coordinates are
changed the vector or rectangle is erased and redrawn from the
anchor to the new cross hair coordinates. When the rubber band
is disabled, the vector or rectangle last drawn is erased and the
cross hair coordinate is left at the last coordinate pair entered.

When first enabled, the anchor and the cross hair coordinate will
be on the same point and the rubber band vector or rectangle will
be drawn as a point.

EXAMPLE :

CODE :

ASCII: RB 2
HEX : El 02

RESULT: The rubber band rectangle is enabled.

ERRORS : Value out of range

RELATED MATERIALS : XIIAIR, XMOVE, Section 3.13

4-85

RDEFIN
(Raster Font Define)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM: RDEFIN font height width size start.char array
SHORT FORM: RDF font height width size start-char array
HEX FORM: 64 font height width size start.char array

PARAMETER TYPE : font = Char [1..15]
height = Char [0..16]
width = Char [0..16J
size = Char
start_char = Char
array = array of Char

DESCRIPTION : The user definable raster fonts 1 to 15 are defined
using the RDEFIN command. Each character in the
font must have the same cell size, subject to the height
and width parameters. The number of characters in
the font, minus one, is specified by size and the ASCII
code of the first character in the font is specified by
start-char. In HEX mode, each row of a character cell
is represented by a left justified packed string of bits,
each bit representing one pixel.

d - 80

RDEFIN
(Raster Font Define)

COMMAND
DESCRIPTIONS

EXAMPLE :

CODE:
ASCII: RDEFIN 1 7 5 1 65 0 1 1 1 0

1 000 1
1 000 1
11111
1 000 1
1 000 1
1 000 1
11110
1 000 1
1 0 00 1
11110
1 000 1
1 0 00 1
11110

HEX : 64 01 07 06 01 41 70 88 88 F8 88 88 88 FO 88
88 FO 88 88 F0

RESULT : Font 1 is defined with two characters: A and B.

ERRORS : parameter range

RELATED MATERIALS : RFONT, TEXTP, TEXTPC, Subsection 3.8.2

4-87

RFONT
(Select User Raster Font)

COMMAND FORMAT:

COMMAND
DESCRIPTIONS

LONG FORM: RFONT font h -aspect w .aspect
SHORT FORM: RFT font h-aspect w.aspect
HEX FORM: 6B font h -aspect w-aspect

PARAMETER TYPE : font = Char [0..15]
h-aspect = Char [0..1]
w-aspect = Char [0..lj

DESCRIPTION : The RFONT command selects the font that will be
used to draw user definable raster characters on the
screen, using the TEXTP and TEXTPC commands.
The font must have been previously defined using ei­
ther the RDEFIN or TDEFIN commands.
The w .aspect and h_aspect parameters specify the as­
pect ratio of the characters. A value of 0 indicates
single height/width and a value of 1 indicates double
height/width.

EXAMPLE :

CODE :
ASCII: RFONT 1 1 0
HEX : 65 01 01 00

RESULT : Font 1 will be selected when using the TEXTP and
TEXTPC commands, in double height, and single
width aspect ratio.

ERRORS : parameter range

RELATED MATERIALS : RFONT, TEXTP,TEXTPC, Subsection 3.8.2

4-88

RECT
(Rectangle)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: RECT x y
SHORT FORM: Rxy
HEX FORM : 34 x y

PARAMETER TYPE : x = Real
y = Real

DESCRIPTION : RECT draws a rectangle with one corner on the 2D
current point and the diagonally opposite corner on {x. y}. When
the PRMFIL flag is set, the rectangle will be drawn filled; if
PRMFIL is not set, drawing will be subject to LINPAT. The 2D
current point remains unchanged.

EXAMPLE:

CODE :
ASCII: R 128 64
HEX : 34 80 00 00 00 40 00 00 00

RESULT: A rectangle is drawn with one corner on the 2D cur­
rent point and the other on {128,64}.

ERRORS : None

RELATED MATERIALS : AREAPT, LINFUN, LINPAT, PRMFIL, REC1
Section 3.6

4-89

RECTR
(Rectangle Relative)

COMMAND :

LONG FORM: RECTR Ax Ay
SHORT FORM: RR Ax Ay
HEX FORM : 3B Ax Ay

PARAMETER TYPE : Ax = Real
Ay = Real

DESCRIPTION: RECTR draws a rectangle with one corner on the
2D current point and the diagonally opposite corner displaced
from the 2D current point by {Ax, Ay}. When the PRMFIL
flag is set, the rectangle will be drawn filled; if PRMFIL is not
set, drawing will be subject to LINPAT. The 2D current point
remains unchanged.

COMMAND
DESCRIPTIONS

EXAMPLE :

CODE:
ASCII: RR 128 64
HEX : 36 80 00 00 00 40 00 00 00

RESULT: A rectangle is drawn with one corner on the 2D cur­
rent point and the diagonally opposed corner displaced by
{128,64}.

ERRORS : Arithmetic overflow

RELATED MATERIALS : AREAPT, LINFUN, LINPAT, PRMFIL, RECT,
Section 3.6

4-90

RESETF
(Reset Flags)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: RESETF
SHORT FORM: RF
HEX FORM: 04

PARAMETER TYPE: None

DESCRIPTION : RESETF resets all flags and parameters to their de­
fault values, as specified in the table on the following
page. This is done automatically when the board is
reset or the power turned on.

EXAMPLE:

CODE:
ASCII: RF
HEX : 04

RESULT : All flags are reset

ERRORS : None

RELATED MATERIALS: FLAGRD

4 - 91

COMMAND
DESCRIPTIONS

RESETF
(Reset Flags)

DescriptionDefault ValueNameFlag
solid area
disabled
disabled

65535 16 timesAREAPT
CLIPH
CLIPY
COLOR
DISPLA
DISTAN
DISTH
DISTY
FILMSK
LINFUN
LINPAT
MASK
MDORG

■ 2-D current point
3-D current point
PRMFIL
PROJCT
TANGLE
TJUST
TSIZE
VWPORT
VWRPT
WINDOW
transformed 3D point
none
current positon of XHAIR
2-D position of XHAIR
screen current point
none
TSTYLE
TASPCT
TCHROT _______

1
02
03
2554
no change5
5006
-30000
30000

7
8

all planes used
set mode
solid lines
all planes on

2559
010
6553511
25512
(0,0,0)
(0,0)
(0,0)

13
14
15

off016
6017

horizontal
left, bottom
8 by 12 cells
entire screen

018
1,119
820
0,639,0,479
(0,0,0)
-320,319,-240,239
(0,0,0)
none
320,240

21
22
23
24

used in FLAGRD25
26

0,027
320,240
none

28
used in FLAGRD
‘fat’ text

29
032
1.533
034

4-92

SARCCOMMAND
DESCRIPTIONS (Screen Arc)

COMMAND :

LONG FORM: SARC radius anglcl anglc2
SHORT FORM: SAR radius anglcl anglc2
HEX FORM: F4 radius anglel angle2

PARAMETER TYPE : radius = Int
anglel = Int
angle2 = Int

DESCRIPTION : SARC draws a circular arc using the currently se­
lected color. The center is on the 2D current point. The radius,
and start and finish angles are specified in the command. The an­
gles can be any Int value (angles greater than 360° and less than
-360° are handled as modulo 360). Negative radii will result in
180° being added to both angles. This command does not affect
the 2D current point.
Note: The viewport and the window must have exactly the same
coordinates for this command to function correctly, and the view­
port must be equal to the maximum screen resolution i.e. 640 by
480 (See Section 3.10.).

EXAMPLE :

CODE :
ASCII: SAR 100 0 180
HEX : F4 64 00 00 00 B4 00

RESULT : An arc with radius 100 from 0° to 180° (a semi-circle)
is drawn about the 2D current point.

ERRORS : Overflow

RELATED MATERIALS : SCIRC, COLOR, LINFUN, LINPAT, Sec­
tion 3.10

4-93

SBLINK
(Stop Blink)

COMMAND :

LONG FORM: SBLINKu
SHORT FORM: SBLU
HEX FORM: E4

COMMAND
DESCRIPTIONS

PARAMETER TYPE: None

DESCRIPTION : SBLINK sets all LUT entries currently assigned as
blinking, by either the BLINK or the BLINKX
mands, as static. If you only want to cancel blinking
of one LUT entry you can still use the BLINK and
BLINKX commands. SBLINK is useful when you
want to stop all blinking on the screen with one in­
struction.
All blinking colors are restored to their original color.
Note: The viewport and the window must have ex­
actly the same coordinates for this command to func­
tion correctly, and the viewport must be equal to the
maximum screen resolution i.e. 640 by 480 (See Sec­
tion 3.10.).

com-

EXAMPLE :

CODE:
ASCII: SBLU
HEX : E4

RESULT : All blinking pixels, if any, will stop blinking.

ERRORS : None

RELATED MATERIALS : BLINK, BLINKX, Subsection 3.5.3

4-94

SCIRCCOMMAND
DESCRIPTIONS (Screen Circle)

COMMAND :

LONG FORM: SCIRC radius
SHORT FORM: SCI radius
HEX FORM: F2 radius

PARAMETER TYPE: radius = Int

DESCRIPTION: SCIRC draws a circle with radius radius centered on
the 2D current point. The circle is filled if the PRMFIL flag is
set. This command does not affect the 2D current point.
Note: The viewport and the window must have exactly the same
coordinates for this command to function correctly, and the view­
port must be equal to the maximum screen resolution i.e. 640 by
480 (See Section 3.10.).

EXAMPLE :

CODE :
ASCII: SCI 100
HEX : F2 64 00

RESULT : A circle with radius 100 is drawn from the 2D current
point.

ERRORS : Overflow

RELATED MATERIALS : SARC, SELIPS, LINFUN, LINPAT, PRM­
FIL, SSECT, Section 3.10

4-95

SDRAW COMMAND
DESCRIPTIONS(Screen Draw)

COMMAND :

LONG FORM: SDRAW x y
SHORT FORM: SD x y
HEX FORM: FA x y

PARAMETER TYPE : x = Int
y = Int

DESCRIPTION : SDRAW draws a line from the 2D current point to
{x.y} and positions the 2D current point to {x.y}. This command
does not draw the last pixel of a line.
Note: The viewport and the window must have exactly the same
coordinates for this command to function correctly, and the view­
port must be equal to the maximum screen resolution i.e. 640 by
480 (See Section 3.10.).

EXAMPLE :

CODE:
ASCII: SD 10 12
HEX ; FA OA 00 0C 00

RESULT : A line is drawn from the 2D current point to {10,12}.

ERRORS : Arithmetic overflow

RELATED MATERIALS : SDRAWR, L INF UN, LINPAT, SMOVE, SMOVER,
Section 3.10

4-96

SDRAWRCOMMAND
DESCRIPTIONS (Screen Draw Relative)

COMMAND :
LONG FORM : SDRAWR Ax Ay
SHORT FORM: SDR Ax Ay
HEX FORM: FB Ax Ay

PARAMETER TYPE : Ax = Int
Ay = Int

DESCRIPTION: SDRAWR draws a line from the 2D current point to
({Ax.Ay} + current point). The 2D current point is moved to
the end of the line. This command does not draw the last pixel
of a line.
Note: The viewport and the window must have exactly the same
coordinates for this command to function correctly, and the view­
port must be equal to the maximum screen resolution i.e. 640 by
480 (See Section 3.10.).

EXAMPLE:

CODE:
ASCII: SDR 100 200
HEX : FB 64 00 C8 00

RESULT: A line is drawn from the 2D current point to (the
current point + {100,200}).

ERRORS : Arithmetic overflow

RELATED MATERIALS : SDRAW, LINFUN, LINPAT,SMOVE, SMOVE
Section 3.10

4-97

SECTOR
(Sector)

COMMAND:

COMMAND
DESCRIPTIONS

LONG FORM : SECTOR radius anglel angle2
SHORT FORM: S radius anglel angle2
HEX FORM : 3D radius anglel angle2

PARAMETER TYPE: radius = Real
anglel = Int
angle2 = Int

DESCRIPTION : SECTOR draws a pie shaped figure with the center
on the current point, radius radius, and angles anglel and angle2.
If PRMFIL is set then the sector will be filled, otherwise drawing
will be subject to LINPAT. If radius is negative then 180° will be
added to both angles. The angles are integers and are treated as
modulo 360. This command does not affect the current point.
Note: The viewport and the window must have exactly the same
coordinates for this command to function correctly, and the view­
port must be equal to the maximum screen resolution i.e. 640 by
480 (See Section 3.10.).

EXAMPLE :

CODE:
ASCII: S 50.25 45 135
HEX : 3D 32 00 00 40 2D 00 87 00

RESULT : A pie shaped sector is drawn with radius 50.25, start­
ing at 45° and ending at 135°.

ERRORS : Arithmetic overflow

RELATED MATERIALS : AREAPT, LINFUN, LINPAT,PRMFIL, Sec­
tion 3.6

4-98

SELIPSCOMMAND
DESCRIPTIONS (Screen Ellipse)

COMMAND :

LONG FORM: SELIPS xradius yradius
SHORT FORM: SEL xradius yradius
HEX FORM: F3 xradius yradius

PARAMETER TYPE : xradius = Int
yradius = Int

DESCRIPTION : SELIPS draws a 2D ellipse centered on the 2D current
point and whose x and y radii are given by xradius and yradius.
The ellipse will be filled if drawn while the PRMFIL flag is set.
This command does not affect the 2D current point.
Note: The viewport and the window must have exactly the same
coordinates for this command to function correctly, and the view­
port must be equal to the maximum screen resolution i.e. 640 by
480 (See Section 3.10.).

EXAMPLE:

CODE:
ASCII: SEL 32 128
HEX : F3 20 00 80 00

RESULT : An ellipse is drawn with x radius 32 and y radius 128.

ERRORS : Overflow

RELATED MATERIALS : AREAPT, LINFUN, LINPAT, PRMFIL, Sec­
tion 3.10

4-99

SMOVE COMMAND
DESCRIPTIONS(Screen Move)

COMMAND :

LONG FORM: SMOVE x y
SHORT FORM: SM x y
HEX FORM: F8 x y

PARAMETER TYPE : x = Infc
y = Lit

DESCRIPTION : SMOVE moves the 2D current point to {x.y}.
Note: The viewport and the window must have exactly the same
coordinates for this command to function correctly, and the view­
port must be equal to the maximum screen resolution i.e. 640 by
480(See Section 3.10.).

EXAMPLE:

CODE:
ASCII: SM 10 12
HEX : F8 0A 00 0C 00

RESULT : The 2D current point is moved to (10,12).

ERRORS : Arithmetic overflow

RELATED MATERIALS : SMOVER, Section 3.10

4 - 100

SMOVERCOMMAND
DESCRIPTIONS (Screen Move Relative)

COMMAND :

LONG FORM: SMOVER Ax Ay
SHORT FORM: SMR Ax Ay
HEX FORM: F0 Ax Ay

PARAMETER TYPE : Ax = Int
Ay = Int

DESCRIPTION: SMOVER moves the 2D current point to ({Ax.Ay}
+ the current point).
Note: The viewport and the window must have ex­
actly the same coordinates for this command to func­
tion correctly, and the viewport must be equal to the
maximum screen resolution i.e. 640 by 480(See Sec­
tion 3.10.).

EXAMPLE :

CODE:
ASCII: SMR 10 12
HEX : FQ OA 00 0C 00

RESULT : The current point is moved to ({10,12} + the current
point).

ERRORS : Arithmetic overflow

RELATED MATERIALS : SMOVE, Section 3.10

4 - 101

SPOLY
(Screen Polygon)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM: SPOLY n xx y, x3 y3 •
SHORT FORM: SP n Xj yj x3 y3
HEX FORM: FC n Xi yi x3 y3

PARAMETER TYPE : n = Char
Xi = Int
y< = Int

DESCRIPTION : SPOLY draws a closed polygon directly on the screen.
Parameter n is the number of vertices and {x^,y<} the coordinates
of the vertices. The polygon will be filled if the PRMFIL flag is
set and subject to the LINPAT if PRMFIL is not set. The 2D
current point will not be changed.
Note: The viewport and the window must have exactly the same
coordinates for this command to function correctly, and the view­
port must be equal to the maximum screen resolution i.e. 640 by
480(See Section 3.10.).

xn y«
x„ yn

Xn yn

EXAMPLE :

CODE:
ASCII: SP 4 0 0 16 0 16 16 0 16
HEX : FC 04 00 00 00 00 10 00 00 00 10

00 10 00 00 00 10 00

RESULT : A square, 16 by 16, is drawn.

ERRORS : Not enough memory, arithmetic overflow

RELATED MATERIALS : AREAPT, LINFUN, LINPAT, SPOLYR, PRM­
FIL, Section 3.10

4 - 102

SPOLYR
(Polygon Relative)

COMMAND
DESCRIPTIONS
COMMAND :

LONG FORM: SPOLYR n Axi Ay! Axa Aya ••• Axn Ayn
SHORT FORM: SPR n Axj Ayi Axa Aya • • • Axn Ayn
HEX FORM: FD n Axi Ayi Axa Aya • • • Axn Ayn

PARAMETER TYPE: n = Char
Ax* = Int
Ayi = Int

DESCRIPTION : SPOLYR draws a closed polygon directly to the screen.
Parameter n is the number of vertices and {Ax*, Ay,*} the displace­
ments of the vertices from the 2D current point. The polygon will
be filled if the PRMFIL flag is set and subject to the LINPAT if
PRMFIL is not set. The 2D current point will not be changed.
Note: The viewport and the window must have exactly the same
coordinates for this command to function correctly, and the view­
port must be equal to the maximum screen resolution i.e. 640 by
480(See Section 3.10.).

EXAMPLE :

CODE:
ASCII: SPR 4 0 0 16 0 16 16 0 16
HEX : FD 04 00 00 00 00 10 00 00 00 10

00 10 00 00 00 10 00

RESULT : A square, 16 by 16, is drawn with the upper left corner
on the 2D current point.

ERRORS : Not enough memory, arithmetic overflow

RELATED MATERIALS : AREAPT, LINFUN, LINPAT, SPOLY, PRM­
FIL, Section 3.10

4 - 103

SRECT COMMAND
DESCRIPTIONS(Screen Rectangle)

COMMAND :

LONG FORM: SRECT x y
SHORT FORM: SR x y
HEX FORM: FOxy

PARAMETER TYPE : x = Int [O..039]
y = Int [0..479]

DESCRIPTION : SRECT draws a rectangle with one corner on the
2D current point and the diagonally opposite corner on {x.y}.
When the PRMFIL flag is set, the rectangle will be drawn filled;
if PRMFIL is not set, then drawing will be subject to LINPAT.
The 2D current point remains unchanged.
Note: The viewport and the window must have exactly the same
coordinates for this command to function correctly, and the view­
port must be equal to the maximum screen resolution i.e. 640 by
480(See Section 3.10.).

EXAMPLE :

CODE:
ASCII: SR 128 64
HEX : F0 80 00 40 00

RESULT ; A rectangle is drawn with one corner on the 2D cur­
rent point and the other on {128,64}.

ERRORS : None

RELATED MATERIALS : AREAPT, LINFUN, LINPAT, PRMFIL, SRECTR,
Section 3.10

4 - 104

SRECTRCOMMAND
DESCRIPTIONS (Screen Rectangle Relative)

COMMAND :

LONG FORM: SRECTR Ax Ay
SHORT FORM: SRR Ax Ay
HEX FORM: FI Ax Ay

PARAMETER TYPE: Ax = Int
Ay = Int

DESCRIPTION: SRECTR draws a rectangle with one corner on the
2D current point and the diagonally opposite corner displaced
from the 2D current point by {Ax. Ay). When the PRMF1L
flajj is set, the rectangle will be drawn filled. If PRMFIL is not
set, then the drawing will be subject to LINPAT. The 2D current
point remains unchanged.

Note: The viewport and the window must have exactly the same
coordinates for this command to function correctly, and the view­
port must be equal to the maximum screen resolution i.e. 640 by
480(See Section 3.10.).

EXAMPLE:

CODE:

ASCII: SRR 128 64
HEX : FI 80 00 40 00

RESULT: A rectangle is drawn with one corner on the 2D cur­
rent point and the other displaced by {128,64}.

ERRORS : Arithmetic overflow

RELATED MATERIALS : AREAPT, LINFUN, LINPAT, PRMFIL, SREC
Section 3.10

4 - 105

SSECT COMMAND
DESCRIPTIONS(Screen Sector)

COMMAND:

LONG FORM: SSECT radius anglel angle2
SHORT FORM: SS radius anglel angle2
HEX FORM: F6 radius anglel angle2

PARAMETER TYPE : radius = Int
anglel = Int
angle2 = Int

DESCRIPTION : SSECT draws a pie shaped figure with center on the
2D current point, radius radius, and angles anglel and angle2. If
PRMFIL is set, the sector will be filled; otherwise, drawing will be
subject to LINPAT. If radius is negative then 180° will be added
to both angles. The angles are integers and are treated as modulo
360. This command does not afTect the 2D current point.
Note: The viewport and the window must have exactly the same
coordinates for this command to function correctly, and the view­
port must be equal to the maximum screen resolution i.e. 640 by
480(See Section 3.10.).

EXAMPLE :

CODE :
ASCII: SS 50 45 135
HEX : F5 32 00 2D 00 87 00

RESULT : A pie shaped sector is drawn having radius 50, start­
ing at 45° and going through to 135°.

ERRORS : Arithmetic overflow

RELATED MATERIALS : AREAPT, LINFUN, LINPAT, PRMFIL, Sec­
tion 3.10

4 - J06

TANGLE
(Text Angle)

COMMAND
^ DESCRIPTIONS

COMMAND :

LONG FORM : TANGLE angle
SHORT FORM: TA angle
HEX FORM : 82 angle

PARAMETER TYPE : angle = Int

DESCRIPTION : TANGLE sets the rotation angle for text; specifically
the angle of the baseline (the imaginary line that characters are
drawn on). The angle is specified by angle. The default is the
normal left to right drawing angle 0°. TANGLE does not affect
the rotation of the individual characters; character rotation is
specified using TCHROT.

EXAMPLE :

CODE:
ASCII: TA 270
HEX : 82 0E 01

RESULT: Characters are drawn vertically top to bottom.

ERRORS : None

RELATED MATERIALS : TCHROT, TEXT, TEXTP, Section 3.8

4 - 107

TASPCT
(Text Aspect Ratio)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM: TASPCT ratio
SHORT FORM: TASP ratio
HEX FORM : 8B ratio

PARAMETER TYPE : ratio = Real

DESCRIPTION: TASPCT sets the text aspect ratio for style 1 char­
acters (see TSTYLE). The aspect ratio is the ratio of character
height to width, the default is 1.5 (when TSIZE = 8, this rep­
resents a character 12 pixels high by 8 pixels wide). Parameter
ratio must be greater than sero.

EXAMPLE:

CODE:
ASCII: TASP 2
HEX : 8B 02 00 00 00

RESULT: Characters are drawn twice as high as they are wide.

ERRORS ; Value out of range

RELATED MATERIALS : TEXT, TEXTP, TSIZE, TSTYLE, Section
3.8

4 - 108

TCHROTCOMMAND
DESCRIPTIONS (Text Character Rotation)

COMMAND :

LONG FORM : TCHROT angle
SHORT FORM: TCR angle
HEX FORM: 8A angle

PARAMETER TYPE : angle = Int

DESCRIPTION: TCHROT sets the angle of rotation for characters.
Only text of style 1 will be rotated, style 0 will be unaffected. The
rotation is independent of the baseline rotation set by TANGLE.
Text styles are selected using TSTYLE.

EXAMPLE:

CODE:
ASCII: TCR 90
HEX : 8A 6A 00

RESULT : Characters are rotated by 90°.

ERRORS : None

RELATED MATERIALS : TANGLE, TEXT, TEXTP, TSTYLE, Sec­
tion 3.8

4 - 109

TDEFIN
(Text Define)

COMMAND :

LONG FORM: TDEFIN n x y array
SHORT FORM : TD n x y array
HEX FORM : 84 n x y array

COMMAND
DESCRIPTIONS

PARAMETER TYPE: n
= Char
x = Char
y = Char
array = x columns by y rows of Chars

(ASCII mode) or x bits packed
left justified in y byte sets
(Hex mode)

DESCRIPTION : TDEFIN defines the character given by n to be an
array with character cell size x by y and contents array. In ASCII
mode, each pixel in the character cell is represented by either
the character “0” or the character “1”. Where a pixel is set to
“0”, the character will be transparent, or the current background
color (BCOLOR), depending on the current state of COLMOD.
Where the pixel is set to “1”, the pixel will be the color index last
specified by the COLOR command. In Hex mode, each row of
the character cell is represented by a packed string of bits, each
bit representing one pixel. These bits are left justified so that the
first bit is in the highest bit position.

NOTE : If you specify a value of 0 for either the x or the y parameter
you will delete the character definition.

EXAMPLE :

CODE :
ASCII ; TD 65 5 7 OHIO

1 00 0 1
1 000 1
i 1 1 1 1
1 00 0 1
1 000 1
1 000 1

4-110

TDEFIN
(Text Define)

COMMAND
DESCRIPTIONS

HEX : 84 41 05 07 70 88 88 F8 88 88 88
RESULT : The letter 8 A* ia defined.

ERRORS : Not enough memory

RELATED MATERIALS : TEXTP, COLMOD, Section 3.8

4 - 111

TEXT
(Text)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM: TEXT -string- or "string"
SHORT FORM: T suing- or "string"
HEX FORM: 80 ’string* or "string"

PARAMETER TYPE : string = any number of Chan up to 640

DESCRIPTION: TEXT writes a text string to the screen, justified
about the current point as specified in the last TJUST command.
The string may be delimited by either double or single quotes. If
no quotes are used the string will be terminated by the first delim­
iter encountered. The text will be in the site and style specified
by the last TSIZE and TSTYLE commands. When TSTYLE has
been set to 0, fat text will be produced; when TSTYLE has been
set to 1, thin rotatable text will be produced. If COLMOD =
Replace, the character cell will be drawn according to the current
LINFUN and BCOLOR parameters.
Note: The fastest character drawing speed is attained when fat
text of size 16 (size 8 if in PG-640 mode) is selected, with the left
side of the beginning of the string located on 16-pixel multiples
(0, 16, 82, ...) along the x-axis.

EXAMPLE :

CODE:
ASCII: T ’Hello*
HEX : 80 22 48 66 6C 6C 6F 22

RESULT : Hello is printed on the screen.

ERRORS ; String too long, Arithmetic overflow

RELATED MATERIALS : TANGLE, TASPCT, TCHROT, TEXTP,TJUST,
TSIZE, TSTYLE, Section 8.8

4 - 112

TEXTC
(Fixed Length Text)

COMMAND
DESCRIPTIONS

COMMAND:

LONG FORM : None
SHORT FORM: None
HEX FORM: 8C count char char ... char

PARAMETER TYPE: count = Unsigned Int |0..640|
char = Char

DESCRIPTION: This command displays a text string of up to 640
characters. The count parameter specifies the number
of characters in the string that follows it. Note that
this command is restricted to Hex mode.

EXAMPLE:

CODE:
ASCII: None
HEX : 8C 06 00 41 42 43 44 46

RESULT : The text string “ABODE" is displayed at the current
point.

ERRORS : Range

RELATED MATERIALS : TEXT, TANGLE, TSIZE, Section 3.8

4 - 113

TEXTP
(Text with Programmable Font) COMMAND

DESCRIPTIONS
COMMAND:

LONG FORM: TEXTP ’string’ or "string"
SHORT FORM : TP ’string’ or "string”
HEX FORM : 83 'string* or ” string"

PARAMETER TYPE : string = any number of Chars up to 640

DESCRIPTION : TEXTP writes a text string to the screen using pro­
grammable fonts. The text will be justified about the current
point as specified in the last TJUST command, and be in the
style specified in the last TSTYLE command. When TSTYLE
is set to zero, the text font defined by TDEFIN is used; when
TSTYLE is set to one, the text defined by GTDEF is used. The
string may be delimited by either double or single quotes. If no
quotes are used, the string will be terminated by the first delimiter
encountered.

EXAMPLE :

CODE :
ASCII : TP ’Hello*
HEX : 83 22 48 66 6C 6C 6F 22

RESULT : Hello is printed on the screen.

ERRORS : String too long, Arithmetic overflow

RELATED MATERIALS : TASPCT, TANGLE, TCHROT, TDEFIN,
TEXT, TJUST, TSIZE, TSTYLE, Section 3.8

4 - 114

TEXTPC
(Fixed Length Programmable Text)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: None
SHORT FORM : None
HEX FORM: 8D count char... char

PARAMETER TYPE: count = Unsigned Int [9-.640]
char = Char

DESCRIPTION: This command displays a programmable text string
at the current point. The count parameter specifies
the number of characters in the string that follows.
This command is identical to the TEXTC command.
Note that this command is restricted to Hex mode.

EXAMPLE :

CODE:
ASCII: None
HEX : 8D 06 00 41 42 43 44 45

RESULT : The programmable text string “ABODE” is displayed
at the current point.

ERRORS : Range

RELATED MATERIALS : TEXTP, TANGLE, TSTYLE, TDEFIN, GT-
DEF, Section 3.8

4 - 115

TJUST
(Text Justify)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM: TJUST horiz vert
SHORT FORM : TJ horiz vert
HEX FORM : 86 horiz vert

PARAMETER TYPE: horiz = Chur [1..3)
vert = Char (1..3)

DESCRIPTION: TJUST sets the horizontal and vertical justification
as specified in the table below. The default values are: horiz = 1
and vert = 1.

TEXT JUSTIFICATION
VALUE ACTION

Justify on left or bottom
Center
Justify on top or right

1
2
3

EXAMPLE :

CODE:
ASCII: TJ 2 1
HEX : 86 02 01

RESULT : Output text is centered horizontally about the current
point with its bottom on the current point.

ERRORS : Range error

RELATED MATERIALS : TEXT, TEXTP, Section 3.8

4 - 116

TSIZE
(Text Size)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: TSIZE size
SHORT FORM: TS size
HEX FORM : 81 size

PARAMETER TYPE : size = Real

DESCRIPTION : TSIZE sets the text size by specifying the virtual dis­
tance from one character to the next. The default value is 8.
TSIZE directly sets the width of each character and the height is
set using TASPCT (height = width x aspect ratio). The size of
fat text will be rounded off to a multiple of eight pixels.

EXAMPLE :

CODE:
ASCII: TS 16
HEX : 81 10 00 00 00

RESULT : Text size is doubled from default.

ERRORS : Arithmetic overflow

RELATED MATERIALS : TASPCT, TEXT, TEXTP, TSTYLE, Sec­
tion 3.8

4-117

TSTYLE
(Text Style)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM: TSTYLE nag
SHORT FORM: TSTY flag
HEX FORM: 88 flag

PARAMETER TYPE: flag = Char [0..1)

DESCRIPTION : TSTYLE seta the style of the text drawn with TEXT
or TEXTP commands. When flag is 0, characters will be fat -
that is to say the lines forming the characters will become wider
as their size is increased by a TSIZE command. When flag is
1, the characters will, always be constructed with lines one pixel
wide. The default is style 0. The effect of this command is only
noticeable when characters are drawn in sizes larger than normal.

EXAMPLE :

CODE:
ASCII: TSTY 1
HEX : 88 01

RESULT : Thin rotatable text is selected.

ERRORS : None

RELATED MATERIALS : TEXT, TEXTP, TSIZE, Section 3.8

\

4 - 118

TWCOL
(Text Window Color - 8 Bit)

COMMAND
DESCRIPTIONS

COMMAND:

LONG FORM: TWCOL r g b
SHORT FORM: T WC r g b
HEX FORM: DB r g b

PARAMETER TYPE : r = Char (0..255)
g = Char [0..255J
b = Char (0..255)

DESCRIPTION : This command sets the foreground color used in text
windows. All text windows have a transparent back­
ground.

EXAMPLE :

CODE:
ASCII : TWCOL 2 4 8
HEX : D6 02 04 08

RESULT : The foreground color for text windows is changed to
r = 2, g = 4, and b = 8.

ERRORS : None

RELATED MATERIALS : TWPOS, TWVIS, Subsection 3.11

4-119

TWPOS COMMAND
DESCRIPTIONS(Set Text Window Position)

COMMAND:

LONG FORM: TWPOS Xo xx y0 yi «o «i
SHORT FORM: TWP Xo X! y0 yi «o «i
HEX FORM: D3 Xo Xj y0 yi to «i

PARAMETER TYPE : Xo = Unsigned Int [0..639]
Xi = Unsigned Int [0..639]
yo = Unsigned Int [0..479]
yi = Unsigned Int [0..479]
eo= Unsigned Int [0..79]
ti = Unsigned Int [0..24]

DESCRIPTION : TWPOS sets the sise and position of the emulator
window on the graphics screen. A rectangular region
of the emulator screen (in its current mode) with up­
per left corner {eo,ei} is mapped onto the high res­
olution graphics screen from {xo,Xi} to {yo,yi}-. All
parameters are specified in pixels. The parameters eo
and ei are specified in character cells, based on the
80 by 25 text mode of the CGA Emulator.

TWPOS does not make the text window visible (see
TWVIS) but when issuing a TWPOS command while
the text window is visible, the text window will ap­
pear in its new location immediately.

4 - 120

TWPOSCOMMAND
DESCRIPTIONS (Set Text Window Position)

Restrictions:

• The TWPOS command only works for the 80 x
25 and 40 X 25 alphanumeric CGA video modes.
To see the full CGA screen in any mode use the
DISPLA command.

• The screen positions must be on 16 pixel bound­
aries; i.e. Xo and Xi + 1 must be divisible by 16.

• Displaying the emulator window slows down the
high resolution drawing rate proportional to the
position of the right hand edge of the emulator
window. To speed up graphics drawing make Xi
as small as possible.

EXAMPLE:

CODE:

ASCII: TWP 0 639 416 479 0 0
HEX : D3 00 00 7F 02 AO 01 DF 01 00 00 00 00

RESULT: The top four lines of text from the emulator screen
are mapped on to the bottom of the graphics screen.

ERRORS : Bad text window position

RELATED MATERIALS : TWVIS, TWCOL, Section 3.11

4 - 121

TWVIS
(Set Text Window Visible)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM: TWVIS flag
SHORT FORM: TWV flag
HEX FORM : D4 flag

PARAMETER TYPE: flag = Char [0..l|

DESCRIPTION : TWVIS enables (flag set to 0) the text window de­
pending on flag. When the text window is enabled,
the portion of the emulator screen specified by the
last TWPOS command is displayed. The emulator
must be enabled.
Note: Graphics drawing is much faster when the text
window is disabled.

EXAMPLE:

CODE:
ASCII: TWV 1
HEX : D4 01

RESULT : Emulator screen is made visible.

ERRORS : No valid dialogue position specified

RELATED MATERIALS : TWPOS, TWCOL, Section 3.11

4 - 122

VWIDEN
(Viewing Identity)

COMMAND
DESCRIPTIONS
COMMAND:

LONG FORM: VWIDEN
SHORT FORM : VWI
HEX FORM: AO

PARAMETER TYPE: None

DESCRIPTION: VWIDEN sets the viewing transformation matrix to
the identity matrix.

EXAMPLE:

CODE:
ASCII: VWI
HEX : AO

RESULT : Viewing matrix is set to the identity matrix.

ERRORS : None

RELATED MATERIALS : Subsection 3.4.2

4 - 123

VWMATX COMMAND
DESCRIPTIONS(Viewing Matrix)

COMMAND :

LONG FORM: VWMATX array
SHORT FORM: VWM array
HEX FORM: A7 array

PARAMETER TYPE: array = 16 Reals

DESCRIPTION : VWMATX loads the viewing matrix with the data in
array.

EXAMPLE:

CODE:
ASCII : VWM 36.25 12.00 128 2

0 36.75 100 0
72.5 0 2.5 0
100.25 0 0 0

HEX : A7 24 00 00 40 0C 00 00 00 80 00 00 00 02
00 00 00 00 00 00 00 24 00 00 CO 64 00
00 00 00 00 00 00 52 00 00 80 00 00 00
00 02 00 00 80 00 00 00 00 64 00 00 40
00 00 00 00 00 00 00 00 00 00 00 00

RESULT : The viewing matrix is set to the above data.

ERRORS : Arithmetic overflow

RELATED MATERIALS : Subsection 3.4.2

4 - 124

VWPORT
(Viewport)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: VWPORT Xu xa yx ya
SHORT FORM: VWP xj xa yi ya
HEX FORM: B2 Xi xa yx ya

PARAMETER TYPE: Xi = Unsigned Int (0..639)
xa = Unsigned Int [0..639J
yi = Unsigned Int [0..479]
ya = Unsigned Int [0..479]

DESCRIPTION: VWPORT defines a viewport on the screen where
drawing can take place. The viewport is measured in pixels from
the bottom left corner. Clipping is always enabled and the default
viewport is the entire screen ({0,0} and {639,479}). Parameter
Xi must be less than xa, and yi less than ya, or else a warning
will be generated. The pair that generated the warning will be
swapped. A warning is also produced when any coordinate falls
outside of the current screen boundary.

EXAMPLE:

CODE :
ASCII: VWP 0 300 0 100
HEX : B2 00 00 2C 01 00 00 64 00

RESULT: Viewport is defined to be from the lower left
of the screen to {300,100}.

ERRORS : Arithmetic overflow

RELATED MATERIALS : WINDOW, Subsection 3.4.1

corner

4 - 125

COMMAND
DESCRIPTIONS

VWROTX
(Viewing Rotate X Axis)

COMMAND :

LONG FORM: VWROTX angle
SHORT FORM: VWX angle
HEX FORM: A3 angle

PARAMETER TYPE : angle = Int

DESCRIPTION: VWROTX rotates the x component of the viewing
matrix by angle.

EXAMPLE :

CODE:
ASCII: VWX 45
HEX : A3 ID 00

RESULT: The x component is rotated by 45°.

ERRORS : Arithmetic overflow

RELATED MA TERIALS : VWMATX, VWROTY, VWROTZ, Subsec­
tion 3.4.2

4 - 126

VWROTYCOMMAND
DESCRIPTIONS (Viewing Rotate Y Axis)

COMMAND :

LONG FORM : VWROTY angle
SHORT FORM: VWY angle
HEX FORM: A4 angle

PARAMETER TYPE: angle = Int

DESCRIPTION: VWROTY rotates the y component of the viewing
matrix by angle.

EXAMPLE:

CODE:
ASCII: VWY 45
HEX : A4 ID 00

RESULT: The y component is rotated by 45°.

ERRORS : Arithmetic overflow

RELATED MATERIALS : VWMATX, VWROTX, VWROTZ, Subsec­
tion 3.4.2

4 - 127

VWROTZ
(Viewing Rotate Z Axis)

COMMAND :

COMMAND
DESCRIPTIONS

LONG FORM: VWROTZ angle
SHORT FORM : VWZ angle
HEX FORM: A5 angle

PARAMETER TYPE : angle = Int

DESCRIPTION: VWROTZ rotates the t component of the viewing
matrix by angle.

EXAMPLE :

CODE :
ASCII : VWZ 45
HEX : A5 ID 00

RESULT : The s component is rotated by 45°.

ERRORS : Arithmetic overflow

RELATED MATERIALS : VWMATX, VWROTX, VWROTY, Subsec­
tion 3.4.2

4 - 128

VWRPTCOMMAND
DESCRIPTIONS (Viewing Reference Point)

COMMAND :

LONG FORM: VWRPT x y z
SHORT FORM: V WR x y z
HEX FORM: A1 x y z

PARAMETER TYPE: x = Real
y = Real
z = Real

DESCRIPTION : VWRPT sets the viewing reference point to be {x.y.z}.
The viewing reference point is the point that the user is looking
at.

EXAMPLE:

CODE :
ASCII: VWR 100 -25 50
HEX : A1 64 00 00 00 E7 FF 00 00 32 00 00 00

RESULT : Viewing reference point is defined to {100,-25,50}.

ERRORS : Arithmetic overflow

RELATED MATERIALS : Subsection 3.4.2

4 - 129

COMMAND
DESCRIPTIONS

WAIT
(Wait)

COMMAND :

LONG FORM: WAIT frames
SHORT FORM: W frames
HEX FORM: OB frames

PARAMETER TYPE: frames = Unsigned Int

DESCRIPTION : WAIT produces a delay of frames frames. The value
of frames is expressed in — seconds (the maximum value of frames
65535 produces a delay of 18 minutes).

EXAMPLE:

CODE:
ASCII: W 60
HEX : OB 3C 00

RESULT; A 1 second delay is produced.

ERRORS : None

RELATED MATERIALS : Subsection 3.3.4

4 - 130

WINDOW
(Window)

COMMAND
DESCRIPTIONS

COMMAND :

LONG FORM: WINDOW Xx xa yi y3
SHORT FORM: WI x, x3 yi y3
HEX FORM: B3 Xx x3 yi y3

PARAMETER TYPE: x1 = Real
x3 = Real
yi = Real
y3 = Real

DESCRIPTION: WINDOW defines the coordinates of the corners of
the window. The window is the section of the virtual workspace
that is mapped to the screen’s viewport area, which is set by the
most recent VWPORT command.

EXAMPLE :

CODE:
ASCII: WI -25 50 75 100
HEX : B3 E7 FF 00 00 32 00 00 00 96 00

00 00 64 00 00 00
RESULT: The x and y coordinates are both defined to be from

0 to 64.
\ERRORS : Arithmetic overflow, Range error

RELATED MATERIALS : VWPORT, Subsection 3.4.1

4 - 131

XHAIR COMMAND
DESCRIPTIONS(Enable Cross Hair)

COMMAND :

LONG FORM: XHAIR flag or flag x_size y_size
SHORT FORM: XH flag or flag x-size y_size
HEX FORM: E2 flag or flag x-size y_size

PARAMETER TYPE : flag = Char [0, 1, 3)
X-size = Int [0..32767]
y-size = Int [0..32767]

DESCRIPTION : XHAIR enables (flag = 1 or 3), or disables (flag = 0)
the cross hair. When the cross hair is enabled, the two parameters
X-size and y_size must be used in order to define the sise of the
cross hair. The cross hair will have a horizontal length of X-size
coordinate units and a vertical length of y_size coordinate units.
The cross hair is displayed in complement form with its center on
the position specified by the last XMOVE command. Using flag
equal to one will display the cross hair clipped by the screen size,
flag equal to three produces a cross hair clipped by the current
viewport. When the cross hair is disabled, the X-size and y_size
parameters are not specified - the cross hair will no longer be
displayed.

EXAMPLE:

CODE:
ASCII: XH I 100 100
HEX : E2 01 04 00 64 00

RESULT : The cross-hair is enabled and defined to be 100 x 100.

ERRORS : Value out of range

RELATED MATERIALS : RBAND, VWPORT, XMOVE, Section 3.13

4 - 132

XMOVECOMMAND
DESCRIPTIONS (Cross Hair Move)

COMMAND:

LONG FORM: XMOVE x y
SHORT FORM : XM x y
HEX FORM; E3 x y

PARAMETER TYPE : x = Int [0..639|
y = Int [0..479]

DESCRIPTION : XMOVE changes the cross hair coordinates to {x,y}.
The coordinates are specified in screen coordinates.

EXAMPLE :

CODE :
ASCII; XM 5 5
HEX : E3 06 00 06 00

RESULT : The cross hair coordinate is set to (5,5).

ERRORSValue out of range

RELATED MATERIALS : RBAND, XHAIR, Section 3.13

4 - 133

XMOVE COMMAND
DESCRIPTIONS(Cross Hair Move)

4 - 134

Chapter 5

The CGA Emulator

5.1 The Programmer’s Model

The PG-640A,s color graphics adaptor emulator creates the appearance
of a IBM Color Graphics Adaptor in the system unit. The PG-640A
emulates the registers of the graphics adaptor, as well as the functions
of the 6845 CRT controller. The emulator has 16K x 8 bits of dedicated
display memory. This memory is directly accessible by the system micro­
processor and provides the basis for four video modes:

1. 40 X 25 Alphanumeric

2. 80 X 25 Alphanumeric

3. 320 X 200 X 2 Pixel Addressable Graphics

4. 640 X 200 X 1 Pixel Addressable Graphics

The graphics emulator allows the user to run existing software, such as
1-2-3 from LOTUS and Microsoft Flight Simulator. If there is a color

5 - l

THE CGA EMULATOR

70643210
1111

BLUE - FOREGROUND
GREEN - FOREGROUND
RED - FOREGROUND
HIGHLIGHT
BLUE - BACKGROUND
GREEN - BACKGROUND
RED - BACKGROUND
BLINK/HIGHLIGHT

V

Figure 5.1: Attribute Byte - Alphanumeric Mode

graphics adaptor already present in the system unit, the emulator of the
PG-04OA can be disabled using the switch described in Appendix A.

5.2 Emulator Access

The emulator is programmed in exactly the same way as the Color
Graphics Adaptor. The MS-DOS MODE command can be used to se­
lect any of the display modes that are available on the graphics adaptor.
Alternately, the mode of the emulator may be altered by writing to the
registers described in Section 5.3.

5-2

EMULATOR ACCESS

Red Green Blue Highlight Color
Black00 0 0
Blue0 0 01
Green0 1 0 0
•Cyan0 1 1 0

0 Red1 0 0
0 Magenta

Brown
White
Grey
Light Blue
Light Green
Light Cyan
Light Red
Light Magenta
Yellow
Bright White

1 01
1 1 0 0
1 1 01
0 0 0 1

00 1 1
0 1 0 1
0 1 1 1

0 01 1
01 1 1

1 1 0 1
11 1 1

Table 5.1: Alphanumeric Color Table

5.2.1 Video Modes

Alphanumeric Modes

The alphanumeric modes give the user access to 256 extended ASCII
characters. This character set includes the standard ASCII numbers and
letters (upper and lower case), as well as special characters for graphics
and other purposes. The font is illustrated in Figure 3.25. Each character
cell is represented in memory by two bytes: one byte for the ASCII code
and one byte for the character attribute. This attribute byte allows the
user to select the background and character colors, a blink function, and
a highlight function. The bit map is illustrated in Figure 5.1.i

As each character occupies two bytes, a full screen in 40 x 25 character

5-3

THE CGA EMULATOR

Bit 1 BitO color
Background Color
Color 0
Color 1
Color 2

0 0
0 1
1 0
1 1

Table 5.2: 520 X 200 Bit Storage

Number Color Set 0 Color Set 1
Green
Red

Brown

0 Cyan
Magenta

White
1
2

Table 5.3: 320 x 200 Color Sets

mode takes up only 2 000 bytes of memory and a full screen in 80 x 25
mode: 4 000 bytes. This allows the user to store up to eight screens of
40 X 25 or four screens of 80 x 25 characters at one time. The user also
has access to 16 display colors for the foreground, and 16 display colors
for the background of each character cell. The color set is illustrated in
Table 5.1. Each character cell can also be set to blink off and on using
the BLINK bit of the attribute byte.

Graphics Modes

The graphics emulator supports the two pixel addressable graphic modes
of the color adaptor, 320 X 200 X 2 and 640 x 200 x 1, both of which
require the entire 16Kbytes of the emulator.

In 320 X 200 mode the user can chose one of six pixel colors and one of
16 colors for the background. Each pixel is set using the format laid out

5-4

EMULATOR ACCESS

7SS43210
r i i ~i ' i —r

PLx«l a bil 0
Pixel 3 bit 1
Pixel 3 bit 0
Pixel 3 bit 1
Pixel 1 bit 0
Pixel 1 bit 1
Pixel 0 bit 0
Pixel 0 bit 1

Figure 5.2: 320 x 200 Byte Layout

in Table 5.2. The user can select one of three colors from the current
color set, or the background color. There are two color sets, as shown
in Table 5.3, one of which is selected using the Color Select Register.
Every pixel can be individually addressed from the system unit and in
320 X 200 mode occupies 2 bits of storage. The byte layout is shown in
Figure 5.2. The pixel located in the upper left corner of the display is
stored at B8000j/> Each byte contains data for four pixels and is stored
using the format shown in Figure 5.3. The background color is selected
using the Color Select Register.

In 640 X 200 mode the memory organisation is much the same as in the
320 X 200 mode, except that each pixel is represented by one bit. This
means that each byte stores data for eight pixels (one bit each). Each
pixel can be set to the current color or to black - the current color is
selected using the Color Select Register.

5.2.2 Memory Organisation

The emulator of the PG-640A has 16K by 8 bits of RAM dedicated
for emulator display. Where memory is located in the PC’s memory
map is illustrated in Figure 5.4. The system unit can read or write the

5-5

THE CGA EMULATOR

B8000

Even Rows
(0,2,4,"-.1M)
8 000 Brte«B9F3F

Not Used

BA000

Odd Row*
(1,3,6,---,1SM>)
8 000 Byte*BBF3F

Not U*«d

BBFFF

Note: The base address of the CGA RAM can also be set to B0000 (the
address of the Monochrome Display Adaptor) using on board straps.

Figure 5.3: Graphics Mode Row Layout

5-6

EMULATOR ACCESS

00000

B8000

Emulator
Duplay RAM

BBFFF

C6000

High Rasolution
Communication

RAMC63FF

FFFFF

Note: The High Resolution Communications RAM can also be moved
from C6000 to C6400 by setting a DIP switch.

Figure 5.4: PG-640A Memory Map

5-7

TIIE CGA EMULATOR

Address Name
6845 Index Register
6845 Data Register

Mode Control Register
Color Select Register

Status Register
Clear Interrupt Flag

3D4
3D5
3D8
3D9
3DA
3DF

• Note: These registers can he re-located to 3B0 to 3BF (the location
on the Monochrome Display Adaptor) using on board straps. This
will allow the user to operate two PG-040A*s in the same chassis
with emulator windows.

Table 5.4: Emulator I/O Map

emulator RAM directly, using the CPU address bus, and controls the
emulator through the registers described in Section 5.3. The emulator
I/O map is illustrated in Table 5.4.

Register Descriptions5.3

5.3.1 Register Summary

The PG-640A Color Graphics Adaptor Emulator emulates the following
registers:

Mode Control Register: Hex address 3D8. This 6 bit write only register
controls the display mode of the graphics emulator.

Color Select Register: Hex address 3D9. This 6 bit write only register
controls the colors displayed by the graphics emulator.

5-8

REGISTER DESCRIPTIONS

Status Register: Hex address SDA. This 4 bit read only register allows
the system unit to read the status of the graphics emulator.

CRTC Index Register: Hex address 3D4. This 5 bit write only register
is used to point to the internal registers of the 6845 emulator.

CRTC Data Register: Hex address 3D5. This 8 bit read/writc register
is used to indirectly read or write the internal registers of the 6845
emulator.

5.3.2 Mode Control Register

I/O Addraaa = SD8WRITE ONLY

7 8 6 4 3 3 1____ 0
1 1 I I I ~ T

ALPHAMODE
330GRAPH
BWMODE
VIDENA
04OGRAPH
BLNKENA
not u*«d
not uaed

Bit 0 : Write a 1 to this bit to select 80 X 25 alphanumeric mode. Write
a 0 to select 40 X 25 alphanumeric mode.

Bit 1 : Write a 1 to this bit to select 820 x 200 graphics mode. Write a
0 to select alphanumeric mode.

Bit B : Write a 1 to this bit to select black and white mode. Write a 0
to select color mode.

1 Bit 3 : Write a 1 to this bit to enable the video signal. Write a 0 to
disable the video signal. The video signal should be disabled
when changing modes.

5-9

THE CGA EMULATOR

Bit 4 : Write a 1 to this bit to select 040 X 200 graphics mode. Write a
0 to select alphanumeric mode.

Bit 5 ; Write a X to this bit to enable the blink function. Write a 0 to
disable the blink function. If the blink is disabled, eight intensified
colors are made available for the character cell background in the
alphanumeric modes.

5.3.3 Color Select Register

I/O Address = 3D»WRITE ONLY

7S643210
[I n in

BLUB
GREEN
RED
INTENS
ALTERN
ACTIVE
nol used
not used

Bit 0 : Write a 1 to this bit to select:

1. blue background color in 320 X 200 graphics mode
2. blue foreground color in 640 x 200 graphics mode.

Bit 1 : Write a 1 to this bit to select:

1. green background color in 320 x 200 graphics mode
2. green foreground color in 640 x 200 graphics mode.

Bit 2 : Write a 1 to this bit to select:

1. red background color in 320 x 200 graphics mode

5 - 10

REGISTER DESCRIPTIONS

2. red foreground color in 640 x 200 graphics mode.

Bit 3 : Write a 1 to this bit to select:

1. intensified background color in 320 X 200 graphics mode
2. intensified foreground color in 640 X 200 graphics mode.

Bit 4 : Write a 1 to this bit to select:

1. alternate, intensified set of colors in 320 x 200 graphics
mode.

Bit 5 : Use this bit to select the active color set in 320 x 200 graphics
mode according to the following tables:

1. Bit 5 set to 1:

Bit 1 Bit 0 Set Selected
0 0 Background (Defined by bits 0-3 of port SDOj#

Cyan
Magenta

__________ White

0 1
1 0
1 1

2. Bit 5 set to 0:

Bit oBit 1 Set Selected
Background (Defined by bit* 0-3 of port SDDj/

Green
Red

_____________ BroVrn

0 0
0 1
1 0
1 1

3. Bit 5 set to 0 and Bit 2 of the Mode Register set to 1:

Bit 1 Bit o Set Selected
Background (Defined by bite 0-3 of port 3DDM

Cyan
Red

____________ White

0 0
0 1
1 0
1 1

5 - JI

THE CGA EMULATOR

5.3.4 Status Register

READ ONLY I/O Addraaa = SDA

70543210
[T

REGEN
not uaad
not uaed
VRTRTC
not uaad
not uaad
not uaad
not uaad

Bit 0 : A 1 in this bit indicates that a emulator bufTer memory access
can be made without causing disruptions on the display.

Bit 3 : A 1 in this bit indicates that the raster is in vertical retrace -
screen buffer updating can be performed at this time.

5.3.5 CRTC Index Register

I/O Addraaa = 3D4WRITE ONLY

70541310
]

AO
A1
A3
AS
A4
not uaad
not uaad
not uaad

5-12

REGISTER DESCRIPTIONS

This 5 bit write only register is used as a pointer to the CRT controller’s
internal registers when initialising the CRT controller for use.

5.3.6 CRTC Data Register

READ/WRITE I/O Addraaa = SD5

T6643210

DO
D1
Da
DS
D4
D6
DS
D7

This 8-bit read/write register is used to indirectly load data to the CRT
controller’s internal registers when configuring the CRT controller for
use.

5.3.7 6845 CRT Controller Emulator

The 6845 CRT Controller Emulator has ten accessible internal registers
which are used to define and control a raster scan CRT display. One of
these registers, the Index Register, is used as a pointer for the Data Reg­
ister which is used to load the other internal registers. See Sections 5.3.5
and 5.3.6.

In order to load any of the other registers the Index Register is first
loaded with the necessary pointer then the Data Register is loaded with
the data to be placed in the selected register. Likewise the internal
registers can be read (if applicable) by writing their address to the Index
Register and then reading the Data Register.

5-13

THE CGA EMULATOR

40 by 80 by Graphic
Mode*I/ORegister

Type
Reg Reg
Addr No. Unit 28 25Type Alpha Alpha

Vertical IFR4 Write IF IFChar Row4
VeJrical
Total AdjustR5 Write 08 08 006 Scan Line
Vertical
DisplayedR0 Write 10 10 100 Char Row
Vertical

7 R7 Char Write 1C 1C 1CSyne

ZX&xl____Cursor
Displayed
Start
Address

ursorR10A Write 00 00 00Scan Line

RllB Write 07 07 07Scan Line

C R12 Write 00 00 00

JJispJaye
Start
Address fL)

D R1S Write 00 00 00

Cursor
Position (H)

Read/E R14 XX XX XXwrite
Cursor
Position fL)

Read/R16F XX XX XXwrite

Table 5.5: 6845 CRT Controller Emulated Registers

5-14

Chapter 6

Maintenance and

Warranty

Matrox products are warranted against defects in materials and work­
manship for a period of 180 days from date of delivery. We will repair
or replace products which prove to be defective during the warranty
period, provided they are returned to Matrox Electronic Systems Lim- .
ited. No other warranty is expressed or implied. We are not liable for
consequential damages.

\

To return units for repair:

1. Obtain a Return Materials Acceptance (RMA) Number from our
Applications Engineering Department.

2. Fill out the Product Failure Report found at the back of this man­
ual and write the RMA number in the top margin.

3. Return the unit and the completed Product Failure Report to MA­
TROX.

6- 1

MAINTENANCE AND WARRANTY

U. S. customers are to return their products to our U. S. warehouse, at
the following address:

Matrox International Corporation,
Trimex Building,

Mooers, N. Y.
12958.

6-2

Appendix A

Installation

A.l Configuration

A.1.1 CPU Board

Options on the PG-640A are selected using four DIP switches on the
CPU board, eight DIP switches on the video board and 12 jumpers on
the video board. The switches on the CPU board are:

1. RESERVED. This switch must be OFF.

2. ADDRESS SELECT. When this switch is OFF, the base address
of the communications FIFO queue is set to C6000//, when the
switch is ON the base address is set to C6400//. This allows two
PG-640A’s to be installed in the same system unit.

3. COLOR GRAPHICS ADAPTOR ENABLE. When this switch is
ON, the color graphics adaptor emulator is enabled. If there al­
ready is an IBM color Graphics Adaptor, or equivalent, in the

A - 1

INSTALLATION

system unit, the emulator section of the PG-04OA should be dis­
abled (switch is OFF).

4. TEST/. This switch is always left OFF. See Appendix G for in­
formation on the diagnostics programme.

The CGA Emulator’s base address can be strapped to one of two lo­
cations: that normally occupied by the CGA (Memory Address B8000,
I/O Address 3D0) and that normally occupied by the Monochrome Dis­
play Adaptor (Memory Address B0000, I/O Address 3B0). If the CGA
Emulator is strapped to B0000, the user is responsible for initialising
the CRTC registers. The CGA Emulator’s base address is set using the
following jumpers:

Configuration Jumper Settings
Memory B8000, I/O 3D0 1-4, 2-3, 7-8 IN
Memory BOOOQ, I/O 3B0 1-2, 4-5, 6-7 IN

A.1.2 Video Board

DMA Channel Select Switches

The DIP switches on the video board are used to select the DMA channel
used by the PG-640A. Follow the table below to choose the appropriate
channel. Note : No other board in the system unit may use the same
DMA channel. Switch 5 is not used. Switch 1 should be OFF.

SW6 SW7 SW8SW2 SW3 SW4Channel
ONOFF ON OFF OFFOFF1

OFF ON OFFOFF ON OFF2
OFFOFF OFF ON OFFt 3 ON

Note: The PG-640A is shipped with Channel 1 selected.

A - 2

INSTALLATION

Sync Output Jumpers

The video sync is normally only available on Pin 4 of the video connector.
A jumper can be set to have a composite sync added to the green video
signal found on Pin 2 of the video connector. See the following table.

Pins ConnectionsSync
5-6 OUT

5-6 IN
Normal

Sync On Green

A.2 Installation

To separate the two boards in order to adjust jumpers and switches
the CPU board follow this procedure:

You will need:

on

• a small Philips screwdriver

• a small (1/4) wrench, or suitable pliers

You should work in a static-free area
sweaters or other static-generating clothing).

(avoid carpeting, and don’t wear

1. Turn off the power on the PC. Remove the PG-640A from
system. If it is hot, let it cool down for a few minutes.

2. Place the PG-640A with the solder side down, component side
up on a work bench. (It will scratch a table, so put something
underneath it).

S. Remove the four philips screws, and their washers (there is one in
each corner). Save the screws and washers.

your

A -3

INSTALLATION

4. Remove the two small bolts that hold the video connector to the
bracket (on the outside side of the bracket). Save them.

5. CAREFULLY, and slowly, separate the two boards. Start at the
end furthest from the bracket, and pull the two boards apart. Try
not to bend any pins.

6. Make the changes to the switches and jumpers on the CPU board.

7. Now comes the tricky part: putting the two boards back together.
First, put the video connector into its hole in the bracket. Then,
working from that end, slowly bring the boards together, making
sure that the pins, one by one, go into their respective holes. This
is tricky, and you may not get it the first time: go slowly. Try not
to bend any of the pins.

8. Once all the pins are in their holes, press the two boards together
until the tips of the pins just comes through the blue connector.
This should not take a great deal of force.

9. Replace the bolts into the video connector. Replace the four philips
screws and their washers. Double check that no pins are bent.

To install the PG-640A follow these steps:

1. Turn the PC off and remove the screws at the back of the system
unit or the expansion unit and remove the cover.

2. Remove the back panel covers from two adjacent slots.

3. Configure the PG-04OA using the jumpers and DIP switches de­
scribed in the previous section.

4. Firmly press the two boards into the two adjacent slots. Replace
screws.

5. If the PG-04OA emulator section is enabled, set the DIP switches
on the system unit to reflect the addition (if the PG-640A is in­
stalled on an IBM PC AT, run the installation program provided
with the AT to reconfigure it - in any case, refer to the installation
manual which came with your computer).

A - 4

CONNECTORS

6. Replace the system unit or expansion unit cover and screws.

7. Plug the video cable from your display into the nine pin connector
on the back of the PG-640A.

8. Turn on the power, boot with DOS (version 2.0 or higher), and
run STARTUP, which is found on the diskette provided with the
PG-640A. STARTUP will test the PG-640A and demonstrate the
capabilities of the board.

A.3 Connectors

A.3.1 Video Output

The following table gives the pin numbers and functions for the video
output connector.

Pin No. Signal Name
Red Video1

Green Video
Blue Video

Horizontal and Vertical Sync
Mode Control

Ground for Pin 1
Ground for Pin 2
Ground for Pin 3

Ground for Pins 4 & 5

2
3
4
5
6
7
8
9

A - 5

INSTALLATION

A.3.2 PC Bus Connector

Pin No. Name Pin No. Name
Al I/O CHECK/ Bl GND
A2 D7 B2 RESET DRV
A3 D6 B3 +5V
A4 D5 B4 IRQ2

-5VDC
DRQ2
-12V

CARD SELECTED/
+12V
GND

MEMW/
MEMR/
IOW/
IOR/

DACK3/
DRQ3

DACK1/
DRQl

DACKO/
CLOCK

IRQ7
IRQ8
IRQ5
IRQ4
IRQ3

DACK2/

A5 D4 B5
A6 D3 B6
A7 D2 B7
A8 D1 B8
A9 DO B9

I/O CH RDYAJO BIO
All AEN Bll
A12 A19 B12
A13 A18 B13
A14 A17 B14
A15 A16 B15
A16 A15 B16
A17 A14 B17
A18 A13 BJ8
A19 A12 B19
A20 All B20
A21 A10 B21
A22 A9 B22
A23 A8 B23
A24 A7 B24

A6 B25A25
A5 B26A26

T/CA4 B27A27
ALEB28A3A28
+5VB29A29 A2
OSCAl B30A30

B31 GNDAOA31

A - 6

Appendix B

Default Parameters

The following table represents the default values after a cold reset of the
various matrices, flags and patterns used in the PG-640A.

13 - 1

DEFA ULT PARAMETERS

Name DescriptionDefault Value
AREAPT
CLIPH
CLIPY
COLOR
cross hair screen position
cross hair coordinate position
DISPLA
DISTAN
DISTH
DISTY
FILMSK
LINFUN
LINPAT
MASK
MDORG
2-D current point
2- D current point screen position
3- D current point
PRMFIL
PROJCT
TANGLE
TJUST
TSIZE
VWPORT
VW11PT
WINDOW
transformed 3D point
TWVIS
TWPOS
TWCOL
TSTYLE
TASPCT
TCIIROT

solid area
disabled
disabled

65535 16 times
0
0
255
(320,240)
(0,0)
SW3 on CPU board
500
-30000
30000

all planes used
set mode
solid lines
all planes on

255
0
65535
255
(0,0,0)
(0,0)
(320,240)
(0,0,0)

off0
60
0 horizontal

left, bottom
8 by 12 cells
entire screen

1,1
8
0,639,0,479
(0,0,0)
-520,519,-240,239
(0,0,0)

disabled0
allO not set up

white
‘fat* text

255,255,255
0
1.5
0

Table B.l: Default Values for the PG-640A

B - 2

Offset* Location Name Type Default
R/WOutput FIFO write pointer

Output FIFO read pointer
Input FIFO write pointer
Input FIFO read pointer
Error FIFO write pointer
Error FIFO read pointer

Cold Reset
Warm Reset

Emulator Switch
Set Emulator

Emulator Status
DMA Status

300 0
R301 0
R302 0

R/W303 0
R304 0

R/W305 0
R/W306 0
R/W307 0

SOB R set by switch
N/A

set by switch
30C W
SOD R

R/W310 -1

* The address is the Communication Base Address plus the Stated
Offset

Table B.2: Communications Area Default Values

B - 3

\

DEFA ULT PARAMETERS

B - 4

Appendix C

Specifications

• Ordering Information :

- PG-04OA
- PG-OCABLE

• Bus :

— IBM XT or AT, or expansion unit plug-in: uses two adjacent
slots with 0.8 inch spacing

• High Resolution Mode :

- 040 x 480 pixels x 8 bits
- 250 colours from a palette of more then 10 million

• Emulator Mode :

- Resolution :
X. 80 X 25 characters X 10 colours
2. 40 X 25 characters X 10 colours
3. 040 x 200 pixels x 1 colour
4. 320 x 200 pixels x 4 colours

C- i

SPECIFICATIONS

• Display Memory Access :

- pixel access using high level graphics commands
- DMA Transfers to and from display data storage (Video RAM)

• Performance - High Level Graphics Engine :

- 40 000 vectors/second (1cm)
- 5 000 characters/second
- complete screen image dump : 0.8 second
— BITBLT : 1 200 000 pixels/second

• Special Functions :

- IBM Colour Graphics Adaptor Emulation
— Colour Graphics Emulator window
— Lookup table with 250 colours from a palette of more then 16

million
- 320KB of display data storage
- 128KB of storage for display lists, fonts, and internal variables
- 1KB FIFO queue for command and data input/output

• Video Timing :

- Refresh Rate : 00Hz non-interlaced
- Video Frequency : 25MHz
— Horizontal Scan Frequency : 30.63kHz
- Vertical FVame Rate : 60.07Hz

• Video Memory DMA :

- CPU can read or write any block of pixel
- Uninterrupted display of memory while processing

C - 2

• Connectors :

— One DB9 IBM PGC pin-out RGB output with separate sync
and/or composite sync on green

— 62 pin IBM bus connector

• Power Requirements :

—H5VDC 4.5A (maximum)

• Dimensions :

— 335.30mm (I3.69in) length
— 106.77mm (4.35in) height
— 32.7mm (l.SSin) thickness

• Environment :

— 0°C to 55°C operating temperature
— 0% to 95% humidity - noncondensing

• Storage :

- -40°C to 60°C
- 5% to 100% humidity - noncondensing

C - 3

SPECIFICATIONS

C-4

Appendix D

The Monitor Program

A monitor program is provided with the PG-640A. This program is in
the file PGMON.EXE and allows the user to enter HLGE commands
directly into the FIFO bufTer. Although both communication modes can
be used, hex mode requires the user to type the characters whose ASCII
code equals the hex number the user wishes to enter into the FIFO.

D.l Start Up Procedure

To enter the monitor program, first boot the PC using MS-DOS. Place
the diskette provided with the PG-640A into drive A and type PGMON.

D.2 Command Entry

The user enters commands with parameters and commands separated
with the delimiters described in Section 3.2. These parameters are en­
tered directly into the FIFO queue and subsequently executed. If an

D- 1

THE MONITOR PROGRAM

Function Key Purpose
FI Send File

Address C6000/C6400
Cold Reset of PG-640A

Warm Reset of PG-640A
Turn Off CGA Window
Turn On CGA Window

Display CGA Screen (If Enabled)
Display the HLGE Screen

ASCII/Hex Input
_______ASCII/Hex Output______

F2
F3
F4
F5
F6
F7
F8
F9
FlO

Table D.l: Function Key Summary

error occurs the message will be displayed on the screen using the cur­
rent read back mode.

The function keys are used to perform the tasks outlined in Table D.l.
Most of the tasks are self-expanatory, Fl will transfer a file to the com­
mand bufTer of the controller, F2 sets the software to the address of the
PG-640A to its initial state, F4 performs a warm reset, F9 determines
the mode in which data is sent to the HLGE, and FlO determines how
data is returned in hex or ASCII format.

D-2

Appendix E

Lookup Table Data

This chapter contains the lookup table data that is provided in ROM
on the PG-640A. These tables contain three decimal numbers per entry.
The entries are: red, green, and blue (from left to right). These values
are given in the format used by the LUTX command (i.e., 8-bit values).

E- 1

LOOKUP TABLE DATA

240, 128. 102
160. 208
192. 224
224, 240

0. 0
0. 32
0. 64
0, 06
0. 128
0. 160
0. 102
0. 224
0, 240

32, 240
64. 240
06. 240

128, 240
160, 240
102. 240
224, 240

0. 0
0. 32
0. 64
0. 06
0. 128
0. 160
0. 192
0. 224
0, 240

32, 240
64, 240
06. 240

128, 240
160, 240
192, 240
224, 240

0. 0
0. 32
0. 64
0. 06
0, 128
0, 160
0, 102
0, 224
0. 240

32. 240
64, 240

Entry 44
8t«t« 0 : r«4, fr««n. bin* Intensity Entry 46

Entry 46
Entry 47
Entry 48
Entry 40
Entry 60
Entry 61
Entry 62
Entry 63
Entry 64
Entry 66
Entry 66
Entry 67
Entry 68
Entry 60
Entry 60
Entry 61
Entry 62
Entry 63
Entry 64
Entry 66
Entry 66
Entry 67
Entry 68
Entry 69
Entry 70
Entry 71
Entry 72
Entry 73
Entry 74
Entry 76
Entry 76
Entry 77
Entry 78
Entry 70
Entry 80
Entry 81
Entry 82
Entry 83
Entry 84
Entry 86
Entry 86
Entry 87
Entry 88
Entry SO
Entry 00

240,
240.

Entry 0 : 0, 0. 0
Entry I : 16. 16. 16
Entry 2 : 32. 32. 32
Entry 3 : 48, 48, 48
Entry 4 : 64, 64, 64
Entry 6 : 80, 80, 80
Entry 6 : 06, 06. 06

.Entry 7 : 112, 112. 112
Entry • : 128. 128. 128
Entry 0 : 144, 144, 144
Entry 10 : 160. 160, 160
Entry 11 : 176. 176. 176
Entry 12 : 102, 102. 102
Entry 13 : 208. 208. 208
Entry 14 : 224, 224, 224
Entry 16 : 240, 240. 240
Entry 16 : 0, 0, 0
Entry 17 s 32, 0, 0
Entry It : 64, 0, 0
Entry 10 : 06, 0, 0
Entry 20 : 128, 0, 0
Entry 21 : 160, 0. 0
Entry 22 : 102, 0. 0
Entry 23 : 224, 0. 0
Entry 24 : 240, 0, 0
Entry 26 : 240, 32. 32
Entry 26 : 240, 64. 64
Entry 27 : 240, 06, 06
Entry 28 : 240, 128, 128
Entry 20 : 240. 160, 160
Entry 30 : 240, 102, 102
Entry 31 : 240, 224, 224
Entry 32 : 0. 0. 0
Entry 33 : 32. 0. 16
Entry 34 : 64, 0, 32
Entry 36 : 06, 0, 48
Entry 36 : 128, 0. 64
Entry 37 : 160, 0, 80
Entry 38 : 102, 0, 06
Entry 30 : 224, 0, 112
Entry 40 : 240, 0. 128
Entry 41 : 240, 32. 144
Entry 42 : 240, 64, 160
Entry 43 : 240, 06, 176

240.
0.

32.
64.

138.
160,
102,
224,
210.
240,
240,
240,
240,
240,
240,
240,

0.
1«.
32.

34,
80.
66,

112.
128.
144.
160,
176.
192,
208,
224,
240,

0.
0.
0.
0.
0.
0,
0.
0.
0.

32.
64.

E-2

64. 240. 160
96. 240. 176

126. 240. 192
160. 240. 208
192. 240. 224
224. 240. 240

0. 0, 0
0. 32. 0
0. 64. 0
0. 96. 0
0. 128. 0
0. 160, 0
0. 192. 0
0. 224, 0
0. 240. 0

32. 240. 32
64. 240, 64
96. 240. 96

128. 240, 128
160, 240. 160
192. 240. 192
224. 240. 224

0. 0. 0
16. 32. 0
32. 64. 0
48. 96. 0
64. 128. 0
80, 160, 0
96. 192, 0

112. 224. 0
128, 240, 0
144, 240. 32
160, 240, 64
176. 240. 96
192. 240, 128
208. 240, 160
224, 240. 192
240, 240. 224

0. 0. 0
32. 32. 0
64. 64. 0
96. 96. 0

128, 128, 0
160, 160, 0
192. 192. 0
224, 224. 0
240, 240. 0

Entry 138 :
Entry 139 :
Entry 140 :
Entry 141 :
Entry 142 :
Entry 143 :
Entry 144 :
Entry 146 •:
Entry 146 :
Entry 147 :
Entry 148 :
Entry 149 :
Entry 160 :
Entry 161 :
Entry 162 :
Entry 163 :
Entry 164 :
Entry 166 :
Entry 166 :
Entry 167 :
Entry 168 :
Entry 169 :
Entry 160 :
Entry 161 :
Entry 162 :
Entry 163 :
Entry 164 :
Entry 166 :
Entry 166 :
Entry 167 :
Entry 168 :
Entry 169 :
Entry 170 :
Entry 171 :
Entry 172 :
Entry 173 :
Entry 174 :
Entry 176 :
Entry 176 :
Entry 177 :
Entry 176 :
Entry 179 :
Entry ISO :
Entry 181 :
Entry 182 :
Entry 183 :
Entry 184 :

96, 96. 240
128, 128, 240
160, 160, 240
192, 192, 240
224. 224, 240

0. 0. 0
0, 16. 32
0, 32, 64
0, 48, 96
0, 64. 128
0. 80, 160
0, 96. 192
0. 112, 224
0, 128, 240

32, 144, 240
64. 160. 240
96, 176, 240

128. 192, 240
160. 208, 240
192, 224, 240
224, 240, 240

0. 0. 0
0. 32. 32
0, 64. 64
0, 96, 96
0. 128, 128
0, 160, 160
0. 192. 192
0. 224. 224
0, 240, 240

32, 240. 240
•4, 240, 240
96, 240, 240

128. 240. 240
160, 240. 240
192, 240, 240
224, 240, 240

0. 0. 0
0. 32. 16
0. 64. 32
0. 96. 48
0. 128, 64
0, 160, 80
0, 192. 96
0. 224, 112
0. 240, 128

32, 240. 144

Entry 91
Entry 92
Entry 93
Entry 94
Entry 96
Entry 96
Entry 97
Entry 98
Entry 99
Entry 100
Entry 101
Entry 102
Entry 103
Entry 104
Entry 106
Entry 106
Entry 107
Entry 108
Entry 109
Entry 110
Entry 111
Entry 112
Entry 113
Entry 114
Entry 116
Entry 116
Entry 117
Entry 116
Entry 119
Entry 120
Entry 121
Entry 122
Entry 123
Entry 124
Entry 126
Entry 126
Entry 127
Entry 126
Entry 129
Entry 130
Entry 131
Entry 132
Entry 133
Entry 134
Entry 136
Entry 136
Entry 137

i

E - 3

LOOKUP TABLE DATA

Entry lit
Entry 111
Entry U7
Entry IBS
Entry 189
Entry 190
Entry 191
Entry 192
Entry 193
Entry 194
Entry 196
Entry 19S :
Entry 197 s 160,
Entry 19S : 192.
Entry 199
Entry 200
Entry 201
Entry 202
Entry 203
Entry 204
Entry 204
Entry 206
Entry 207
Entry 208
Entry 209
Entry 210
Entry 211
Entry 212
Entry 213 : 112,
Entry 214 : 144,
Entry 216 : 160,
Entry 216 : 192,
Entry 217 : 192,
Entry 218
Entry 219
Entry 220
Entry 221
Entry 222
Entry 223
Entry 224
Entry 226
Entry 226
Entry 227
Entry 228
Entry 229
Entry 230
Entry 231

240. 240, 32
240, 240. 64
240. 240, 96
240. 240. 128
240. 240. 160
240. 240. 192
240, 240. 224

0. 0, 0
32. 16. 0
64. 32. 0
96. 48. 0

128, 64. 0
SO, 0
96. 0

224, 112. 0
240. 128. 0
240, 144, 32
240. 160. 64
240. 176, 96
240. 192, 128
240, 208, 160
240. 224, 192
240. 240, 224

0. 0. 0
16. 0. 0
48. 16. 16
64. 16. 16
96. 32. 32

32. 32
48. 48
48. 48
64, 64
89. 80

208, 112. 113
208, 138. 138
234, 180, 160
234. 176. 176
240, 308, 308
240. 224. 324

0, 0. 0
0. 18. 0

16, 48. 16
16. 64. 16
32. 96. 32
33. 113. 33
48. 144, 48
48. 160. 48

64Entry 232 : 64,
Entry 233 : 80.
Entry 234 : 112.
Entry 238 : 128.
Entry 236 : 160,
Entry 237 : 176,
Entry 238 : 208.
Entry 239 : 224,
Entry 240 : 0,
Entry 241 : 0.

. Entry 242 : 16.
Entry 243 : 16.
Entry 244 : 32,
Entry 248 : 32,
Entry 246 : 48,
Entry 347 : 48,
Entry 248 : 64,
Entry 249 : 80.
Entry 260 : 112,
Entry 261 : 128,
Entry 262 : 160,
Entry 263 : 176.
Entry 264 : 208,
Entry 266 : 224,

192,
192, 80

112208,
128208.

224, 160
176224,

240, 208
240, 224

0. 0
160.

16. 48
6416.
9632.

11232.
14448,

48. 160
64. 192
80, 192

113. 208
208128,
224160,

176. 224
208, 240
224. 240

Stnt* 1 : rid, gr**n, bln* intensity

Entry 0 : 96, 128, 208
Entry 1 : 0. 0, 0
Entry 2 : 112. 64. 32
Entry 3 : 160, 112, 64
Entry « : 112, 0, 0
Entry 6 : 240, 0. 0
Entry 6 : 240, 112, 0
Entry 7 : 240, 240. 0
Entry 8 : 160, 240, 0
Entry 9 : 0. 240, 0
Entry 10 : 0. 112, 0
Entry 11 : 0, 112, 112
Entry 12 : 0, 0. 112
Entry 13 : 224. 144, 96
Entry 14 : 112, 112. 112
Entry 16 : 240, 240, 240
Entry 16 : 0, 0, 0
Entry 17 : 0, 0, 0

E - 4

00.Entry 65 : 112.
Entry 66 : 112,
Entry 67 : 112,
Entry 68 : 112,
Entry 69 : 112,
Entry 70 : 112,
Entry 71 : 112,
Entry 72 : 112,
Entry 73 : 112,
Entry 74 : 112,
Entry 76 : 112,
Entry 76 : 112,
Entry 77 : 112,
Entry 78 : 112,
Entry 79 : 112,
Entry 80 : 240,
Entry 81 : 240.
Entry 82 : 240.
Entry 83 : 240.
Entry 84 : 240.
Entry 86 : 240.
Entry 86 : 240.
Entry 87 : 240,
Entry 88 : 240.
Entry 89 : 240.
Entry 90 : 240,
Entry 91 : 240.
Entry 92 : 240,
Entry 93 : 240.
Entry 94 : 240.
Entry 96 : 240,
Entry 96 : 240, 112.
Entry 97 : 240. 112,
Entry 98 : 240. 112,
Entry 99 : 240. 112.
Entry 100 : 240, 112.
Entry 101 : 240, 112,
Entry 102 : 240. 112,
Entry 103 : 240, 112.
Entry 104 : 240. 112,
Entry 106 : 240, 112,
Entry 106 : 240. 112,
Entry 107 : 240, 112.
Entry 108 : 240. 112.
Entry 109 : 240, 112,
Entry 110 : 240. 112.
Entry 111 : 240. 112,

00. 0Entry II
Entry 1ft
Entry 20
Entry 21
Entry 22
Entry 23
Entry 24
Entry 26
Entry 26
Entry 27
Entry 21
Entry 29
Entry 30
Entry 31
Entry 32
Entry 33
Entry 34
Entry 36
Entry 36
Entry 37
Entry 38
Entry 39
Entry 40
Entry 41
Entry 42
Entry 43
Entry 44
Entry 46
Entry 46
Entry 47
Entry 48
Entry 4ft
Entry 60
Entry 61
Entry 62
Entry 63
Entry 64
Entry 66
Entry 66
Entry 67
Entry 68
Entry 6ft
Entry 60
Entry 61
Entry 62
Entry 63
Entry 64

00.000. 00.000. 00.000. 00.000. 00.000. 00.000. 00.000. 00.000. 00.000, 00.000. 00.00. 00.00, 00.00. 00.32112.
00.32112,
00.32112.
00.32112, 6
00.32112,
00.32112.
00.32112.
00.32112.

0. 032112, 6
112, 6
112, 6
112, 6
112, 6
112, 6
112, 6
112, 6
160, 11
160, 112
160, 112
160, 112
160, 112
160, 112
160, 112
160, 112
160, 112
160, 112
160, 112
160, 112
160, 112
160, 112
160, 112
160, 112
112, 0

00.32
0. 032
0. 032

00.32
0. 03

00.3
0. 032

00.6
06
06
06
06

06
06
06
06
06
06
06
06
06
06
06

i 0

E - 5

LOOKUP TABLE DATA

ntry 112
'in try 113
Entry 114
Entry US
Entry 116
Entry 117
Entry lit
Entry 119
Entry 120
Entry 121
Entry 122
Entry 123
Entry 124
Entry 126
Entry 126
Entry 127
Entry 128
Entry 120
Entry 130
Entry 131
Entry 132
Entry 133
Entry 134
Entry 136
Entry 136
Entry 137
Entry 138
Entry 130
Entry 140
Entry 141
Entry 142
Entry 143
Entry 144
Entry 146
Entry 146
Entry 147
Entry 146
Entry 140
Entry 160
Entry 161
Entry 162
Entry 163
Entry 164 :
Entry 166 :
Entry 166 :
Entry 167 :
Entry 168 :

00. 240.
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0, 112,
0, 112,
0. 112.
0, 112,
0, 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0. 112,
0, 112,
0. 112,
0. 112,

240. 240.
240, 240.
240, 240,
240. 240,
240, 240.
240. 240,
240, 240.
240. 240.
240, 240.
240. 240,
240, 240.
240. 240,
240. 240.
240. 240,
240, 240.
240. 240.
160, 240,
160. 240,
160, 240.
160, 240,
160. 240,
160, 240,
160, 240,
160. 240,
160. 240.
160, 240,
160. 240,
160, 240,
160, 240,
160, 240,
160. 240,
160, 240,

0. 2«0.
0. 240,
0. 240,
0, 240.
0. 240.
0. 240.
0, 240,
0. 240.
0. 240.
0. 240.
0. 240,
0, 240,
0. 240,
0. 240.
0. 240.

Entry 160
Entry 160
Entry 161
Entry 162
Entry 163
Entry 164
Entry 166
Entry 166
Entry 167
Entry 168
Entry 169
Entry 170
Entry 171
Entry 172
Entry 173
Entry 174
Entry 176
Entry 176
Entry 177
Entry 178
Entry 170
Entry 180
Entry 181
Entry 182
Entry 183
Entry 184
Entry 186
Entry 186
Entry 187
Entry 188
Entry 180
Entry 190
Entry 101
Entry 102
Entry 103
Entry 194
Entry 106
Entry 106
Entry 107
Entry 108
Entry 100
Entry 200
Entry 201
Entry 202
Entry 203
Entry 204
Entry 206

0
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

0 0
1120

0 112
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120
1120,0.0

0. 0, 112
0. 112
0. 112

0
0.0
0.0

1120. 0,0
1120. 0.0

0. 112
0, 112

0.0
0.0

1120. 0.0
1120.0,0

0. 1120.0
1120. 0.0
1120.0.0

0. 1120.0

E - 6

Entry 263 : 240. 240. 240
Entry 264 : 240. 240. 240
Entry 266 : 240. 240. 240

1120. 0.
0. 0.

224, 144.
224. 144.
224. 144.
224, 144.
224. 144.
224, 144.
224, 144.
224. 144.
224, 144,
224. 144.
224. 144.
224, 144.
224. 144.
224. 144.
224. 144.
224. 144.
112. 112.
112, 112.
112. 112,
112. 112.
112. 112.
112. 112,
112. 112,
112. 112,
112, 112,
112. 112.
112. 112,
112, 112.
112. 112.
112, 112.
112, 112.
112, 112.
240. 240.
240, 240,
240. 240,
240, 240.
240, 240,
240, 240.
240, 240.
240, 240.
240, 240.
240, 240.
240, 240,
240, 240.
240, 240.

Entry 200
Entry 207
Entry 201
Entry 200
Entry 210
Entry 211
Entry 212
Entry 213
Entry 214
Entry 216
Entry 216
Entry 217
Entry 216
Entry 219
Entry 220
Entry 221
Entry 222
Entry 223
Entry 224
Entry 226
Entry 226
Entry 227
Entry 228
Entry 220
Entry 230
Entry 231
Entry 232
Entry 233
Entry 234
Entry 236
Entry 236
Entry 237
Entry 238
Entry 230
Entry 240
Entry 241
Entry 242
Entry 243
Entry 244
Entry 246
Entry 246
Entry 247
Entry 248
Entry 240
Entry 260
Entry 261
Entry 262

112
06
06
06
06

rnd. grttn. bln* IntensityState 2 :06
06

0. 0. 0
0. 0. 48
0. 0. 80
0. 0. 112
0. 0. 144
0. 0. 176
0. 0. 208
0. 0. 240
0. 48. 0
0. 48. 48
0. 48. 80
0. 48. 112
0, 48. 144
0. 48. 176
0. 48, 208
0. 48. 240
0. 80. 0
0. 80. 48
0. 80. 80
0. 80. 112
0. 80. 144
0. 80. 176
0. 80. 208
0. 80, 240
0. 112, 0
0. 112, 48
0. 112. 80
0. 112. 112
0. 112. 144
0, 112. 176
0. 112. 208
0. 112, 240
0. 144. 0
0. 144, 48
0, 144, 80
0. 144, 112
0. 144, 144
0. 144, 176
0, 144. 208

Entry 0 :
Entry 1 :
Entry 2 :
Entry 3 :
Entry 4 :
Entry 6 :
Entry 6 :
Entry 7 :
Entry 8 :
Entry 0 :
Entry 10
Entry 11
Entry 12
Entry 13
Entry 14
Entry 16
Entry 16
Entry 17
Entry 18
Entry 10
Entry 20
Entry 21
Entry 22
Entry 23
Entry 24
Entry 26
Entry 28
Entry 27
Entry 28
Entry 20
Entry 30
Entry 31
Entry 32
Entry 33
Entry 34
Entry 36
Entry 36
Entry 37
Entry 38

06
06
06
06
06
06
06
06
06
06

112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
240
240
240
240
240
240
240
240
240
240

i 240
240
240

E-7

LOOKUP TABLE DATA

Entry 39
Entry 40
Entry 41
Entry 42
Entry 43
Entry 44
Entry 46
Entry 40
Entry 47
Entry 40
Entry 40
Entry 60
Entry 61
Entry 62
Entry 63
Entry 64
Entry 66
Entry 66
Entry 67
Entry 68
Entry 60
Entry 60
Entry 61
Entry 62
Entry 63
Entry 64
Entry 66
Entry 66
Entry 67
Entry 68
Entry 69
Entry 70
Entry 71
Entry 72
Entry 73
Entry 74
Entry 76
Entry 76
Entry 77
Entry 78
Entry 79
Entry 80
Entry 81
Entry 82
Entry 83
Entry 84
Entry 86

0. 144.
0. 176.
0. 176.
0. 176,
0. 176.
0. 176,
0. 176,
0. 176,
0. 176,
0. 208.
0. 208.
0. 208.
0. 208.
0. 208.
0. 208.
0. 208.
0. 208,
0, 240.
0. 240.
0. 240,
0. 240.
0. 240.
0. 240.
0. 240.
0. 240.

240 80. 80. 208
80, 80. 240
80. 112, 0
80. 112, 48
80. 112, 80
80. 112. 112
80. 112, 144
80. 112, 176
80. 112. 208
80, 112, 240
80. 144, 0
80. 144, 48
80, 144, 80
80, 144. 112
80, 144, 144
80. 144. 176
80. 144, 208
80. 144, 240
80. 176, 0
80, 176, 48
80, 176, 80

Entry 86
Entry 87
Entry 88
Entry 89
Entry 90
Entry 91
Entry 92
Entry 93
Entry 94
Entry 96
Entry 96
Entry 97
Entry 98
Entry 99
Entry 100
Entry 101
Entry 102
Entry 103
Entry 104
Entry 106
Entry 106
Entry 107
Entry 108
Entry 109
Entry 110
Entry 111
Entry 112
Entry 113
Entry 114
Entry 116
Entry 116
Entry 117
Entry 118
Entry 119
Entry 120
Entry 121
Entry 122
Entry 123
Entry 124
Entry 126
Entry 126
Entry 127
Entry 128
Entry 129
Entry 130
Entry 131
Entry 132

0
48
80

112
144
178
208
240

0
48
80

112
144
176
208
240

0
48
80

112
144 176.80. 112
176 176. 14480,
208 176.60. 176
240 176.80. 208

80. 0. 0 80. 176. 240
80. 0. 48 80. 208,

208,
208.
208,
208,
208.
208.
208.
240.
240,
240,
240,
240,
240,
240.
240,

0
80. 0. 80 80. 48
80. 0. 112 80. 80
80. 0, 144 80. 112
80. 1760, 80. 144
80. 0. 208 17680.
80. 0. 240 80. 208
80, 48. 0 80. 240
80. 48. 48 80. 0
80. 48. 80 80. 48
80. 48. 112 80. 80
80. 48.
80. 48.

144 80. 112
176 80. 144

80. 48. 208
48, 240

17680.
80. 80, 208
80. 80.
80. 80.
80, 80.
80. 80.

0 80, 240
48 160. 0. 0
80 160, 0. 48

112 160, 0. 80
80. 80. 144 160, 0. 112

0. 14417680. 80. 160,

E- 8

: 100. 208. 144
: 100, 208. 170
: 100, 208. 208
: 100, 208. 240
; 100, 240.
: 140, 240. 48
: 100, 240. 80
: .100, 240. 112
: 180. 240. 144
: 180. 240. 170
: 100, 240. 208
: 100, 240. 224
: 240,
: 240.
: 240.
: 240,
: 240.
: 240.
: 240.
: 240.
: 240. 48.
: 240. 48. 48
: 240. 48. 80
: 240. 48. 112
: 240. 48. 144
: 240. 48. 170
: 240, 48. 208
: 240, 48. 240
: 240. 80.
: 240, 80. 48
: 240, 80. 80
: 240. 80, 112
: 240, 80. 144
: 240. 80. 170
: 240, 80. 208
: 240. 80. 240
: 240, 112,
: 240, 112. 48
: 240, 112, 80
: 240. 112, 112
: 240, 112, 144
: 240, 112. 170
: 240, 112. 208
: 240. 112, 240
: 240, 144,
: 240, 144, 48
: 240, 144, 80

Entry 180
Entry 181
Entry 182
Entry 183
Entry 184
Entry 186
Entry 186
Entry 187
Entry 188
Entry 180
Entry 100
Entry 101
Entry 102
Entry 103
Entry 104
Entry 106
Entry 106
Entry 107
Entry 108
Entry 190
Entry 200
Entry 201
Entry 202
Entry 203
Entry 204
Entry 206
Entry 206
Entry 207
Entry 208
Entry 200
Entry 210
Entry 211
Entry 212
Entry 213
Entry 214
Entry 216
Entry 216
Entry 217
Entry 218
Entry 210
Entry 220
Entry 221
Entry 222
Entry 223
Entry 224
Entry 226
Entry 226

160, 0. 170
100, 0. 208
160, 0. 240
160, 48. 0
160, 48. 48
160, 48, 80
160, 48. 112
160. 48. 144
160, 48. 176
160, 48. 208
160, 48. 240
160. 80. 0
160, 80, 48
160, 80, 80
160. 80. 112
160, 80. 144
160, 80. 176
160, 80. 208
160, 80. 240
160, 112. 0
160, 112, 48
160, 112. 80
160, 112. 112
160, 112, 144
160, 112, 176
100, 112. 208
160, 112, 240
160, 144, 0
160, 144, 48
160, 144, 80
160, 144, 112
160, 144, 144
160, 144, 176
160, 144. 208
160, 144, 240
160, 170, 0
160, 176, 48
160, 176, 80
160. 176, 112
160, 176. 144
160, 176, 176
160. 176. 208
160, 176, 240
160, 208. 0
160, 208. 48
160, 208. 80
160, 208. 112

Entry 133
Entry 134
Entry 136
Entry 136
Entry 137
Entry 138
Entry 130
Entry 140
Entry 141
Entry 142
Entry 143
Entry 144
Entry 146
Entry 146
Entry 147
Entry 148
Entry 140
Entry 160
Entry 161
Entry 162
Entry 163
Entry 164
Entry 166
Entry 166
Entry 167
Entry 168
Entry 160
Entry 160
Entry 161
Entry 162
Entry 163
Entry 164
Entry 166
Entry 166
Entry 167
Entry 168
Entry 160
Entry 170
Entry 171
Entry 172
Entry 173
Entry 174
Entry 176
Entry 176
Entry 177
Entry 178
Entry 170

0

o. 0
0. 48
0. 80
0. 112
0. 144
0. 170
0. 208
0. 240

0

0

0

0i

K - 9

LOOKUP TABLE DATA

0. 80. 176
0, 80. 208
0. 80. 240
0. 160. 0
0. 160. 48
0. 160, 80
0. 160. 112
0. 160. 144
0. 160, 176
0, 160. 208
0, 160. 240
0, 240. 0
0, 240. 48
0. 240, 80
0, 240, 112
0, 240, 144
0, 240, 176
0. 240. 208
0, 240, 240

48. 0. 0
48, 0. 48
48. 0. 80
48. 0. 112
48. 0, 144
48. 0. 176
48. 0. 208
48. 0. 240
48. 80. 0
48, 80. 48
48. 80, 80
48. 80. 112
48. 80. 144
48. 80. 176
48. 80, 208
48. 80. 240
48, 160, 0
48. 160, 48
48, 160, 80
48. 160. 112
48. 160, 144
48, 160, 176
48. 160, 208
48. 160, 240
48. 240. 0
48, 240, 48
48. 240. 80
48. 240, 112

Entry 13
Entry 14
Entry 16
Entry 16
Entry 17
Entry 18
Entry 10
Entry 20
Entry 21
Entry 22
Entry 23
Entry 24
Entry 26
Entry 26
Entry 27
Entry 28
Entry 20
Entry 30
Entry 31
Entry 32
Entry 33
Entry 34
Entry 36
Entry 36
Entry 37
Entry 38
Entry 30
Entry 40
Entry 41
Entry 42
Entry 43
Entry 44
Entry 46
Entry 46
Entry 47
Entry 48
Entry 40
Entry 60
Entry 61
Entry 62
Entry 63
Entry 64
Entry 66
Entry 66
Entry 67
Entry 68
Entry 60

Entry 227
Entry 228
Entry 220
Entry 230
Entry 231
Entry 232
Entry 233
Entry 234
Entry 236
Entry 236
Entry 237
Entry 238
Entry 230
Entry 240
Entry 241
Entry 242
Entry 243
Entry 244
Entry 246
Entry 246
Entry 247
Entry 248
Entry 249
Entry 260
Entry 261
Entry 262
Entry 263
Entry 264
Entry 266

240, 144. 112
240, 144, 144
240, 144. 176
240, 144, 208
240, 144, 240
240. 176,
240. 176,
240, 176.
240. 176, 112
240, 176, 144
240, 176, 176
240. 176, 208
240, 176, 240
240, 208,
240, 208.
240. 208,
240, 208, 112
240. 208. 144
240, 208, 176
240, 208, 208
240, 208, 240
240, 240,
240. 240,
240. 240,
240. 240, 112
240. 240. 144
240, 240. 176
240, 240. 208
240, 240, 240

0
48
80

0
48
80

0
48
80

Stata 3 : rad, graan, blna lntanalty

0. 0. 0
0. 0. 48
0. 0. 80
0. 0. 112
0. 0. 144
0. 0. 176
0. 0. 206
0, 0, 240
0. 60, 0
0. 80, 48
0, 80, 80
0, 80. 112
0. 80, 144

Entry 0 :
Entry 1 :
Entry 2 :
Entry 3 :
Entry 4 :
Entry 6 :
Entry 6 :
Entry 7 :
Entry 8 :
Entry 0 :
Entry 10 :
Entry 11 :
Entry 12 :

E- 10

80. 112
80. 144
80. 176
80. 208
80. 240

160, 0
160, 48
160. 80
160, 112
160, 144
160, 176
160. 208
160. 240
240, 0
240, 48
240. 80
240. 112
240. 144
240, 176
240, 208
240, 240

0. 0
0, 48
0. 80
0. 112
0. 144
0, 176
0, 208
0. 240

80. 0
80, 48
80, 80
80. 112
80. 144
80, 176
80. 208
80. 240

160, 0
160. 48
160, 80
160, 112
160, 144
160, 176
160, 208
160, 240
240, 0
240, 48

112.Entry 107
Entry 108
Entry 100
Entry 110
Entry 111
Entry 112
Entry 113
Entry 114 112,

Entry 60 : 48. 240, 144
Entry <1 : 48. 240, 176
Entry 62 : 48. 240. 208
Entry 63 : 48, 240, 240
Entry 64 : 80. 0. 0
Entry 66 : 80. 0, 48
Entry 66 : 80. 0, 80
Entry 67 : 80. 0. 112
Entry 68 : 80. 0. 144
Entry 60 : 80, 0. 176
Entry 70 : 80. 0. 208
Entry 71 : 80. 0, 240
Entry 72 : 80, 80, 0
Entry 73 : 80. 80, 48
Entry 74 s 80. 80. 80
Entry 76 : 80, 80. 112
Entry 76 : 80. 80. 144
Entry 77 : 80, 80, 176
Entry 78 : 80. 80. 208
Entry 79 : 80. 80. 240
Entry 80 :
Entry 81 :
Entry 82 :
Entry 83 :
Entry 84 :
Entry 86 :
Entry 86 :
Entry 87 :
Entry 88 :
Entry 80 :
Entry 00 :
Entry 01 :
Entry 02 :
Entry 03 :
Entry 04 :
Entry 06 :
Entry 06 : 112,
Entry 07 : 112.
Entry 08 : 112,
Entry 00 : 112.
Entry 100 : 112,
Entry 101 : 112,
Entry 102 : 112,
Entry 103 : 112.
Entry 104 : 112, 80. 0
Entry 106 : 112, 80. 48
Entry 106 : 112, 80. 80

112.
112.
112.
112.
112.
112.

112.Entry 116
Entry 116
Entry 117
Entry 118
Entry 110
Entry 120
Entry 121
Entry 122
Entry 123
Entry 124
Entry 126
Entry 126
Entry 127
Entry 128
Entry 129
Entry 130
Entry 131
Entry 132
Entry 133
Entry 134
Entry 136
Entry 136
Entry 137
Entry 138
Entry 130
Entry 140
Entry 141
Entry 142
Entry 143
Entry 144
Entry 146
Entry 146
Entry 147
Entry 148
Entry 140
Entry 160
Entry 161
Entry 162
Entry 163

112.
112.
112.
112.
112.
112.
112.
112.
112.
112.
112.
112.80. 160, 0

80. 160, 48
80, 160, 80
80, 160, 112
80. 160. 144
80, 160, 176
80. 160, 208
80, 160, 240
80. 240. 0
80, 240, 48
80. 240. 80
80. 240, 112
80, 240. 144
80. 240. 176
60, 240. 208
60. 240, 240

0. 0
0. 48
0, 80
0. 112
0. 144
0, 176
0. 208
0. 240

144.
144.
144.
144.
144.
144.
144.
144.
144.
144.
144,
144.
144.
144.
144.
144.
144.
144.
144.
144,
144.
144.
144.
144.i

144.
144,

E- 11

LOOKUP TABLE DATA

208, 80. 48
308. 80. 80
308. 80. 113
308. 80. 144
308. 80. 176
308. 80. 308
308. 80. 340
308. 160, 0
308. 180. 48
308. 160. 80
308, 160. 112
308. 160, 144
308. 160. 176
308, 160. 308
308. 160. 340
308. 340. 0
308, 340. 48
308, 240, 80
208, 240, 112
208. 340. 144
208, 340, 176
308, 240, 208
208, 340. 240
340, 0. 0
240, 0. 48
240, 0. 80
240, 0, 112
240. 0. 144
240, 0. 176
340, 0. 208
240, 0. 240
240, 80. 0
240. 80. 48
240, 80. 80
240, 80, 112
240. 80. 144
240. 80, 176
240. 80. 208
240, 80. 240
240, 160, 0
240, 160, 48
240, 160, 80
240, 160, 112
240, 160, 144
240. 160, 176
240, 160, 208
240, 160, 240

Entry 164
Entry 166
Entry 166
Entry 167
Entry 168
Entry 169
Entry 160
Entry 161
Entry 162
Entry 163
Entry 164
Entry 166
Entry 166
Entry 167
Entry 168
Entry 169
Entry 170
Entry 171
Entry 172
Entry 173
Entry 174
Entry 176
Entry 176
Entry 177
Entry 178
Entry 179
Entry 180
Entry 181
Entry 182
Entry 183
Entry 184
Entry 186
Entry 186
Entry 187
Entry 188
Entry 189
Entry 190
Entry 191
Entry 192
Entry 193
Entry 194
Entry 196
Entry 196
Entry 197
Entry 198
Entry 199
Bntry 200

144, 240, 80
144, 240. 112
144, 240. 144
144, 240, 176
144. 240. 208
144. 240, 240
176, 0, 0
176, 0. 48
176, 0, 80
176, 0, 112
176, 0. 144
176, 0. 176
176, 0, 208
176, 0, 240
176, 80, 0
176, 80. 48
176, 80, 80
176, 80, 112
176, 80. 144
176, 80, 176
176, 80, 208
176, 80, 240
176. 160, 0
176, 160, 48
176, 160, 80
176, 160, 112
176, 160, 144
176, 160, 176
176, 160, 208
176. 160, 240
176, 240, 0
176, 240, 48
176, 240, 80
176. 240. 112
176, 240. 144
176, 240. 176
176, 240, 208
176. 240, 240
208. 0, 0
208, 0, 48
208, 0, 80
208, 0. 112
208, 0. 144
208. 0. 176
208, 0, 208
208, 0. 240
208, 80, 0

Entry 301
Entry 302
Entry 303
Entry 304
Entry 306
Entry 206
Entry 307
Entry 308
Entry 309
Entry 310
Entry 311
Entry 312
Entry 313
Entry 214
Entry 216
Entry 216
Entry 217
Entry 218
Entry 219
Entry 230
Entry 221
Entry 322
Entry 223
Entry 324
Entry 326
Entry 236
Entry 227
Entry 328
Entry 239
Entry 330
Entry 231
Entry 232
Entry 233
Entry 234
Entry 236
Entry 236
Entry 237
Entry 238
Entry 239
Entry 240
Entry 241
Entry 242
Entry 243
Entry 244
Entry 246
Entry 346
Entry 247

E- 12

1600.48.Entry 34
Entry 36
Entry 36
Entry 37
Entry 38
Entry 39
Entry 40
Entry 41
Entry 43
Entry 43
Entry 44
Entry 46
Entry 46
Entry 47
Entry 48
Entry 49
Entry 60
Entry 61
Entry 63
Entry 63
Entry 64
Entry 66
Entry 66
Entry 67
Entry 68
Entry 69
Entry 60
Entry 61
Entry 63
Entry 63
Entry 64
Entry 66
Entry 66
Entry 67
Entry 68
Entry 69
Entry 70
Entry 71
Entry 73
Entry 73
Entry 74
Entry 76
Entry 76
Entry 77
Entry 76
Entry 79
Entry 80

0Entry 348 : 340, 340,
Entry 349 : 340, 340,
Entry 360 : 340, 340,
Entry 361 : 340. 340. 113
Entry 363 : 340. 340, 144
Entry 363 : 340. 340, 176
Entry 364 : 340. 340, 308
Entry 366 : 340, 340, 340

0. 34048.48
048.48.SO

8048.48.
16048.48.
34048.48.

080.48.
8080.48.

16080.48.
34080.48.

0112.48.
80112.48.Stnta 4 : r*d, gr««n, blue Intensity

160112.
112.
144.
144.
144.
144.
176.

48,
34048.0, 0. 0

0. 0. 80
0. 0. 160
0. 0. 340
0. 48. 0
0, 48. 80
0, 48. 160
0. 48. 340
0. 80. 0
0. 80. 80
0, 80, 160
0. 80. 340
0. 113, 0
0. 113, 80
0. 113, 160
0. 113, 340
0. 144. 0
0. 144. 80
0. 144. 160
0. 144, 340
0. 176, 0
0. 176, 80
0. 176, 160
0. 176, 340
0. 308. 0
0. 308. 80
0. 308. 160
0. 308. 340
0. 340, 0
0. 340. 80
0, 240. 160
0. 240. 240

48. 0. 0
48. 0. 80

Entry 0
Entry 1
Entry 2
Entry 3
Entry 4
Entry 6
Entry 6
Entry 7
Entry 8
Entry 9
Entry 10
Entry 11
Entry 12
Entry 13
Entry 14
Entry 16
Entry 16
Entry 17
Entry IS
Entry 19
Entry 20
Entry 21
Entry 22
Entry 23
Entry 24
Entry 26
Entry 26
Entry 37
Entry 28
Entry 29
Entry 30
Entry 31
Entry 32
Entry 33

048.
8048.

16048.
24048.

048.
80176.48.

160176.48.
176.
208.
208,
208.
208,
240.
240,
240.
240.

24048.
048.

8048.
16048.
24048.

048.
8048.

16048.
24048.

0. 080.
0. 80
0. 160
0. 240

80.
80.
80.

080. 48.
48. 8080.
48. 16080.
48. 24080.
80. 080.
80. 8080,

16080, 80.
24080. 80.

«0. 112. 0
112. 80«0,

i 80. 112. 160
80. 112, 240
80. 144. 0

E- 13

LOOKUP TABLE DATA

Entry 81
Entry 12
Entry 83
Entry 88
Entry 86
Entry 86
Entry 87
Entry 88
Entry 89
Entry 90
Entry 91
Entry 99
Entry 93
Entry 94
Entry 96
Entry 96
Entry 97
Entry 98
Entry 99
Entry 100
Entry 101
Entry 103
Entry 103
Entry 104
Entry 106
Entry 106
Entry 107
Entry 108
Entry 109
Entry 110
Entry 111
Entry 113
Entry 113
Entry 114
Entry 116
Entry 116
Entry 117
Entry 118
Entry 119
Entry 130
Entry 131
Entry 133
Entry 133
Entry 134
Entry 136
Entry 198
Entry 137

80. 144. 80
80. 144. 160
80. 144. 340
80. 176. 0
80, 176. 80
80, 176, 160
80. 176, 340
80. 308, 0
80, 308, 80
80, 308, 160
80. 308, 340
80, 340, 0
80, 340, 80
80, 340, 160
80, 340, 340

119. 0. 0
119. 0. 80
113, 0. 160
113, 0, 340
113, 48. 0
113, 48, 80
113, 48, 160
113, 48. 340
113, 80. 0
113, 80, 80
113, 80. 160
113, 80, 340
113, 113, 0
113, 113, 80
113, 113, 160
113, 113, 340
113, 144, 0
113, 144, 80
113, 144, 160
113, 144, 340
113,. 176. 0
119, 176, 80
119, 176, 160
113, 176, 340
113, 308, 0
113, 308, SO
113, 308, 160
113, 308, 340
113, 340, 0
113, 340, 80
113, 340, 180
113, 340, 340

00.144.Entry 128
Entry 128
Entry 130
Entry 131
Entry 132
Entry 133
Entry 134
Entry 136
Entry 136
Entry 137
Entry 138
Entry 139
Entry 140
Entry 141
Entry 142
Entry 143
Entry 144
Entry 146
Entry 146
Entry 147
Entry 148
Entry 149
Entry 160
Entry 161
Entry 162
Entry 163
Entry 164
Entry 166
Entry 166
Entry 167
Entry 168
Entry 169
Entry 160
Entry 161
Entry 162
Entry 163
Entry 164
Entry 166
Entry 166
Entry 167
Entry 168
Entry 169
Entry 170
Entry 171
Entry 172
Entry 173
Entry 174

800.144.
160144. 0.
240144. 0.

0144. 48.
144. 48.
144. 48.
144. 48.

80
160
240

144. 80. 0
144. 80. 80

80. 160144.
240144. 80.

112. 0144.
144. 112. 80

112. 160
112, 240
144.
144.
144, 160
144. 240
176.
176.
176. 160
176, 240
208.
208.
208. 160
208. 240
240,
240.
240, 160
240, 240

144.
144.

0144.
80144.

144,
144.

0144.
80144.

144.
144.
144. 0
144.
144.

80

144.
0144.

80144.
144.
144.

0176, 0.
80176. 0.

176. 0. 160
240176. 0.

0176. 48.
80176.

176.
48.
48. 160
48. 240178.

080.176.
176. 80. 80

160176. 80.
80. 240176.

0176, 112,
176, 113,
176, 112,

80
160

E- 14

Entry ITS
Entry 176
Entry ITT
Entry 176
Entry 179
Entry 180
Entry 181
Entry 182
Entry 189
Entry 1S«
Entry 186
Entry 186
Entry 187
Entry 188
Entry 189
Entry 190
Entry 191
Entry 192
Entry 199
Entry 194
Entry 196
Entry 198
Entry 197
Entry 198
Entry 199
Entry 200
Entry 201
Entry 202
Entry 209
Entry 204
Entry 206
Entry 208
Entry 207
Entry 208
Entry 209
Entry 210
Entry 211
Entry 212
Entry 219
Entry 214
Entry 216
Entry 218
Entry 217
Entry 218
Entry 219
Entry 220
Entry 221

176, 112, 240
178. 144, 0
176, 144, 80
178, 144, 160
176, 144. 240
176, 176. 0
176, 176, 80
176, 176. 160
176, 176, 240
176, 208, 0
176, 208, 80
176, 208, 160
176, 208, 240
176, 240, 0

Entry 222
Entry 229
Entry 224
Entry 226
Entry 226
Entry 227
Entry 228
Entry 229
Entry 230
Entry 231
Entry 232
Entry 233
Entry 234
Entry 236
Entry 236
Entry 237
Entry 238
Entry 239
Entry 240
Entry 241
Entry 242
Entry 243
Entry 244
Entry 246
Entry 246
Entry 247
Entry 248
Entry 249
Entry 260
Entry 261
Entry 262
Entry 263
Entry 264
Entry 266

208, 240, 160
208, 240, 240
240, 0. 0
240, 0. 80
240, 0, 160
240, 0. 240
240, 48. 0
240, 48, 80
240, 48. 160
240, 48. 240
240, 80.. 0
240, 80, 80
240, 80. 160
240, 80, 240
240. 112, 0
240, 112, 80
240, 112, 160
240, 112, 240
240, 144, 0
240, 144, 80
240, 144, 160
240, 144, 240
240. 176, 0
240, 176. 80
240. 176, 160
240. 176, 240
240, 208, 0
240, 208, 80
240, 208, 160
240, 208, 240
240, 240, 0
240, 240, 80
240, 240, 160
240, 240, 240

176. 240,
240,
240,

80
176. 160
176, 240
208, 0. 0
208, 0. 80
208, 0. 160
208, 0. 240
208, 48. 0
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,
208,

48. 80
48. 160
48, 240
80. 0
80. 80
80. 160
80, 240

112, 0
112. 80
112, 160
112, 240
144. 0

208, 144. 80
208, 144. 160
208, 144, 240
208, 176. 0 State 6 : rad, graan, blue Intensity

176.208, 80
176.208, 160 Entry 0 :

Entry 1 :
Entry 2 :
Entry 3 :
Entry. 4 :
Entry 6 :
Entry 6 :
Entry 7 :

0. 0. 0
0, 46
0, 96
0, 144
0. 192
0, 240

208, 176, 240 0.
208, 208,

208,
0 0.

206, 80 0.
208,
206,

208, 160
208, 240

0.
0.

208, 240.
208, 240,

0 0. 48. 0
80 0. 48. 48

E- 15

LOOKUP TABLE DATA

Entry I
Entry 9
Entry 10
Entry 11
Entry 12
Entry 19
Entry 14
Entry 16
Entry 10
Entry 17
Entry 18
Entry 10
Entry 20
Entry 21
Entry 22
Entry 23
Entry 24
Entry 26
Entry 26
Entry 27
Entry 28
Entry 20
Entry 90
Entry 31
Entry 32
Entry 33
Entry 34
Entry 36
Entry 36
Entry 37
Entry 38
Entry 30
Entry 40
Entry 41
Entry 42
Entry 43
Entry 44
Entry 46
Entry 40
Entry 47
Entry 46
Entry 40
Entry 60
Entry 61
Entry 62
Entry 63
Entry 64

0. 48. 06
0, 48. 144
0. 46. 102
0. 48. 240
0. 06. 0
0. 06, 48
0. 06. 06
0. 06. 144
0. 06. 102
0. 06. 240
0. 144, 0
0. 144, 48
0, 144. 06
0. 144. 144
0. 144, 102
0, 144, 240
0, 102. 0
0. 102. 48
0, 102. 06
0. 102. 144
0. 102, 102
0. 102, 240
0. 240, 0
0, 240. 48
0, 240. 06
0. 240. 144
0. 240, 192
0. 240, 240

48. 0. 0
48. 0, 48
48. 0. 06
48, 0, 144
48. 0. 102
48. 0. 240
48. 48. 0
48, 46, 48
48, 48, 06
48. 48. 144
48, 48, 102

48. 144, 48
48. 144. 06
48, 144. 144
48, 144, 102
48, 144, 240
48. 102, 0
48, 102, 48
48. 192, 06
48, 102. 144
48. 102, 102
48. 102, 240
48. 240, 0
48, 240, 48
48. 240, 06
48. 240, 144
48, 240, 102
48. 240. 240
06, 0. 0
06. 0, 48
06, 0. 06
06. 0. 144
06. 0. 102
06. 0, 240
06. 48. 0
06. 48. 48
06. 48, 06
06, 48, 144
06. 48. 102
06. 48, 240
06. 06. 0
06, 06. 48
06, 06, 06
06. 06, 144
06. 06. 102
06. 06, 240
06, 144, 0
06, 144, 48
06, 144. 06
06. 144, 144
06. 144, 102
06. 144. 240
06. 102, 0
06, 102, 48
06. 102, 06
06. 102, 144
06, 102, 102

Entry SB :
Entry 66 :
Entry 67 :
Entry 68 :
Entry 60 :
Entry 60 :
Entry 61 :
Entry 62 :
Entry 63 :
Entry 64 :
Entry 66 :
Entry 66 :
Entry 67 :
Entry 68 :
Entry 60 :
Entry 70 :
Entry 71 :
Entry 72 :
Entry 73 :
Entry 74 :
Entry 76 :
Entry 76 :
Entry 77 :
Entry 78 :
Entry 70 :
Entry 80 :
Entry 81 :
Entry 82 :
Entry 83 :
Entry 84 :
Entry 86 :
Entry 86 :
Entry 87 :
Entry 88 :
Entry 80 :
Entry 00 :
Entry 01 :
Entry 02 :
Entry 03 :
Entry 04 :
Entry 06 :
Entry 06 :
Entry 07 :
Entry 08 :
Entry 00 :
Entry 100 :
Entry 101 : 06, 102, 240

. 2<
48, 06, 0
48, 06, 48

»
. 1

48, 06, 102
. 2<

48, 144, 0

E- 16

0. 240192.Entry 149
Entry 160
Entry 161
Entry 162
Entry 163
Entry 164
Entry 166
Entry 166 .
Entry 167
Entry 166
Entry 169
Entry 160
Entry 161
Entry 162
Entry 163
Entry 164
Entry 166
Entry 166
Entry 167
Entry 168
Entry 169
Entry 170
Entry 171
Entry 172
Entry 173
Entry 174
Entry 176
Entry 176
Entry 177
Entry 178
Entry 179
Entry 180
Entry 181
Entry 182
Entry 183
Entry 184
Entry 186
Entry 186
Entry 187
Entry 188
Entry 189
Entry 190
Entry 191
Entry 192
Entry 193
Entry 194
Entry 196

96. 240. 0
96. 240. 48
96. 240. 96
96. 240, 144
96. 240. 192
96. 240. 240

144. 0. 0
144. 0. 48
144. 0. 96
144. 0. 144
144. 0, 192
144. 0. 240
144. 48. 0
144. 48. 48
144. 48. 96
144. 48. 144
144. 48. 192
144. 48, 240
144. 96. 0
144. 96. 48
144. 96. 96
144. 96. 144
144. 96. 192
144. 96. 240
144. 144. 0
144. 144, 48
144. 144, 96
144, 144, 144
144, 144, 192
144, 144, 240
144, 192, 0
144. 192. 48
144, 192, 96
144, 192, 144
144, 192. 192
144, 192, 240
144. 240. 0
144, 240, 48
144, 240. 96
144. 240. 144
144. 240. 192
144, 240. 240
192, 0. 0
192, 0. 46
192, 0. 96
192, 0, 144
192, 0, 192

Entry 102
Entry 103
Entry 104
Entry 106
Entry 106
Entry 107
Entry 108
Entry 109
Entry 110
Entry 111
Entry 112
Entry 113
Entry 114
Entry 116
Entry 116
Entry 117
Entry 118
Entry 119
Entry 120
Entry 121
Entry 122
Entry 123
Entry 124
Entry 126
Entry 126
Entry 127
Entry 128
Entry 129
Entry 130
Entry 131
Entry 132
Entry 133
Entry 134
Entry 136
Entry 136
Entry 137
Entry 138
Entry 139
Eniry 140
Entry 141
Entry 142
Entry 143
Entry 144
Entry 146
Entry 146
Entry 147
Entry 148

0192. 48.
48. 48
48. 96
48. 144
48. 192
48. 240

192.
192.
192.
192.
192.

096.192,
192.
192,

96. 48
96. 96
96. 144
96. 192
96. 240

144. 0
144. 48
144. 96
144. 144
144. 192
144, 240
192. 0
192. 48
192, 96
192, 144
192. 192
192, 240
240. 0
240, 48
240, 96
240, 144
240. 192
240, 240

0. 0
0. 48
0. 96
0. 144
0, 192
0. 240

192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192,
192.
192.
192.
192,
192.
192.
192.
192.
192,
192,
240.
240.
240.
240.
240,
240.
240,
240,
240.
240.
240,
240,
240,
240.
240.
240,

48. 0
48, 48
48. 96
48, 144
48, 192
48. 240
96, 0
96, 48
96, 96
96, 144

i

E- 17

LOOKUP TABLE DATA
o0. 0.Entry 2*3

Entry 244
Entry 246
Entry 240
Entry 247
Entry 248
Entry 249
Entry 260
Entry 261
Entry 262
Entry 263
Entry 264
Entry 266

Entry 190 : 240, 90, 192
Entry 197 : 240, 90, 240
Entry 190 : 240, 144, 0
Entry 199 : 240. 144. 49
Entry 200 : 240, 144, 90
Entry 201 : 240. 144, 144
Entry 202 : 240, 144, 192
Entry 203 : 240, 144, 240
Entry 204 : 240, 192, 0
Entry 206 : 240, 192, 40
Entry 200 : 240, 192, 90
Entry 207 : 240, 192, 144
Entry 200 : 240, 192, 192
Entry 209 : 240, 192, 240
Entry 210 : 240, 240, 0
Entry 211 : 240, 240, 40
Entry 212 : 240, 240, 90
Entry 213 : 240. 240, 144
Entry 214 : 240, 240, 192
Entry 216 : 240, 240. 240
Entry 210 : 0, 0. 0
Entry 217 : 0. 0. 0
Entry 210 : 0, 0, 0
Entry 219 : 0, 0, 0
Entry 220 : 0, 0, 0
Entry 221 : 0. 0, 0
Entry 222 : 0, 0, 0
Entry 223 : 0, 0. 0
Entry 224 : 0. 0. 0
Entry 226 : 0. 0, 0
Entry 220 : 0, 0, 0
Entry 227 : 0, 0, 0
Entry 220 : 0, 0, 0
Entry 229 : 0, 0, 0
Entry 230 : 0. 0. 0
Entry 231 : 0, 0, 0
Entry 232 : 0. 0, 0
Entry 233 : 0. 0. 0
Entry 234 : 0. 0, 0
Entry 236 : 0, 0, 0
Entry 230 : 0. 0, 0
Entry 237 : 0, 0. 0
Entry 230 : 0. 0, 0
Entry 239 : 0, 0, 0
Entry 240 : 0, 0, 0
Entry 241 : 0, 0, 0
Entry 242 : 0, 0. 0

00.0,
00.0.
00.0.
00.0.
00.0.
00.0,
00,0.
00.0,
00.0.
00.0.
00.0.

0. 00.

E - 18

Appendix F

Diagnostics and LED’s

F.l Diagnostic Programme

A set of diagnostics programmes are provided with the PG-640A to
allow the user to perform some preliminary testing of the board set in
the unlikely event of a hardware error. These tests are menu driven and
expect the user to answer each time regarding whether or not the display
is correct. If a hardware error is detected the user should get in contact
with the Applications Engineering Department of MATROX in order to
determine what procedure should be followed.

F.1.1 Main Menu

The main menu displays the following information:

0. tost for CGA emulator
1. test for high level graphic
2. self test

F- 1

DIAGNOSTICS AND LED’S

3. exit to DOS

Each of the menu choices is self explanatory. The instructions on the
screen should be followed. The remainder of this Appendix lists each
sub-menu and gives a brief description of what the user should expect.

F.1.2 CGA Emulator Test

The menu for the CGA Emulator tests has the following choices:

0. Emulator teat equal spacing
1. Emulator blank display
2. Emulator checker board
3. Emulator cursor display
4. Emulator 40 x 26 display
6. Emulator display attributes
6. Emulator character set
7. Emulator 80 x 26 display
8. Emulator screen paging
0. Emulator 320 x 200 graphics
10. Emulator 840 x 200 graphics
11. Emulator video colour
12. Emulator vary fast mode
13. Run all
14. Exit to main menu

The UBer should expect to see the following for each test:

Equal Spacing First & screen with equally spaced vertical bars, then a
screen with equally spaced horizontal bars.

Blank Display A screen that is blank exept for instructions.

Checker Board A screen containing a checker board pattern.

F- 2

DIAGNOSTIC PROGRAMME

Cursor Display A box in the centre of the screen containing a blinking
cursor. First the underscore cursor will be displayed, then a block
cursor.

40 X £5 Display A 40 column display of the standard characters in a
barber pole pattern.

Display Attributes A set of lines of text in the various type modes.

Character Set The full character set is displayed.

80 X £5 Display A 80 column display of the standard characters in a
barber pole pattern.

Screen Paging Each of the eight graphics pages are displayed.

8£0 X £00 Graphic Two screens are displayed, each having three differ­
ent coloured boxes.

040 X £00 Graphic A screen is displayed with three white boxes.

Video Colour Sixteen screens are displayed, each filled with a different
colour.

Very Fast Mode The screen will flash and then clear.

F.1.3 High Level Graphics Test

The menu for the high level graphics diagnostics contains the following
choices:

0. PC Display
1. PC Bit Planes
2. PC Video RAN ACRTC Access
3. PC Video RAN CPU Access
4. PC Colour Grid
6. PG Colour Shading
6. PG LUT Fast Change

F - 3

DIAGNOSTICS AND LED'S

7. PC Blink
8. PC DMA
0. Run all
10.Exit to Bain nenu

The user should expect to see the following for each test:

PG Duplay Four sentences are displayed, one in each of red, blue, green,
and white.

PG Bit Planet Eight overlaping boxes are displayed, one for each bit
plane.

PG Video RAM ACTRC Access This is a self contained test, if
occurs, an error message will be displayed.

PG Video RAM CPU Access The screen is filled with red.

PG Colour Grid The six LUT’s are displayed, 256 squares of different
colours, arranged 16 by 16 will be displayed with the following
patterns:

an error

colours get progressively brighter from left to right;
colours get progressively brighter from top to bottom;
colours get progressively brighter from top to bottom twice;
colours get progressively brighter from top to bottom twice;
colours get progressively brighter from top to bottom four
times;
colours are arranged randomly.

PG Colour Shading Four lines, white; blue; green; and red, of sixteen
boxes are displayed. The boxes get brighter from left to right.

PG LUT Fast Change The same display as previous, but the boxes shift
rapidly from right to left.

PG Blink Four filled squares are displayed that blink at different rates.

F - 4

LED’S

PG DMA This test will copy an image from the PC to the PG-640A
and then an image from the PG-640A to the PC. If this test fails,
ensure that the PG-640A is configured with DMA enabled on
Channel 2 before assuming a hardware error has occured.

F.1.4 Self Test

This test will ask the
DIP switches. Internal tests will be performed and the user asked to
reset the DIP switches. The test will terminate with messages stating
that the areas test is functioning correctly.

to change the settings on the block of fouruser

F.2 LED’s

There are four LED’s on the PG-640A board set, three of which provide
information about the board’s status. The LED’s are:

1. Heartbeat: the light blinks on and off to tell the user that the
board is functioning properly.

.2. Output of Error FIFO Full: this LED lights up when either of the
read back FIFO’s are full. The board will wait for space in a full
read back FIFO before processing further.

3. Input FIFO Empty: this LED lights up when the Input FIFO is
empty.

4. RESERVED: this LED is for MATROX use only.

F - 5

DIAGNOSTICS AND LED’S

F - 6

Appendix G

Diskette Directory

The PG-640A is supplied with two diskettes (in the back of the manual).
This appendix consists of directories for those diskettes, the contents of
their READ.MB files, plus other pertinent information that will help the
user to exploit the diskettes.

G - 1

DISKETTE DIRECTORY

G.l Directory

G.l.l Directory of Utilities Diskette

SHOWLUT EXE
DI EXE
SELFTEST EXE
PGRESET EXE
TOPG
PGMON EXE
PGTOFILE EXE
FILETOPG EXE
DIAG
OTTAWA 2 PGH
VDIPG
INVASM EXE
HOUSE
DEMO
READ
3DCITY PGH
PROCESS PGH
MARQUIS PGH

EXE

EXE

SYS

PGA
BAT
ME

G - 2

DIRECTORY

G.1.2 Directory of Demo Diskette

DEMOEND PGH
TEXT10 PGH
TEXT20 PGH
TEXT40 PGH
RECTPFO PGH
RECTPF1 PGH
CIPFO
CIPFl
SEEDS
SEEDP
POLYPFO PGH
ELPFO
SECTPFO PGH

PGH
PGH
PGH
PGH

PGH

PGHARC
PGHPOINT

LINEH
LINEV
HOUSE

PGH
PGH
PGH
PGH3D
PGHCLOCK

HEAD3D
BLOCK
PROCESS
LINES

PGH
PGH
PGH
PGH

G - 3

DISKETTE DIRECTORY

PGHMARQUIS
PAG El
PAGE2
PAGES
PAGE4
PAGE5
PAGE6
PRIM
3DCITY
WAIT5
ALLSAT

PGH
PGH
PGH
PGH
PGH
PGH
PGH
PGH
PGH
PGA

HD BAT
COMP
DEMO

BAT
BAT

DEMOL
DEMOCOMP BAT
MAYFLOWE SCH
READ
TOPG

BAT

ME
EXE

DI EXE
PGRESET EXE

G.2 Read.Me Files

G.2.1 Utility Diskette Read.Me File

The following programs and data files are supplied by MATROX to give
the PG-640A user and programmer a starting point for writing code.
These programs are not supported by MATROX.

pgmon.txt - Interactive program to send PG-640A high level graphic
commands
use: A)pgmon [-a] the optional -a flag must be used if the board
uses the alternate address, C64000, rather than the default ad-

G-4

README FILES

dress, C6000.
a menu shall come up with the following options

Fl - send file
F3 - cold reset
F5 - TXTWDW off
F7 - CGA display
F9 - ASCII/HEX input F10 - ASCII/HEX output

Exit program with ~C
NB: do not use the F2 option unless there is a PG-640A at both
the default and the alternate address

F2 - addr C6000/C6400
F4 - warm reset
F6 - TXTWDW on
F8 - High-res graphics display

topg.czc - Program to send the PG-640A a file containing hex or ascii
commands

use: A)topg (-aj house.pga

send the file house.pga to the board the optional -a flag must be
used if the PG-640A is at the alternate address

di.eze - Program to switch between high level graphocs screen and CGA
screen

A)di [-aj 0 (enable high level graphics screen) A)di |-a) 1use:
(enable CGA screen)

use the -a flag if the PG-640A uses the alternate address

pgtofUe.cze - Program to send a raster image of the high resolution dis­
play to disk file

A)pgtofile [-a] testl.dat

stores the current screen image in the file testl.dat use the -a flag
if the PG-640A uses the alternate address

fitctopg.cze - Program to send raster image from a file to the PG-640A
high resolution display

A)filetopg (-a) testl.dat

displays the raster image stored in testl.dat use the -a flag if the
PG-640A uses the alternate address

use:

use:

G - 5

DISKETTE DIRECTORY

sclftcst.cxc - PG-04OA selftcst program (see appendix F sec. F.1.4)
use: A)selftest |-a|

use the -a flag if the PG-640A uses the alternate address

showiut.exe - Program to display various predefined lookup tables on
PG-640A see LUTINT command
use: A)showlut [-a)

use the -a flag if the PG-640A uses the alternate address

pgrcact.cxc - causes a cold reset of the PG-640A.
use: A)pgrcset [-a]

use the -a flag if the PG-04OA uses the alternate address

invasm.exe - A file that will convert ascii graphic commands into into
binary code, or convert binary code back to ascii graphics code.

use: a) invasm -o[h,a] -b(h,aj -f[s,l] infile outfile
example ; a) invasm -oa -bh file.pgh file.pga

will take a binary file (file.pgh) as the input and will output an
ascii file (file.pga)

flag options:
-bx : x = a : begin translation with comm type in ASCII (default).

x = h : begin translation with comm type in HEX.
-ox : x = a : output in ascii.

x = h : output in binary (default).
-fx : x = s : short form ascii opcode output.

x = 1 : long form ascii opcode output (default).
-hx : x = x : binary hex output (default),

x = 2 : ASCII hex output.

diag.com - PG-04OA diagnostic program (see appendix F)

A)diag

house.pga - PG-640A ASCII data file of 3D house used in chapter 3.4 of
PG-640A manual

ottawaB.pgh - Data file used during dma diagnostic of PG-04OA

use:

G - 0

README FILES

Sdcity.pgh - 3d demonstration file

proectt.pgh - process control example file

marquit.pgh - demonstration file

dcmo.bat [-a] - batch file to provide a short demonstration
- use the -a flag if the PG-640A uses the alternate address

vdipg.tyc - Matrox VDI driver(see Appendix H)

G.2.2 Demo Diskette Read.Me File

This diskette contains demonstration programs and picture files used in
the demos.

dcmo.bat - Run the standard demo once.
- use -a flag if PG-640A at alternate address

dcmol.bat - Run a continous loop of the standard demo.

- use -a flag if PG-640A at alternate address

comp.bat - Run PG-640A speed comparison demo.

- use -a flag if PG-640A at alternate address

dcmocomp.bat - Run standard demo followed by speed comparison demo

- use -a flag if PG-640A at alternate address

hd.bat - Install demo onto hard disc

topg.cxc - Program to send a picture file to the PG-640A

- use -a flag if PG-640A at alternate address

pgrcsct.cxc - Program to reset the PG-640A

- use -a flag if PG-640A at alternate address

G-7

DISKETTE DIRECTORY

di.czc - Program to select between High resolution mode and CGA mode
on the PG-640A
- use -a flag if PG-640A at alternate address

*.pgh - Picture files (Note that this rel includes an improved version of
3DCITY.PGII)

*.pga - Picture files

*.$ch - Picture files

G - 8

Appendix H

Installing The PG-640A

Device Driver

H.l Introduction

This appendix explains how to install PG-640A VDI Device Driver and
summarizes the VDI opcodes that it supports.

We assume that you already have VDI software installed in your system
and are familiar with it. If this is not the case, you will need to obtain it.
It may be purchased from either Graphic Software Systems of Wilsonville
Oregon or IBM. For more detailed information on the VDI please refer
to the Professional Graphics Series manuals from IBM.

H.2 Installation

Use the following procedure to install the PG-640A Device Driver and

II- 1

INSTALLING THE PG-640A DEVICE DRIVER

to initialize the VDI.

1. The PG:640A Device Driver is the file VDIPG.SYS on the utilities
diskette supplied with the PG-640A. Your first step should be to
find this diskette and make a back up copy of it. Use the DIR
command to confirm that you have the correct diskette, and use
the COPY command to make the backup copy. Store the original
diskette in a safe place and use the backup copy for the next step
in this procedure.

2. Use the DOS COPY command to copy the VDIPG.SYS file to
your system disk (the diskette or Winchester with the operating
system and other device drivers). You may copy it to either a root
directory or a subdirectory.

3. Using EDLIN or a similar editor, add lines with the following for­
mat to the end of your CONFIG.SYS file. The CONFIG.SYS file
should already be present on your system disk:

DEVICE=C:(path] VDIPG.SYS |/R]
DEVICE=C:[path]VDI.SYS (/G)[:group name]

For example:

DEVICE=C:\GSS\DRIVERS\VDIPG.SYS
DEVICE=C:\GSS\DRIVERS\VDI.SYS

(1) It is important that the VDI.SYS file be listed after all
of the device drivers have been listed.

Note: (2) For more information on the command format see the
Graphic Development Toolkit Manual from Graphic Soft­
ware Systems or IBM.

4. Add a line with the folowing format to your AUTOEXEC.BAT
file:
[pathJINIT—VDI
For example:
GSS\DRIVERS\INIT_VDI

II-2

VDIOPCODES

5. Verify that all the files are where they should be, then reset the
system to initialize the driver. The DOS will find CONFIG.SYS
and use the information therein to configure the system. Then it
will process the AUTOEXEC.BAT file and, in so doing, execute
the init—vdi command, which initializes the VDI.

H.3 VDI Opcodes

This section lists the VDI commands supported by the PG-640A and its
device driver.

Control

• Clear Workstation

• Close Workstation

• Cursor Down

• Cursor Left

• Cursor Right

• Cursor Up

• Direct Cursor Address

• Enter Cursor Addressing Mode

• Erase to End of Line

• Erase to End of Screen

• Exit Cursor Addressing Mode

• Home Cursor

• Open Workstation

H - 3

INSTALLING THE PG-640A DEVICE DRIVER

• Display Graphic Input Cursor

• Remove Graphic Input Cursor

• Set Alpha Text Position

• Set Line Edit Characters

• Update Workstation - No action is performed

• Set Writing Mode - Only the following writing modes are sup­
ported:

Mode Boolean Operation Chart
D = 0 (color 0)
D = D AND S (AND)
D = S (Replace)
D = D AND (NOT S)
D = D (no change)
D = D XOR S (exclusive OR)
D = D OR S (overstrike)
D = NOT D

1
2
4
5
6
7
8
11

D = NOT S
D= D OR (NOT S)
D = 1 (color 255)

13
14
16

Output Primitives

• Arc (uses polyline)

• Bar (uses filled area attributes)

• Cell Array

• Circle (uses filled area attributes)

• Filled Area

• Graphic Text

H - 4

VDIOPCODES

• Output Alpha Text

• Output Cursor Addressable Text

• Pie Slice (uses filled area attributes)

• Polyline

• Polymarker

Output Attributes

• Reverse Video Off

• Reverse Video On

• Set Alpha Text Color

• Set Alpha Text Font and Size

• Set Alpha Text Line Spacing

• Set Alpha Text Overstrike Mode

• Set Alpha Text Pass Through Mode - Returns default value

• Set Alpha Text Quality - Returns default value

• Set Alpha Text Script Mode

• Set Alpha Text Underline Mode

• Set Background Color Index

• Set Character Baseline Rotation

• Set Character Height

• Set Color Representation - Returns default settings

• Set Cursor Text Attributes

II-5

INSTALLING THE PG-640A DEVICE DRIVER

• Set Fill Color Index

• Set Fill Interior style

• Set Fill Style Index

• Set Graphic Text Alignment

• Set Graphic Text Color Index

• Set Graphic Text Font - Returns default setting

• Set Polyline Color Index

• Set Polyline Type

• Set Polyline Width - Returns default setting

• Set Polymarker Type

• Set Polymarker Scale

• Set Polymarker Color Index

Input

• Input Locator - Request Mode

• Input Choice - Request Mode

• Input String - Request Mode

• Input String - Sample Mode

• Read Cursor Movement Keys

H - 6

\

VDI OPCODES

Inquiries

• Inquire Alpha Text Capabilities

• Inquire Alpha Cell Location

• Inquire Alpha Font Availability

• Inquire Alpha Text Position

• Inquire String Extent

• Inquire Addressable Character Cells

• Inquire Color Representation

• Inquire Current Cursor Address

• Inquire Current Fill Area Attributes

• Inquire Current Graphic Text Attributes

• Inquire Current Polyline Attributes

• Inquire Current Polymarker Attributes

• Inquire Cell Array

II-7

INSTALLING THE PG-640A DEVICE DRIVER

II - 8

\

Appendix I

Board Layout

I- 1

BOARD LAYOUT -1 MAK IN
J CANAOA* rrCE

s i*i f y sj5' ^
— I

ns' 5
:

-cfetifcl i , I
1 ! Il is £!irji i! e e*n u,Jc%jab Un

ArranS

5 sl «.!
■ 55

i!w
si E ^t**

»E 22 !l§

r---- 1 dip tv-i 1q*pctfc qBa* i
C gjr |J3 L,_I
TTu n t

B$ 5£

c 3 lai
5

$* is: * i. i
! ilLa». L-J La.

5te i w
rraJ

i I
jjtX3DI n;

I It5I:•
i : :■

:$Cxfc.x#
B-< 5 15*

I1 ^ — nrotei-UJ j i
! u y UEBffn T'

§ n : i icor-iij !=, I*' !

H I1! H H.,1 '
nnnr^^i61 '5: I5' i

l»i4feWi

!

!
Sri
git jULLTiffisjkI*;
!§[_J U ***(^^*^

SlelP?
i:S
i

l I

CPU Board Components

1-2

ie-9e-i7?r"j.-----J—- 6 I'

:nmV1

5
]

mi
a5

3si i
£ a £ li

raP-
» .

i

n5
!c«t,

bj
I I
& 6' " '

Video Board Components

l - 3

BOARD LAYOUT

1-4

Appendix J

Fast Execution “Local

Pipes”

This chapter describes the fast execution families of graphic commands,
optimized to work together as a group, in the firmware for the PG-
640A. These families of graphic commands use local command decoders
to offer greatly increased command decoding speed. Section J.l explains
the concept of "local pipes” and Section J.2 describes the "local pipe”
Command Sets.

J - 1

FAST EXECUTION 'LOCAL PIPES9

J.l Description of Local Pipes

The PG-640A contains fast execution “local pipes" in its firmware. The
term “pipe" is used here to describe a subset of the board’s full set of
graphic commands which has been optimized to work as a group. Special
areas of the firmware contain local command decoders which bypass the
normal, lengthy highlevel decoding overhead. These local command
decoders are, therefore, capable of decoding a small, fixed number of
commands very quickly. If only graphic commands which are part of the
local pipe’s command set are issued to the board, decoding stays within
the pipe and executes much faster than would normally be possible.

Entry to a local pipe is automatically achieved by sending the PG-640A
one of a local pipe’s Entry Point Commands. As soon as a command
outside of the local pipe’s command set is issued to the board, the local
pipe is exited and decoding of commands through the highlevel command
decoder resumes.

NOTE:

— Local pipes are accessed through Entry Point Commands only.
— Commands in a local pipe’s command set are not all Entry
Point Commands.
— Certain local pipes are not accessible from command lists.
— No local pipes are accessible from ASCII input mode.

J-2

LOCAL PIPE COMMAND SET DESCRIPTIONS

J.2 Local Pipe Command Set Descriptions

Screen Coordinate Drawing Command Pipe

Command Set:
SMOVE En
SMOVER En-
SDRAW Bn-
SDRAWR En-
COLOR

Bn’ denotes an Entry Point Command in the Pipe Command Set.

Access from;
Hex Input Mode
Command Lists

\

J-S

FAST EXECUTION *LOCAL PIPES’

User Definable Raster Text Command Pipe

Command Set:
TEXTP Bn-
TEXTPC Bn-
SMOVE f
SMOVER f
COLOR
BCOLOR
RFONT

En' denotes an Entry Point Command in the Pipe Command Set.
f denotes an Entry Point Command for the Screen Coordinate

Drawing Command Pipe.
Access from:

Hex Input Mode only

J -4

LOCAL PIPE COMMAND SET DESCRIPTIONS

NOTE:

The User Definable Raster Text Command Pipe is a two-level local
pipe in which two of the commands in the command set, SMOVE
and SMOVER, are also part of the Screen Coordinate Drawing
Command Pipe. The following shows the process flow when either
one of these commands is invoked. Note the two-level pipelining
in Example 1.

COMMAND COURSE OF ACTION

Example 1
Enters User Definable Raster Text Command
Pipe.
Enters Screen Coordinate Drawing Command
Pipe.
Remains in Screen Coordinate Drawing
Command Pipe.
Exits back to User Definable Raster Text
Command Pipe.

TEXTP

SMOVE

SDRAW

TEXTP

Example 2
Enters User Definable Raster Text Command
Pipe.
Enters Screen Coordinate Drawing Command
Pipe.
Exits back to User Definable Raster Text
Command Pipe.

TEXTP

SMOVE

TEXTP
\

Any number of the commands from the Screen Coordinate Draw­
ing Command Pipe command set may be used directly following
the SMOVE or SMOVER commands,
ited the Screen Coordinate Drawing Command Pipe, invoking any
of the Screen commands will cause the program to exit the User
Definable Raster Text Command Pipe and return to highlevel com­
mand decoding.

Once the flow has ex-

J -5

FAST EXECUTION *LOCAL PIPES’

World Coordinate 2D Drawing Command Pipe

Command Set;
MOVE En-
MOVER En-
DRAW *»•
DRAWR En-
COLOR

En' denotes an Entry Point Command in the Pipe Command Set.

Access from:
Hex Input Mode
Command Lists

J - 6

LOCAL PIPE COMMAND SET DESCRIPTIONS

World Coordinate 3D Drawing Command Pipe

Command Set:
MOVES Bn-
MOVERS En-
DRAWS En•
DRAWRS En-

En' denotes an Entry Point Command in the Pipe Command Set.

Access from:
Hex Input Mode
Command Lists

IMAGEW Command Pipe

Command Set:
IMAGEW En

En• denotes an Entry Point Command in the Pipe Command Set.

Access from:
Hex Input Mode only

J-7

FAST EXECUTION *LOCAL PIPES’

PDRAW Command Pipe

Command Set:
PDRAW En
COLOR
NOP

En* denotes an Entry Point Command in the Pipe Command Set.

Access from:
Hex Input Mode
Command Lists

J-8

Appendix K

Command Reference

• Card

The following page contains two summaries of commands — one ar­
ranged by name, the other by hex opcode. These summaries are just
that, summaries. For complete command descriptions refer to Chapter
4.

K- 1
\

COMMAND REFERENCE CARD

i i •;

i

K - 2

COMMANDS BY NAME

K.l Commands by Name

OpcodeOpcode NameOpcode NameName
F4SARC

SBLINK
SC1RC
SDRAW
SDRAWR
SECTOR
SELIPS
SMOVE
SMOVER
SPOLY
SPOLYR
SRECT
SRECTR
SSECT
TANGLE
TASPCT
TCHROT
TDEFIN
TEXT
TEXTC
TEXTP
TEXTPC
TJUST
TSIZE
TSTYLE
TWCOL
TWPOS
TWVIS
VWIDEN
VWMATX
VWPORT
VWROTX
VWROTY
VWROTZ
VWRPT
WAIT
WINDOW
XI! AIR.
XMOVE

LUT EEARC
AREA
AREABC
AREAPT
BCOLOR
BLINK
BLINKX

SC
E«LUTINT

LUTRD
LUTSAV
LUTSTO
LUTX
LUTXRD
MASK
MATXRD
MDIDEN
MDMATX
MDORG
MDROTX
MDROTY
MDROTZ
MDSCAL
MDTRAN
MOVE
MOVER
MOVE3
MOVER3
NOOP
PDRAW
POINT
POINT3
POLY
POLYR
POLY3
POLYR3
PRMFIL
PROJCT
RASTOP
RASTRD
11ASTWR
RBAND
RDEKIN
RFONT
RECT
RECTR
RESET?

ECCO
F2SOCl
FAEDE7
FBCfiCB
3DEBCB
F3S3E6
FBEB43 41 20CA
F952CIRCLE

CLBEG
CLDEL
CLEARS
CLEND
CLIP!!
CLIPY
CLOOP
CLMOD
CLRD
CLRUN
COLMOD
COLOR
CONVRT

38
FC9070
FD9774
ro91OF
FI9371
rs94AA
8296AB
8B9273
BA9678
841076
801172
8C12CA
831306
8001AF
86FF43 68 20CX
8108DISPLA

DISTAN
DISTH
DISTY
DRAW
DRAWR
DRAW3
DRAWR3
ELIPSE
FILMSK
FLA CRD
FLOOD
GTDEF
IMAGER
IMAGEW
LINFUN
LINPAT

DO
8809B1
DE30A8
D331A9
D43228
A03329
A7E92A
B2B02B
ASDA39
A4DBEF
A6DC61
11El07
066489
B366D8
E234D9
E336EB

04EA

/

K - 3

COMMAND REFERENCE CARD

K.2 Commands by Hex Opcode

Opcode Name Name NameOpcode Opcode
NOOP

RESETF
WAIT

COLOR
FLOOD
POINT
P0INT3
CLEARS
MOVE

MOVER
MOVE3

MOVER3
DRAW

DRAWR
DRAW3

DRAWR3
POLY

POLYR
P0LY3

POLYR3
RECT

RECTR
CIRCLE

' ELIPSE
~ ARC
SECTOR

CLMOD
TEXT
TSIZE

TANGLE
TEXTP
TDEFIN
TJUST

TSTYLE
GTDEF

TCHROT
TASPCT
TEXTC

TEXTPC
MDIDEN
.MDORG
MDSCAL
MDROTX
MDROTY
MDROTZ
MDTRAN
MDMATX
VWIDEN
VWRPT

VWROTX
VWROTY
VWROTZ
VWMATX

DISTH
DISTY
CLIPH
CLIPY .

CONVRf
PROJCT
DISTAN

VWPORT
WINDOW

AREA
AREABC

BLINK
LUTSTO

COLMOD
BCOLOR
DISPLA
TWPOS
TWVIS
TWCOL
IMAGER
IMAGEW
RASTOP
RASTRD
RASTWR
RBAND
XHAIR
XMOVE
SBLINK
BLINKX

LUTX
AREAPT

MASK
PRMFIL
LINPAT
LINFUN
LUTINT
LUTSAV

01 TO Cl
04 SO CB
00 •1 DO
00 oa DS
07 • S3 D4
00 04 DS
00 so DS
or so DO
10 so DA

0111 DB
ia 0B DC
13 SC El
as SD R2
ao 00 E3
31 01 E4
2B oa ES
30 03 E6
31 04 E7

00sa ES
00 ES33

El0734
10 EB30
11 EC ..30
13 ED30

LUT14 EESC
FILMSK
SRECT

SRECTR
SCIRC
SELIPS
SARC

SSECT
SMOVE

SMOVER
SDRAW

SDRAWR
SPOLY

SPOLYR
PD RAW

IS e r3D
CA 17 7043 41 10

43 so ao CX
LUTRD

, FLAGRD
MATXRD
LUTXRD
RDEFIN
RFONT
CLBEG
CLEND
CLRUN
CLOOP
CLDEL
CLRD

IS 71
10 raso
n 73

74IB
17 70S3

70B064
70B106
71oa70
7BB371

73 ' ^ rcco
70Cl73
77CO74

CO70 -

K-4

PRODUCT FAILURE REPORT

If you are returning one of our products for repair, you must fill out this
form and return it with the defective unit. The information so provided
is necessary for us to provide a high standard of service.

COMPANY NAME AND ADDRESS:

NAME OF UNIT: -----------
MODEL NO.(on sillcscreen):
SERIAL NO.(on label):------
DATE UNIT RECEIVED: —
OR DEAD ON ARRIVAL □

DATE UNIT FAILED:.

MEMORY BASE ADDRESS USED: --
I/O BASEi. APDRESS USED:----------------- --
PLEASE DESCRIBE THE SYSTEM THAT THE UNIT IS USED IN (CPU,
BUS, MEMORY, ETC.):

l

* !
UNIT CONFIGURATION (50 or 60 Hi, attributes used, display resolution
selected, etc.):————

rf !• I
PLEASE DESCRIBE THE*FAULT: : vV.. ' ; _Li

- ii
l* > •

O' i
■

FAULT IS CONSTANT □ ; | FAULT IS INTERMITTENT □

NOTE: ^o merchandise will be accepted by MATROX for replacement or
repair uriless accompanied by an RMA number obtained from our Appliesti911 |
Engineering Department. ': j j, ,/ ;
RMANumber; , . i --------- ———1-------------

i v. ;;•'!« j / f • r •'!v. / j 'if'';;*!
THE FOLLOWING SpiicEIS FOR FACTORY USE ONLY

■* ic«. M
t •

;
<

:• cj. •» i. 'J r
■r i;

CORRECTIVE STEPS TAKEN:

MATROX Electronic Systems Limited,
1055 St. Regis Boulevard,
Dorva), Quebec,
CANADA

Telephone: (514)685-2630 Telex: 05-822798
II9P 2T4

FAX: (514)685-2853

!

motfosi
e8@ctionk o%\%elQms SG$S.

1055 ST. HtGlSOLVD .DOnVAL. QUEBEC H9P2T4. CANADA
TEL (5141 665 2030 TELEX 05-822798

Matrox Electronic S/stems Ltd. reserves ttie right to make changes in specifi­
cations at an/ time arid without notice. The information furnished by Matrox
Electronic Systems in this publication is believed to be accurate arid reliable.
However, no responsibility is assumed by Matrox Electronic Systems Ltd. for
its use; nor for any infringements of patents or other rights of third parties
resulting from its use. No license is granted under any patents or patent rights
of Matrox Electronic Systems t td.

iSjilUlHBMtts.
Jiiilliiiiiia

d^ifl^ps§i=^5nHllnHsi=jlHHnnnH£HHn!^|i.^^

,: MHI■I :.' ft.-- a
' - - . -. - is■ ■■• '-Jj—■■

Tcswugr~:- ---zmssn >» ^^ ~ s"=§fcg■ I as—
^■MP—

■ ■ £

ill* I 1 I
a i 2 - - --. ?*j

fc ip®; | in——ii

■ a- /. :?ii

J^BplFjmssnsssstsf
vi^^^srnilglHisigpfy-glgnpIgssi^

.^iiliiiijiljiiBIBgii#"

,.«a^ffillllMi|ii|l|||||||||P|^li»..

iwgm m mBBplB ■ ' n :^"

JIHPlIliBIlir

'" ssMiir'^gipi _Sfssa
| p
imill

pgp

it:

SSSHH3

3::::.

iffi^niiUifrru

liipgi

—l ;
82

■n■p
ISHK

r
ml

Ia n

