MPF-

1/88

Reference Manua

MPF-1/88

Reference Manual

Table of Contents

Chapter 1 How to Use Interrupt Service Subroutines
Chapter 2 MPF-1/88 System Reset

Chapter 3 1/0 Programming

Chapter 4 MPF-1/88 Circuit Description

Chapter 5 Description of 1/0O Device Drivers

5.1 Cassette Output Device Driver 5-1
5.2 Cassette Input Device Driver 5-9
5.3 RS-232-C Interface Driver 5-13

5.4 LCD Driver 5-24

5.5 Audio Interface Driver 5-55

5.6 Keyboard Driver 5-58

Appendix A Introduction to 8088 Assembly Language
Instruction Set — with Examples

. Data Transfer Instructions a-1

. Arithmetic Instructions A-9

. Logical Instructions a-18

. String-Manipulation Instructions a-28
. Transfer-of-Control Instructions A-34
. Processor-Control Instructions A-46

N AW ==

Appendix B Schematic Diagrams
Appendix C Date Sheet of LCD
Appendix D References

Preface

The MPF-I1/88 is designed as a teaching aid for you to practising
8088 assembly language programming. With the MPF-1/88, you can
write 8@88 assembly language programs and test the programs. You
can even develop your own microcomputer system based on the MPF-
1/88.

The MPF-1/88 can be used by a 'programmer, who is already familiar
with basic computer concepts and assembly language programming
yet inten®¥ls to learn programming a 16-bit microprocessor such as
8088. However, this learning kit can also be used by a beginner,
who has no computer background and has never used a microcomputer
before, to 1learn some basic computer concepts and assembly
language programming.

As vyou read this manual, it is assumed that you have finished
reading MPF-I/88 User's Manual and has run the sample program
presented in that manual.

The MPF-1/88 Reference Manual provides the information you need
to understand the internal operations in more detail, and thus,
to use the system more flexibly.

Chapter 1 describes how to use the interrupt service routines
supported by the monitor program of the system.

Chapter 2 gives a closer look of the operations performed during
a cold or warm system reset.

Chapter 3 introduces input/output programming concepts.
Chapter 4 gives a circuit description of the MPF-1/88.

Chapter 5 describes how i/0 device drivers for the MPF-1/88 were
designed and their functions. This chapter guides you to read the
the MPF-I/88 Monitor Program Source Listing and teaches you some
program tracing techniques. You need to refer to the Monitor
Program Source Listing and some example programs while reading
this chapter.

Chapter 5 also introduces to you some of the frequently used
Macro Assembler directives supported by MS-DOS Macro Assembler of
Microsoft, which was used for the development of the MPF-I/88
monitor program.

Aappendix A is designed for those who are not familiar with the
8088 assembly language instruction set. Explanation is provided
for each individual instruction. Some simple but useful examples
are given so that you may get a quick lesson of the instruction
set and how each instruction is used. For the beginners who 1is
not familiar with the 8688 instruction set, it would be better to
begin with Appendix A. Although that appendix is wvaluable, vyou
should not rely totally on Appendix A as a comprehensive hard-
ware/scftware tutorial. You need to refer to other documentations
in order to get a thorough wunderstanding of the 8088
microprocessor. :

Appendix D provides a 1list of the books which should be
referenced as you learn to program the 8088 microprocessor.

o
&8 How to Use Interrupt
&% Subroutines

A set of useful interrupt subroutines are built in the MPF-1/88
monitor program. Each of these subroutines performs a pre-defined
function such as returning control to the monitor program,
inputting a character from the current console, generating a
beep sound, or outputting a character to the console, etc. You
can refer to an individual chapter in the MPF-I/88 User's Guide
for a detailed description of the functions performed by these
useful subroutines.

Sometimes you may wish to perform a specific subroutine function
within your program. In this case, there is no need to write all
the instructions comprising the interrupt service subroutine. You
can simply use an INT instruction in your program to invoke the
desired subroutine.

To use the interrupt service subroutines, you must first read the
chapter on useful subroutines in the MPF-1/88 User's Guide. Some
subroutines calls for the user to supply a value (it is sometimes
referred to as input parameter) to ‘the appropriate register or
registers, while others require no input parameters. After the
selected subroutine is executed, some subroutines will return a

value to the appropriate register(s). The contents of some
registers will be affected after the execution of some interrupt
subroutine. All of such information is described in detail 1in

that chapter.

If the interrupt service subroutine you intend to use requires
that input parameters be loaded into the appropriate register(s),
then you have to load the register(s) to be used by the interrupt
sevice subroutine accordingly prior to using the INT instruction
to invoke the service subroutine. When the execution of an
interrupt service subroutine affects the contents of register(s),
you should save the value of the registers whose value is to be
affected by the execution of the interrupt service subroutine
before using the INT instruction.

MPE-1/88 System
Reset

The following 1is a brief description of the tasks performed
during system reset. The MPF-I/88 performs a cold reset (cold
start) when power is turned on. A warm start is performed when
the RESET key is pressed.

During a cold start, the system performs the following tasks:

1. Display the sign-on message "MPF-I/88", and the version number
of the monitor program.

2. Perform a RAM test.

3. Perform a ROM checksum test.

COLD START

When power is first applied to the system, the CPU will begin
executing the monitor program starting from physical address
FFFF@H. This 2@-bit actual address is calculated by adding the
segment address FFFFH and the effective address O6H 1in the
following way.

FFFFX ---> Code segment address
+ @0@¢ ---> Effective address
FFFF§ ---> Actual address

Note that the segment address is first shifted left four bits for
calculating the actual address. While the segment address is
left-shifted, =zeroes are shifted into the four least significant
bits to form a 2@-bit segment address.

Since only 16 bytes of memory are available between memory loca-
tions FFFF@H and FFFFFH (not enough for a large program), a jump-
to-FCUB3H instruction is executed as the first instruction of the
monitor program. Then the monitor program will determine whether
a cold start or a warm start is to be performed.

RAM Test

In case a cold start is to be performed, the RAM test will be
performed first. The RAM test routine will write the two word
patterns "5555" and "AAAA" into each memory word and read back
the contents. If the contents of the memory word read match what
was written into that memory word, the RAM check routine will
continue to check the next word. If a mismatch is found, then the
RAM may contain bad storage cells and the routine will display an
error message,

Note that the RAM test routine checks contiguous memory space.
If the system .RAM is not configured to reside in contiguous
memory space, then only the low order memory range will be
checked. '

ROM Checksum Test

For the ROM checksum test, the contents of memory words are added
together to form a checksum which is stored in a memory word. If
the value of the low order byte of the memory word is zero, then
we assume the ROM is tested 0.K. Otherwise, an error message will
be displayed.

The ROM checksum routine works in a much more complicated manner
than the RAM test routine. The complexity of the software design
of the ROM checksum routine is due to considerations aiming at
making the system flexible for future system expansion. Before
describing the programming logic of the ROM checksum routine, we
will describe the possible ROM mappings.

The standard MPF-I/88 is built with one 27128 with a 16K memory
space. The memory space in such a configuration is illustrated
as follows. ROM@ is the one with memory address starting from
C0@8H through FFFFH. The segment address assigned to ROM@ 1is
FOO@H.

ROM®
FFFF |—=——
8K
EQQ0
DEFF
8K
COBE ~—=—-

%¥ ROM Memory Map ***

Although one 27128 is used as ROM chip on the system, the ROM
checksum routine treats the system in such a way that two 2764s
can also be inserted as ROMs on the system board.

A flowchart 1is illustrated as follows for the ROM checksum
routine.

2764
or 27128
FOO@:C0068 = MT@?

Check
ROM1
Check ROM
_YeS ; No
Display error
message
Display 9

error Check Expansion
message Card
No

ROM2 exist?

F@00:8000=MT@?

Check ROM2

Yes
Error?

Display error

message No

(%heck Expansion
Card

The ROM checksum routine starts by checking if the ROM chips on
the system board are 2764 ROM chips or 27128 ROM chips. A three-
byte ROM identifier is stored in the first three bytes of each

ROM. The first two bytes are stored with the two characters --
MT -- which represents Multitech. ° When the ROM checksum routine
detects the two characters, it determines that the ROM is stored

with the codes designed by Multitech. The third byte of a
Multitech's ROM is always filled with an ASCII characters in the
range from @ through 6. The ROM checksum routine decodes the
three-byte ROM idenfifier as follows:

MT@ = ROM2 (in which MPF-1/88 line assembler and dis-
assembler are stored.)

MT1 = TVB - TV interface ROM

MT2 = Auto-run ROM such as a BASIC interpreter.

MT3 = Printer interface ROM

MT4 = ROM for EPROM programmer board

The ROM checksum routine distinguishes a 2764 and 27128 by
checking 1if the contents of the first three bytes starting £from
CO@@H are MTH. If it is, then 27128 is used as the monitor ROM.
Otherwise, the routine assumes that 2764s are used as the monitor
ROM.

If a 27128 is detected, the routine will proceed to perform the
actual ROM testing procedure. If an error is detected, it will
display the error message. Otherwise, it will proceed to perform
the expansion card test.

I1f a 2764 is detected, the routine will proceed to perform the
actual ROM testing procedure by checking ROM1 first. If an error
is detected, it will display the error message and proceed to
detect whether ROM2 exists. It determines whether ROM2 is
inserted by checking whether the contents of the first three
bytes starting from 80¢0H are MT@. If it is, ROM2 exists. Other-
wise, it will proceed to perform the expansion card test. If an
error is detected during ROM2 testing, it will display the error
message and then proceed to perform the expansion card test.

If an error 1is detected during a RAM or ROM test, you are
suggested to replace the defective RAM or ROM chip with a good
one. If you don't know how to replace the ICs, consult vyour
local distributor for service.

Expansion Card Test

Expansion cards are assigned the segment address E@U0H. The
expansion card test routine tests memory in 4K bytes increments.
The first three bytes of the ROM module on an expansion card are
stored with ROM identifier as mentioned before.

When an expansion card is detected, the initialization routine

for that card will be executed. The address of the initializa-
tion routine 1is stored starting from the fourth byte on the

2-4

expansion card. However, if an auto-run ROM is detected on the
expansion card, the code stored in that auto-run ROM will be
executed immediately. Thus, no initialization routine is exe-
cuted when an auto-run ROM is detected.

Since the initialization routine starts with a CALL FAR instruc-
tion, you must use a RET FAR instruction starting from the fourth
byte on the expansion card to skip the initialization routine if
you intend to design your own applications with an initialization
routine. However, when designing your own applications, be care-
ful not to change the contents of the system stack.

If auto-run ROMs are inserted on both the system board and the
expansion card, the one on the expansion card is executed since
it is assigned with higher priority than the auto-run ROM on the
system board.

A cold reset cycle is completed when the cxpansion card test 1is
finished.

WARM START

During a warm start, the system performs the following tasks:

. Create system vector table.

Create interrupt vector table.

Initialize printer port.

Initialize keyboard.

. Initialize RS=-232 port - Baud rate 96060, two stop bit, even
parity check, seven-bit word length.

Generate a beep sound.

. Check if an AUTO-RUN ROM is inserted in the empty socket
reserved for an AUTO-RUN ROM or on an expansion card. If an
AUTO-RUN ROM is present, the program contained in that AUTO-
RUN ROM executes automatically.

o L B
.

~1
.

To return the control to the monitor program, you can use the
interrupt instruction INT 7.

I/O Programming

AENREE S YL SRR

rhis chapter is a brief introduction to input/output programming
on the MPF-I1/88. The information provided here allows vyou to
gain some ideas on I/0 device programming. The chapter on useful
monitor subroutines gives you some information on using built-in
service routines to perform a variety of I1/0 tasks, but curious
users and those developing special applications may be interested
in writing their own routines to perform I/0 directly.

I1If you do not intend to program the the 1/0 devices directly,
this chapter can be skipped without harm. But as you get more
and more familiar with the hardware and software of 8088, you may
want to refer to this chapter.

If you are interested in I/0 programming, you should not rely
totally on this chapter to get familiar with I/0 programming
concepts. The monitor program source listing and the information
presented in the Software Reference Manual are also very valuable
sources of information.

There is a wide variety of I1/0 devices on the MPF-I1/88., Some of
the I/0 devices such as the screen and the printer can be used
for output only. Others such as the keyboard are capable of
inputting data. Others, such as the tape interfaces or serial
interface, can both input and output data.

For an I/0 device to be functional, the three following condi-
tions must be met:

1) An interface circuit must be available. An interface circuit
is a communication line via which the 1/0 device can talk to
the system.

2) An I/0 device driver must be available. A device driver is a
program which drives the I/0 device so that the I/0 device can
interact with the system.

3) The I1/0 device must be installed or loaded into system memory.

If you intend to design your own I/0 devices in the future, you
may need to write your own device drivers. You may also include
a device driver in your own application program for a specific
application. The best way to learn I/0 programming is to trace
the existing device driver programs instruction by instruction.
For the MPF-I/88 system, the device drivers are all included in
the Monitor Program Source Listing.

3.1 1/0 PORTS
3.1.1 Memory-Mapped 1/0

There are two common ways to design I/0 support circuitry on
microcomputers. One is that I/0 devices may be memory-mapped.
I/0 devices may be accessed through memory locations. In a
computer system, an I/0 device is said to be memory-mapped if it
is accessed through memory locations.

3.1.2 1/O-Mapped |I/O

A more common practice in computer design is to use 1/0 ports for
data transfer between the system and external devices. Each 1/0
device configured in a system is assigned with a specific 1I/0
port address. The MPF-1/88 uses this latter method. When data is
to be transferred to a device, the OUT instruction is used. When
data 1is to be transferred from a device to the system, the 1IN
instruction is used.

3.2 1/0 Port Addresses

The 1I/0 port addresses assigned to I/0 devices attached to the
MPF-1/88 are listed as follows:

LCD:
Read Write
Command 1A2H 1A@H
Data 1A3H 1A1lH
Printer:

Printer output data port: Port 1E@H
Printer strobe (STB): Bit 7 of port 18@H
BUSY (printer): Bit 6 of port 1C@H.

Keyboard:

Keyboard array output: Bit 3 through Bit @ of port 18¢H and bit ¢
through bit 7 of port 168H.

Keyboard array intput: Bit @ through 4 of port 1COH.

Contrel key: Bit 5 of port 1C@H.

TAPE-OUT (beep): Bit 6 of port 180H.

TAPE-IN: Bit 7 port 1C#H.

3.3 The Printer Driver

The printer driver is a routine which is designed to send data
from the system to the printer. Data to be output to the printer
is first sent to the printer port 1lE@GH through AL register. The
system will then test if the printer is busy by checking bit 6 of
port 1COH. If the printer is not busy, data will then be sent to
printer buffer. When a low (zero) is sensed on the STROBE 1line
(bit 7 of 18B@H), data is sent from the printer buffer to the
printer.

When the printer routine is called, the system will first save
the system status by pushing the contents of all registers onto
the stack and then alter the contents of the Data Segment
register so as to point to system data. After a data transfer
has been completed between the system and the printer, the
STROBE line will again be pulled high and the printer driver will
return the result of a data transfer via the AH register. If a
data transfer 1is performed successfully, then a zero will be
returned to the AH register. If a data transfer is not performed
successfully, then a one will be returned to the AH register.

3.4 Programming the Display

The LCD is programmed through four I/0 ports - 1A@GH, 1AlH, 1AZ2H,
and 1A3H. When a command is to be written to the LCD, port 1lA@H
is used. When a command read is to be performed, port 1A2H is
used. Data is output to the LCD via port 1lAlH, and input to the
LCD via port 1A3H.

To program the LCD, vyou must refer to the data sheet of the LCD
display, which is in an appendix, and the display driver, which
is included in the MPF-1/88 Monitor Program Source Listing. The
programming techniques for LCD is also explained in a chapter of
the MPF-1/88 Reference Manual.

3.5 Keyboard

The keyboard matrix consists of 12 column lines and five row
lines. The system scans the keyboard every 15 milliseconds.
During a keybocard scan one of the 12 column lines connecting to
the bit @ through bit 3 of port 18@H and 8 bits of I/0 port 1606H
and is pulled low, while the other 11 column lines are high. When
a key is pressed, a low pulse is sensed on one of the row lines
and a code is sent to the system. Please refer to the keyboard
matrix chart and a chapter of the MPF-1/88 Software Reference
Manual.

3.5.1 The Control Key

Bit 5 of output port 1C@H is used by the Control key. When the
Control key on the keyboard is pressed, this pin is active.

3.6 Auvudio Interface

When data is to be transferred from the system to tape, it is
sent through bit 6 of output port 1B0OH using the OUT instruction.
Output to the buzzer is also sent through this bit.

When data is to be read from tape to system, it is sent through
bit 7 of input port 1C@H using the IN instruction.

3.6.1 Tape Format

Each time the system writes data to tape, data is recorded onto
tape in a fixed tape format. The tape format is defined below:

1) Leader tone: 256 consecutive bytes of 00@.

2) Sync bit: 1

3) Sync byte: @16H

4) Data: 256 bytes of data are stored as a block (data record).

5) CRC bytes: Each data block is followed by two CRC (Cyclic
Redundancy Check) bytes.

6) Tailer : The tailer consists.of four bytes.

The leader tone is designed to act as a signal, enabling the
system or tape recorder to detect incoming data when data is to
be transferred.

The sync (short for synchronization) bit is sometimes referred
to as a framing bit or start-stop bit. The system outputs this
bit to tell an external device (in this case the tape recorder)
that a data transmission is to occur.

The sync byte is used as a data transmission protocol; i.e., when
data is read from tape to system, if a correct sync byte is read,
then data can be transmitted to the system. If the correct sync
byte is not found, the interface driver will search for the
leader again.

Data 1is stored on tape as a series of 256 bytes of data records.
Each 256-byte data record is followed by two CRC bytes. The CRC
bytes are used for checking errors during data transmission. The
CRC bytes are written onto tape after each data record when data
is stored onto tape. When data is read from tape to system, the
system will generate two CRC bytes according to the preceding
data record read. Then the two CRC bytes so generated will be
compared with the CRC bytes. If the contents of CRC bytes match,
this signals that a data record 1is transmitted correctly.
Otherwise, an error occurred during the data transmission.

The tailer marks the end of a file.

The MPF-I/88 tape-format is illustrated as follows:

MPF 1/88 TAPE FORMAT

TS

il

File_leader
256 bytes
ngn

Sync
bit

mpw

Sync
byte
"@Ll6H"

FILE_HMESSAGE_DATA
8 bytes: filename
1 byte: filename
delimiter "ag"
4 bytes:
address;
Deg.:u!il.l

starting

File_ leader
256 bytes

nppw

2 byte!i file length

Sync
bit

Sync
byte
"@LEH"

Data

CRC
256 bytes 2
bytes

T

Data
256 bytes

CRC aller
4

bytes Bytes

The
data

system memory.

b |

IBM PC TAPE FORMAT

(=
—

1

cassette interface driver also allows cassette tape on which
is stored in IBM PC cassette tape format to be loaded
The IBM tape format is illustrated as follows:

into

IL rgd ry s
—43 } 3 I
File_leader| Sync| Sync Data CRC Data CRC Data CRC Tailer
256 bytes bit | byte | 56 bytes 2 256 bytes 2 256 bytes 2 4 I
"PE™ g~ |"@16H" by tes byte rrtes Bytes
i e ot I l]
3 AT -
1) Leader: 256 consecutive bytes of FF.
2) Sync bit: @
3) Sync byte: 01l6H

4)

5)

Filename delimiter:

One byte of filename delimiter - 00

stored immediately following a filename.

6)

Starting address:
of file.

address
for the segment address and two bytes for the offset address.

5)

The

data

File length :

record on an IBM formatted tape is also formed by

bytes, which is followed by two CRC bytes.

Filename: The filename is stored in eight bytes.

is

Four bytes are used for storing the starting
The starting address consists of two

bytes

The length of a file is stored in two bytes.

256

Bt o S R
IESESSESEEE MPF-1/88 Circuit
Heeeammmms Description

(R T T R R
B R
B SRR
sl R
e e g |
R ARU RN NN
o B O T
T T S O e A

This chapter will give you a brief circuit description of the
MPF-1/88. After reading this chapter, you will have some ideas on
how the hardware components function in the system. For the
readers who are not interested in the hardware aspects of the
system, this chapter can be skipped. However, for the readers
who are interested in the hardware and intend to expand the
system for their own special applications, this chapter should be
read thoroughly while tracing the schematics.

We will cover the functional components of the system in the
following order:

1. The CPU and its support circuitry, including
l) System timing circuit,
2) System wait logic,
3) System reset circuit,
4) Interrupt leogic,
5) Bus buffer,
6) Memory and I/0 device decoders.

2. System memory,

3. Input/Output interface logic.

THE CPU AND ITS SUPPORTING LOGICS

1) System Timing Circuit

The system timing circuit consists of a 14.318 MHz crystal
oscillator and the 74LS@4 at board location U4. A frequency of
14.318 MHz is generated at pin 2 of U4. This signal is divided
by three to obtain a frequency of 4.77 MHz at pin 3 after going
through the divide-by-three circuit at Ul@. The clock frequency
of 4.77 MHz is supplied to pin 19 of U3 (the CPU) as system
clock and the 62-pin expansion slot (EXT-BUS).

2) Wait Logic

The wait state logic is necessary to pull the READY input (pin
22) of 8088 low while the system is performing an I/0 read or
write. The wait state logic consists of the ICs on U5, U6, U9,
Ul3, and Ul4. When the system (CPU) is going to perform an I1I/0

read or write, the outputs of 8088's RD (pin 32) and WR (pin 29)
will be ANDed at the AND gate at U6, whose output will then be
sent to pin 1 of the dual 2 to 4 line decoder at Ul4. Since the
8088's I0/M output (pin 28) is sent to pin 2 of Ul4, pin 4, 5, 6,
7 of Ul4 will generate one of such signals as MEMR, IOR, MEMW,
TOW depending on the states of the two inputs of pin 1 and pin 2.
The signal lines of MEMR, 1IOR, MEMW, IOW are connected to the
pins B12, B14, Bll, and B13 of EXT-BUS through the octal bus
driver 74LS244 at Ul3.

IOR and IOW, after going through EXT-BUS, will again be ANDed at
U6 and output from pin 3 of U6 to pin 13 of U5 (a guad 2 input OR
gate) . The output of the OR gate will be supplied to the READY
input of 8688 (pin 22) through a dual D type flip flop 74LS74 at
U9 in order to generate a wait cycle. (Note that the input to pin
11 of U9 is supplied by pin 2 of Ul@ so that the negative portion
of a system clock cycle can be used for system synchronization.)
In case a longer period of wait state is needed by a peripheral
device, a low pulse can be sent through line Al0 I/0 CHANNEL
READY of the EXT-BUS to pin 13 of U9 to insert extra wait states.

3) System Reset Circuit

The RESET signal is first sent to the system reset circuit at pin
1 of UB (74LS14 - a hex inverter Schmitt Trigger) from the
keyboard. After the RESET signal is squared up by the Schmitt
Trigger, it is supplied through pin 3 (of the Schmitt Trigger) to
pin 21 of the CPU to initialize a system reset cycle. The RESET
signal is also present to line B2 of the EXT-BUS. Pin 4 of the
Schmitt Trigger 1is connected to pin 1 of U21 and U22 (octal D
type flip flop with clear) to clear the contents of the flip
flop.

4) Interrupt Logic

An interrupt request generated by a peripheral device is first
sent to the CPU through line B8 of EXT-BUS to pin 13 of US8. It
is then sent to INTR (pin 18 of 8088) through pin 11 of U4 (a hex
inverter). After the INTR signal is accepted by the 8888, it
will generate an interrupt acknowledge (INTA), a low active
pulse. The low pulse is sent to the interrupting device through
line B5 of the EXT-BUS.

Users can apply a shorting plug (close jumper) at JP2 in order to
route interrupt requests from IRQ2, IRQ3, 1IRQ4, and IRQ7 to the
8088, We will describe how to route interrupt requests to the
8088 later. Note the close jumper is provided in a standard MPF-
1/88. package. It is illuatrated as follows:

‘\--“~ Diagram of a Close Jumper
L~

If you have an adapter card such as the IBM Parallel Printer
Adapter (which wuses IRQ7 to interrupt the 8#88), you can plug
this adapter card intc the optional expansion unit (or a 62-pin H
connector which you can solder to the position reserved for it on
the main PC board) and apply the shorting plug to route IRQ7 to
8088. Note that the shorting plug is applied to the desired pair
of pins as illustrated in the following chart.

JP2

(IRQZ2) 1| © ©
(1RQ3) 2| O ©
(IRQ4)'3 o o }TO CPU INTR
(IRQ7) 4

The hardware design of MPF~1/88 allows the 8259 Programmable
Interrupt Controller to be used to handle interrupt processing.
If you intend to use an 8259 to handle interrupt processing with

the system, the shorting plug is applied to JP2 in a different
way.

Take for example that an adapter card using IRQ2 to interrupt the
8088 1is to be used together with the 8259 interrupt controller.
You can plug this adapter card into the optional expansion unit
(or an on-board 62-pin H connector installed on the main PC

board by yourself). And then plug the 8259 card into the expan-
sion unit.

After you have configured the system this way, the close jumper
can be applied to JP2 as follows. Note that when an 8259 is used
in the system, the close jumper should only be applied to any two
of the four pins on the right column, and 8259 pin 17 (INT) is
connected to pin BB (INTR) of the expansion unit.

JP2

(IRQ2)1| O O
(IRQ3) 2
(IRQ4) 3
(IRQ7) 4

TO CPU INTR

00O
[©[o]o

5) Bus Buffer

The bus buffer consists of Ul (74LS373 - octal transparent
latch), U2 (74LS244 - octal tri-state bus driver), Ull (74LS373),
Ul2 (74L8245 - octal tri-state bus transceiver), and Ul3

(74L5244). The 74LS373 at Ul is used as a latch for the high
order address/status lines Al6/83, Al7/s4, Al8/S5, Al19/S6, DT/R,
SS@, and I0/M. The 74LS244 at U2 serves as a bus driver for the
eight address lines ‘AB through Al5. The 74LS373 at Ull acts as a
latch for the eight multiplexed address/data lines AD@ through
AD7. Because the system uses multiplexed bus configuration, pin
25 of 8@88 (ALE - Address Latch Enable) is connected to the clock
inputs (pin 11) of the two latches at board location Ul and Ull
through pin 13 of the bus driver at Ul3. With the ALE 1line
connecting to the two address latches at Ul and Ull, wvalid ad-
dress can be latched at the first T state of a bus cycle as soon
as the ALE signal is pulled high. Pin 3, 8, and 18 of Ul are
connected to IO/M, DT/R, and SS@; since they are combined to
reflect the state of system bus cycles. They also determine the
state of the red LED, which is illuminated when the system is in
a HALT state.

6) Memory and I/0 Device Decoders

a. The ROM/RAM Decoder

The 74LS139 (dual 2 to 4 line decoder) at Ul4, 74LS5138 (3
to 8 line decoder) at U7, and the 74LS138s at Ul6 and UlS
are used as memory and I/0 device decoders. The line
decoder at Ul4 is the RAM/ROM decoder. Pins 13 and 14 of
the line decoder, together with pin 6 of U6, determine
whether ROM or RAM is to be selected.

b. The ROM Decoder

The ROM decoder is located at U7. Pins 3 and 6 (address
lines Al6 and Al7), pins 1 and 2 (Al4 and Al5), and pin 5
of the ROM decoder determine the states of the three out-
puts ¥5, Y6, and Y7 (pins 7, 9, and 10) of U7, which in
turn govern which ROM chip is selected. Either two 8K x 8
or 16K x 8 ROM chips can be used as system ROM. The
standard MPF-1/88 1is built with one 16K x 8 ROM chips.
Thus, the standard MPF-I1/88 has a total memory capacity of
16K. '

If Al16 = 1, Al5 = @ and Al4 = 1, then Y5 is palled low.
When Y5 is pulled low, the ROM chip installed at U280 1is
enabled. The starting address of this ROM chip is F4000.

If Al6 = 1, Al5 = 1 and Al4 = @, then Y6 is pulled low.
When Y6 1is pulled low, the ROM chip installed at Ul9 is
enabled. The starting address of this ROM chip is FB8004d.

If Al6 = 1, Al5 = 1 and Al4 = 1, then ¥7 is pulled low.
When Y7 is pulled low, the ROM chip installed at Ul8 is
enabled. The starting address of this ROM chip is FC@00@.

The RAM Decoder

The RAM decoder is located at Ul6. The state of pin 4 of
Ul6 is determined by Alé and Al7. The state of pin 5 of Ulé6
is determined by 213 and Al4. The outputs of Ulé, Y@, Y1,
and Y2 - are determined by pins 4, 5, 2 (Al2), 1 (All), and
3 (Al5). Either 2K x 8 or 8K x 8 RAM can be used as system
RAM. If 2K RAM is used, the RAM decoding is shown as
follows:

If zero is present on Al5, Al4, Al3, Al2, and All, then Y0
is selected. 1In this case, the starting address of the RAM
selected is (0000.

1f zero is present on Al5, Al4, Al3, and Al2 but with All =
1, then Y1 is selected. 1In this case, the starting address
of the RAM selected is 00800.

If Al15 = ¢, Al4 = @, Al3 = @, Al2 = 1 and All = @, then Y2
is selected. 1In this case, the starting address of the RAM
selected is @1000.

If 8K RAM is used, the RAM decoding :is shown as follows:

If A15 = ¢, Al4 = @, and Al3 = @, then Y@ is selected. 1In
this case, the starting address of the RAM selected is
Poee06 .

If A15 = 6, Al4 = @8, Al3 = 1, then Y1l is selected. 1In this
case, the starting address of the RAM selected is 02000.

If A15 = 6, Al4 = 1, and Al3 = @, then Y2 is selected. 1In
this case, the starting address of the RAM selected is
g4000.

If 8K RAM 1is used, JP3 and JP4 should be re-routed as
follows:

JP4 JP3
2K x 8 Closed Open
8K x 8 Open Closed

The I/0 Decoder

The 1/0 decoder is located at UlS5. pins 1, 2, 3 (AS
through A7), 4, 6 (A8, A9), and 5 (IOR or IOW) of the I/0
decoder are used to determine the I/0 decoding. Devices
accessed through Ul5 are: 1) the display (I/0 port address
1A@), 2) the keyboard (I/0 addresses 160, 180, and 1C0), 3)

4-6

the printer (I/0 address 1lE@), and 4) the audio interface
(I1/0 addresses 18¢ and 1C#). When an I/O0 port is selected,
the corresponding output of the decoder (Y3, Y4, Y5, Y6,
¥7) is activated. :

SYSTEM MEMORY

The system ROM chips are located at Ul8, U192, and U206, while the
RAM chips are located at U23, U24, and U25. Either 8K or 16K
ROMs can be installed at locations Ul8, Ul9, and U26. Either 2K
or 8K RAMs can be installed at locations U023, U024, and U25.
Jumper wires should be applied to U7 or Ul6é in order to select
the type of RAM chip used.

INPUT/OUTPUT INTERFACE LOGIC

The outputs of Ul5 (Y3 through Y7) determine exactly which 1I/0
port is accessed. U2l and U22 are used as the latches for
keyboard output data, while U26 1is used as the driver for
keyboard and tape input data. U27 and U8 are used for processing
input signals from the Tape. Tape output signals are sent
out from the output of U021 (pin 5). This pin also determines the
state of the buzzer and the green LED.

Pin 3 of U28 (555) generates a 15 ms clock as the source signal
for NMI. Pin 4 of U9 1is programmable. It can be strapped low
to disable an NMI request from pin 4 of U9 when it is desired
that an NMI from this pin not to be generated.

Ul7 is used as a latch for printer output data.

The 7865 1is a voltage regulator that converts +9V input to +5V
ocutput. The +5V voltage needs to be supplied to the system for
proper operation. A switching power supply must be used to supply
the needed power when expansion card is to be installed to the
system.

K
U2l pin 9 L] T
for disable NMI 109K ;0-14&14
3 2[PR
D
555 -

3

6
CK Qp— NMI
AQ >—J

Description of 1/O
Device Drivers

5.1 Cassette Output Device Driver

Without a device driver for writing data to tape, you have no way
to store data onto tape even if the hardware circuit supports an
audio output interface.

Before discussing the tape write device driver, we will describe
the relationship between the tape write device driver and the
command interpreter, which will affect the way the device driver
executes. '

COMMAND INTERPRETER

The MPF-I/88 monitor program contains a command interpreter,
which prepares a user-entered monitor command in such a way that
it becomes easier for the monitor to process the entered command.

A monitor command is always entered with the command character.
For example, if a tape write is to be performed, then the command
character is W. Sometimes a command is entered with addresses and
user-specified information. For exampie, 1f you intend to write
information to tape, the command line may appear as follows:

>W 1606:060 80 /'TEST

Once this command line is entered, the command interpreter will
count the number of addresses contained in the command line and
store this number into CH. It will also count the number of
bytes entered as user-specified information and lecad the number
into CL. 1In the above, example, the number of bytes is four since
each of the character in a filename takes one byte.

Each time a monitor command is entered, the command interpreter
will be called. When being called, the command interpreter will
process the command line entered in the manner described above
and then pass the necessary information of the command interpre-
tation process and control to the individual monitor command for
further processing.

SOME BASIC MACRO ASSEMBLER DIRECTIVES

Before going any further to explain the tape write device driver,
it is necessary to pause for a while to study the Macro Assembler
directives since the monitor program was assembled using Micro-
soft's Macro Assembler. In order to trace the monitor program
thoroughly, you must be familiar with the use of the Macro
Assembler.

The PROC Assembler Directive

The tape output driver W_CMD begins with the MS-DOS Macro
Assembler directive PROC (short for procedure). The PROC direc-

tive is used to make the program more readable to users. During
program assembly time, it tells the assembler that a whole PROC
block is to follow. In other words, a block of assembly program
instructions will follow the PROC assembler directive. A PROC is
executed from a CALL or JMP instruction. For more details of the
MS-DOS assembler directives, vyou can refer to Microsoft's Macro
Assembler Manual. If you don't have that manual, consult your
MPF-1/88 distributor for information on how to purchase that
manual.

The W CMD procedure contains the following important procedures:

FILE WRITE
TAPE_WRITE
WRITE_1 BYTE
WRITE_1_BIT

Write MPF-1/88 tape format to tape.
Write IBM PC tape format to tape.
Write one byte to tape.

Write one bit to tape.

The functions of these procedures will be explained later. After
reading the descriptions of these procedures, you are suggested
to trace these procedures instruction by instruction. Tracing a
program is the best way to learn programming.

Now you are suggested to find the W CMD procedure in the MPF-1/88
Monitor Program Source Listing. To get to know how to read the
monitor source program, you need to refer to the Microsoft's MS-
DOS Operating System Macro Assembler Manual and Microsoft's
Cross-Reference Utility for MS-DOS Operating System. I1f you do
not know how to get these two manuals, please consult your MPF-
1/88 distributor. But even if you do not have the two manuals at
hand, we will still teach you how to read the monitor source
program,

Po find the W_CMD procedure, you need to use the cross reference
section of the monitor source program listing. The first page of
the monitor source program listing comes under the heading

The Microsoft MACRO Assembler, Version 1.25 Page 1-1

That message says that the monitor source program was assembled
using Microsoft's MACRO Assembler, Version 1.25. Since there are
several different versions for the Macro Assembler, it is
important to note the version number in order to distinguish
among different versions. Page number is printed together with
the heading on each page for easy reference. What comes on the
next line following the heading is the date it tells when the
monitor source program was assembled. A general practice is that
a monitor program will have to be assembled for many times before
it is finally released. From the program listing of the MPF-I1/88
monitor program, you will know that the current release of the
monitor program 1is based on the source program which was
assembled on Jan. 17, 1985. Sometimes it is possible for a
company to upgrade the software without prior notice..

SYMBOL TABLE

Thumbing through the monitor source program listing, you will
discover that there are 78 pages which are printed under the same
heading. Then vyou will come across the part designated as the
symbol table for the source program you have just gone though.
The symbol table lists all the symbols used in the program and
gives such information as type, value, and attribute related to a
symbol. Please refer to Microsoft's Macro Assembler Manual for
details. The symbol table comes under the heading:

The Microsoft MACRO Assembler, Version 1.25 Page Symbols-1
You will find that there are a total of 14 pages of symbol table.

CROSS REFERENCE

Then comes the cross reference section which is printed under the
heading:

Symbol Cross Reference (# is definition) Cref-1

You will find that there are a total of 14 pages of cross
reference.

The most efficient way to find a routine in the source program
such as W CMD is to use the cross reference. The entries in the
cross reference section are listed alphabetically. To find the
location of the procedure W_CMD, you should go through the
entries until you found W_CMD. On page 14 (Cref-14) you can
locate the entry of W CMD. It is listed as follows:

WCMD tiiieennnnns eeee. 2940% 2991 4083

The three numbers following the procedure name W_CMD are the line
numbers affixed to each program line in the monitor source
program listing by the Macro Assembler. Note that each line of
the monitor source program listing is prefixed with a line
number. The three numbers are where you can find the name W_CMD.
The line number with a # sign is where the name W_CMD is defined.
To find out how W_CMD works, you should refer to line 294¢ which
is located on page 1-54.

The ASSUME Assembler Directive

Following the CLI instruction is the assembler directive ASSUME.
This directive tells the Macro Assembler where (in which segment)
symbols can be referenced. In the tape output driver program,
symbols can be referenced through CS and DS registers. The code
segment 1is pointed to by CS register and the data segment is

5-3

pointed to by the DS register.
LABEL

To output a bit from the system, vyou must first 1load the DX
register with the I/0 port address (188H), which is specified by
the label TAPE_IC_OUT. A label is a name which is converted to
an address when the program is assembled by the assembler. A
label 1is usually the destination for a JMP, CALL, or LOOP
instruction.

For more detailed definition for LABEL and the use of the LABEL
directive, please refer to Microsocft's Macro Assembler Manual.

The W_CMD procedure contains the following labels:

W_CMD_1
W_CMD_2
FILE_LEADER
WRITE_BLOCK
WRITE_CRC_BYTE
WRITE_TAILER

When a program is too complex to trace, you are suggested to
trace the labels first and then you will be able to know the
program 1logic, based on your understanding of labels and
procedures.

Now we are going to introduce to you some basics on the write-to-
tape device driver.

Bit 6 of the output port TAPE_IO_OUT is the bit from which data
is written out

When information is to be output from the system, bit 6 of the
port specified by TAPE IO _OUT is used to send out the bit string.

Disable Interrupt

The DISABLE_INT routine clears the interrupt flag and NMI
interrupt so that a tape write operation will not be interrupted
by another event.

OUTPUT A BIT 1

When information is written to tape, actually a bit string con-
sisting of zeroes and ones are output serially from bit 6 of
TAPE_IO_OUT port.

When a one is to be output, bit 6 of port 1B@H actually outputs a
one ms (millisecond) pulse with a high 500 ns (nanosecond) half
cycle and a low 500 ns half cycle. -

OUTPUT A BIT ¢

When a zero is tec be output, bit 6 of port 18@H actually outputs
a 0.5 ms (millisecond) pulse with a high 25@ ns (nanosecond) half
cycle and a low 250 ns half cycle.

FUNCTIONAL DESCRIPTION OF TAPE OUTPUT DRIVER

The following is a functional description of the tape output
driver W_CMD.

After the command information as processed by the command inter-
preter is submitted to the individual command, the individual
command will examine if the command is entered according to the

command syntax. If it is entered according to the command
syntax, a CALL or JMP instruction will be executed to perform the
desired functions. If not, the command will set the Carry flag

and a RET instruction will return program control to the command
interpreter, which will then display the error code telling the
user that the command entered is not executable because of com-
mand syntax error. Note that when an error is detected by the
individual command, it will always set the Carry flag to let the
command interpreter know that an error has occurred..

For the W CMD routine, it will first check 1f the entered command
follows the defined syntax of the command. If not, an error
message will be shown. The W CMD routine assumes that a memory
range will be output to tape, ~thus the starting address of the
memory range should always be smaller than the ending address,
If the starting and ending addresses are entered otherwise, then
a range incorrect error will be displayed.

FILE_NAME_FILLER -- Filler Bytes

After W CMD has performed the command syntax and the memory range
checks, it will check whether the length of filename is less than
eight characters. The 1length of a filename should never be
greater than eight bytes (characters). 1If it is greater than
eight characters, then error message will be displayed by the
command interpreter. If the filename length is less than eight
characters, the W_CMD routine will continue by calling the
FILE NAME_FILLER.

An 8-byte memory space is reserved for the characters which make
up the filename. If less than eight characters are used, FILE_
NAME FILLER will fill the unused memory space with the ASCII code
for the space character (20H) and execute a RET to the main
program to execute W_CMD_2. W _CMD_2 will place the end of file-
name code (@A@H) to the position immediately following the memory
space containing the filename. The remaining instructions of
W_CMD_2 are designed to prepare a set of pointers and counter
such as the ES, SI, and CX. The ES and SI are loaded with the

segment and offset addresses of the starting address, respec-
tively, while CX is loaded with the value of file length.

FILE WRITE -- Writing MPF-I/88 Tape Format to Tape

After loading the pointers and counter with appropriate values,
the tape output driver will write the MPF-1/88 tape format to
tape. MPF-1/88 tape format is described below:

MPF 1/B8 TAPE FORMAT

45 T

¢ £
FILE_MESSAGE_DATA L
B bytes: filename
F[Au_leade(Sync | Sync |1 byte: filename . Svn
256 bytes | bit |byte delimiter “s@= F;;:_;eader ch
mgm | omye rnﬁnu 4 bytes: sr_artmql e Ytes bit b

Data | crc

156 bytes

CRC
2

Data

Syne 256 bytes

byte

[Tailer
4

2
by tes| Bytes
|

J

|
address; | |
seg.iolfset i
] 2 bytes: file length | | ‘
: i

1 L
3T =T

The MPF-1/88 tape format starts with a file leader. The file

leader 1is 256 consecutive bytes of zeroes. The file leader 1is
designed to 1let the system know that a file is about to start
when data is to be read back to the system. After writing the

leader to tape, the tape output driver will write a, sync bit 1
and a sync byte 16H, which is followed by the filename, starting
address of the memory range to be ocutput, and file 1length, to
tape.

Writing a #.2 Second Delay to Tape

Since the tape input device driver is designed to be able to read
information stored in IBM Personal Computer tape format, the MPF-
1/88 tape output driver will also write the IBM PC tape format to
tape with the TAPE WRITE procedure. But before writing the IBM PC
tape format to tape, a ©.2 second delay is output to tape to
separate the MPF-1/88 and IBM PC tape format.

TAPE_WRITE =-- Writing Data Block to Tape

After writing the 0.2 second delay, the tape output device driver
will write data block to tape.

WRITE BLOCK

This block of instructions (sometimes a block of instructions is
also called a program module) performs the actual data output
operation. It calls WRITE BYTE, and WRITE 1 BYTE in turn calls
WRITE 1 BIT in order to output data to tape.

WRITE_FILLER BYTE

Data is written to tapé in units of 256 bytes. In other words,
256 bytes form a data record. 1If the-data to be recorded unto
tape 1is 1less than 256 bytes, the unused bytes are filled with
filler bytes, which is meaningless to the system when they are
read back from tape. Since one data record is insufficient for
recording the tape format, the unused area of the second data
record is filled with filler bytes. i

WRITE_1 BIT and WRITE 1 BYTE

Data is written to tape one bit at a time. The data bit to be
output is first placed in the Carry flag and then output to bit 6
of port TAPE_IO_OUT. One byte of data is output by using the
LOOP WRITE_ALL_BIT instruction.

WRITE_CRC_BYTE

When WRITE_1 BYTE is executed, the subroutine CRC_GEN (CRC byte
generator) is called. CRC_GEN is called to generate the values
to be placed in the two CRC bytes. After 256 bytes have been
output to tape, WRITE CRC_BYTE will write two CRC bytes to tape.

WRITE_TAILER

After the whole memory range is output to tape, a file tailer
will be output to tape by WRITE_TAILER. The file tailer consists
of four bytes of 1.

A CLOSER LOOK OF WRITE_ 1 BIT

Although we assume that at this time you have cultivated the
habit of tracing the instructions of a program in

order to follow the logic flow of a program, we still feel you

may be interested in some of the programming techniques applied
to write the tape output driver. We will trace the WRITE_ 1 BIT
procedure in more detail below. -

DISPLAY_ 250

After PUSHing CX and AX onto the system stack (This is for saving
the wvalues of CX and AX) for future use, since the values of
these two registers will be altered in the WRITE 1 BIT proce-
dure), the value of the variable DISPLAY 250 (39 = 27H) is loaded
into CX. This value and TUNING_1 (17 = 11H) make sure that when
a zero 1is output, the pulse wave for a zero will consist of a
high 256 ns half cycle and a low 256 ns half cycle as illustrated
below:

| 2s0ns |

L250ns |
PULSE WAVE FOR A BIT @

Note that @C@H 1is loaded into AL in the first instruction of
W BIT @. This value represents a bit pattern of 1100¥0006. This
bit pattern is then output to port TAPE_IC OUT which is addressed
by DX. Note bits 7 and 6 are both one at this time. Bit 6 1is
used to access the TAPE IO OUT port. Bit 7 actually has nothing
to do with tape output driver. However, if bit 7 is set to @,
then you won't be able to activate the printer when you intend to
access the printer later. This is because that bit 7 of port 18@H
is used for printer strobe.

AL 1is ANDed with the wvalue @GBFH in order to set bit 6 of
TAPE IO OUT to zero. After bit 6 is set to zero as a result of
the AND operation, the bit pattern 10111111 is output to
TAPE IO OUT using the OUT instruction. This begins the low 250
ns half cycle of a zero pulse wave.

The Carry Flag

The instruction JNC W BIT @ A in the WRITE 1 BIT procedure is
used to determine if a bit @ is to be output to tape. If it is,
program execution will flow to W_BIT 0 as we have just mentioned.
If the carry flag is set, then"a bit 1 is to be output to tape
and W_BIT_1 will be executed, Note that when a bit 1 is to be
output to tape, the time delay for the LOOP operation will be
lengthened by adding DISPLAY 256 to TUNING 2 (61l = 3DH). This is
because a bit 1 takes a high 500 ns half cycle and a low 5¢@ ns
half cycle to represent. The pulse wave for a bit 1 is illus-
trated as follows:

—soons -—-{——sonrrs-—-—Jl
! I
| [I

The values for DISPLAY_ 256G, TUNING_1, and TUNING_2 are caculated
by summing up the execution time of each instruction involved in
a WRITE 1 BIT operation. You can try to figure out how to
calculate these values as an exercise.

5-8

5.2 Cassette Input Device Driver

Without a device driver for reading data from tape, you have no
way to access data which is stored on tape even if the
information was previously stored on tape with a tape output
(write-to-tape) device driver such as the one we have mentioned
in the previous chapter.

If you have alreédy traced the instructions in the previous
experiment, then the read-from-tape device driver to be discussed
will be easy for you to understand.

Instead of discussing the instructions one by one, we will study
the device driver modularly. 1In other words, the monitor command
R {or +the R CMD procedure) 1is discussed according to the
functions of each procedure used in the tape input device driver.

The device driver allows you to read MPF-I/88 or IBM PC formatted
tape. However, 1if you intend to load a tape of IBM PC tape
format to the memory of MPF-I1I/88, vyou must make sure there is
enough amount of RAM for the program to be loaded.

You are suggested to read the chapter on I/0 Programming of this
manual in order to get some basic I/0 programming concepts before
reading the following paragraphs any further. You are also
suggested to trace the instructions of the procedures carefully
as listed in MPF-I/88 Monitor Program Source Listing in order to
learn the art of 8088 assembly language programming. Tracing a
program can be one of the best ways to learn programming.

After reading the chapter on I/0 Programming and open up your
MPF-I/88 Monitor Program Source Listing, you are ready to read
further.

The device driver (procedure R_CMD) contains the following
procedures:

FILE READ
TAPE_ READ
READ BLOCK
READ_1 BYTE
READ_1 BIT
READ_HALF_BIT

A smart way to learn programming is to trace a program modularly.
You are suggested to try to figure out the function of each
procedure and then the function of labels contained in the R_CMD
procedure.

If a procedure is too complex to trace, examine the functions of
labels related to the procedure first and then you will have some
ideas of how the procedure works to complete a specific task.
This is the kind of decipline that good programmers need.

LABEL

A label is a name that serves as the target of LOOP, JUMP, and
CALL instructions. In other words, a label is wused as the
operand for LOOP, JUMP, and CALL instructions. A label Iis
assigned an address by the assembler. A label is entered by the
program in the source program. After the source program has been
assembled, labels are converted to addresses by the assembler.
Please refer to Microsoft's Macro Assembler Manual for more
details about label,

FUNCTIONAL DESCRIPTION OF THE TAPE-READ DEVICE DRIVER

The following is a functional description of the tape-read device
driver.

Check If a Command Line Is Entered Correctly

To read data from tape, the tape input device driver first checks
if the command line was entered without syntax error and whether
a legal filename was entered.

As you may recall, the command interpreter will submit some data
to the R command (the read-from-tape device driver). The case is
similar to the W command. In case a command line is entered as
follows:

>R <addr>/<filename>

The command interpreter will store the number of addresses
entered in CH and the number of characters which make up the
filename in CL.

Two CMP instructions are used to check if the command 1line was
entered without syntax error and whether a legal filename was
entered. I1f an error is detected, the command interpreter will
display the corresponding error code of that error.

I1f the command line is entered correctly, the device driver will
execute the FILE_READ procedure to fetch the MPF-I1/88 file
leader, including the sync bit, sync byte, etc.

Since data 1is written to tape in a pre-defined tape format as
mentioned in the previous experiment and Chapter 8, I/0 Pro-
gramming, of the MPF-I/88 User's Manual, data is read back into
the system according to the same tape format. Thus, after MPF-
1/88 file leader has been read from tape, the device driver will
execute procedure TAPE READ to fetch the IBM PC tape leader.

After the IBM PC file leader has been fetched, the device driver
will execute the procedure READ BLOCK to fetch the 256-byte data
record and the accompanying CRC bytes.

After all the data records and the accompanying CRC bytes have
been read back to system memory, the device driver will execute

procedure READ _TAILER to fetch the four ‘tailer bytes to complete
the R_CMD procedure.

Unlike the W _CMD which writes to tape one bit at a time wusing
procedure WRITE_1_ BIT, the most critical procedure contained in
the R _CMD procedure is READ_HALF BIT.

A CLOSER LOOK OF READ HALF BIT

The instruction IN AL,DX is used to read data from bit 7 of input
port TAPE IO IN (1C@H) to system. As you may remember, a bit 0
is the equivalent of a pulse whose pulse width is 50¢ ns (con-
sisting of a low 250 ns half cycle and a high 258 ns half cycle)
while a bit 1 is a pulse with a pulse width of §.5 ms (consisting
of a low 500 ns half cycle and a high 500 ns half cycle). A low
is sensed from bit 7 of the tape input port 1COH (using IN AL,DX)
is when nothing is sent from tape. Once a high is sensed, it
means either a bit @ or a bit 1 is read from tape.

Detecting a High from Bit 7 of the Tape Input Port
The instruction XOR AL,TAPE_STATUS does the job.

TAPE_STATUS is a memory location which is assigned with the
variable name TAPE_STATUS by the DB (Define Byte) assembler
directive.

The DB assembler directive tells the assember to reserve a memory
space (which is identified by the variable name TAPE_STATUS) for
a value, which may be altered during program execution.

TAPE_STATUS, as 1its name implies, 1is used to signal the tape
status. If a high is sensed from bit 7 of the tape input port,
the contents of this variable are set to 1. If a low is sensed,

the value of this variable is set to @.

Upon system initialization, the value of TAPE_STATUS is cleared
to @. I1f AL contains a zero, then the zero flag is set and the
instruction JS READ NEXT STATUS will cause READ NEXT STATUS to be
executed again in order to detect a low-to-high transition of bit

7 of tape input port, I1f a non-zero value is stored in AL, then
it means that a low-to-high transition occurs at bit 7 of the
tape input port. After this low-to-high transition is detected,

the value of TAPE_STATUS is altered.

When a low-to-high transition is detected at bit 7 of the tape
input port, it means that either a zero or a one has been read by
the system.

But how does the system distinguish between a bit @ and a bit 1?

The instruction OR CX,CX does this job. CX contains the wvalue
specified by 2 x DELAY 375. This value is ORed with itself in
order to detect if a zero is contained in CX. 1If CX contains a
zZero, it means the counter CX has counted to 2zero when
TAPE_STATUS is changed. If this is the case, a one was read from
tape to system. If the Sign flag is not set, it means a non-zero
result 1is 1in CX (this indicates that a low-to-high transition
occurred before the value in CX was decremented to zero), In this
case, a bit @ is read from tape to system.

It 1is the counter value stored in CX that determines if a bit @
or bit 1 was read from tape. This value is derived from summing
up the execution time of the related instructions.

By storing an appropriate value in CX, you can detect whether a
bit @ or a bit 1 is read from tape in a half cycle.

5.3 RS-232-C Interface Driver

When transmitting data, it can be transmitted serially (one bit
at a time) or in.parallel (eight bit a time). Data 1is usually
transferred to a near-by printer in parallel. But data is trans-
mitted to a remote work station or a computer network via a
serial communications link such as a telephone line.

When two devices are installed next to each other, then it is
much faster to transmit data in parallel than serially. However,
serial data transmission is often used for data communications.
This is because when data is to be transmitted to a remote place,
using serial communications line is much more economical than
using parallel data communications lines.

The major drawback of serial communications is that it takes a
longer period of time to transmit the same amount of data as
compared with parallel communications.

THE EIA RS232-C INTERFACE

Most popular microcomputers support serial communications with
built-in or optional serial communications ports. Currently thers
are several common serial communications interfaces being used,
The most popular serial communications interface is RS5232-C as
set forth in the Electronics Industries Association standard.

CONTROL SIGNALS
Start Bit

In a serial communications link, data is sent out one bit at a
time together with control information. When the system 1is
sending out data, it must have a way to tell the receiving device
that when the data will be transmitted. In reality, the system
will transmit a start bit when data is to be transmitted. A
start bit is usually a logical @ on the transmission line. In
this case, the transmission line is said to be in the spacing
state.

Stop Bit

When a data transmission has been completed, the system must tell
the receiving device that the transmission has completed. This
is done by sending stop bit(s) to the receiver. There can be 1,
1.5, or 2 bits depending on the exact data transmission environ-
ment. After stop bit has been received, the receiving device
does not look forward to receive data from the transmission line
unless another start bit 1s received. A stop bit is normally a
logical high on the transmission line. When the transmission
line is logical high, it is said to be in a marking state.

Parity Bit

When the data communications line is very long, you can add a
parity bit for -each character to be transmitted. Parity bit is
added to ensure the accuracy in data transmission. The parity bit
may be a @ or a 1. If even parity check is selected, then the
number of 1 bits which make up the data bits and parity bit must
be even. If odd parity check is selected, then the number of 1
bits which make up the data bits and parity bit must be odd.

Data Bits

The data bits are transmitted to the receiving device following
the start bit. There can be 5, 6, 7 or B data bits. The number
of data bits must be consistent in the same data transmission.
But the number of data bits may not be fixed in each data trans-
mission. Data bits are transmitted least significant bit first.
By not fixing the number of data bits, the transmission can be
speeded up.

The Baud Rate

The data transmission speed is measured in bits per second (bps).
It is referred to as the baud rate. If a device .is said to
operate at 9606 baud, 1t actually transmit or receive bit string
at 9600 bits per second.

THE 825@ ASYNCHRONOUS COMMUNICATIONS ELEMENT

The job of converting data into a bit string together with con-
trol information would be quite time consuming and difficult for
human beings. Thus, a special-purpose microprocessor is designed
to handle serial data communications - the 8250.

The 8250 can be programmed easily to handle serial data communi-
cations. The 8250 must be initialized before being used. That is
to say you have to tell the 82580 (by using the OUT instruction)
the desired baud rate, the number of data bits and stop bits, and
the type of parity check. such information is generally known as
serial communications protocol,

Please refer to the data sheet provided by the manufacturer of
the 8250 async communications element for more details.

The following 1is a description of a routine for doing RS232-C
serial communications., It is a subroutine contained in MPF-1/88
monitor program. You can use that routine in your own program in

order to perform RS232-C serial communications. Or, you can
design your own RS232-C serial communications routine after you
have become familiar with RS232-C serial communications

programming. You can use the instruction INT 13H to use that
routine, But before invoking that routine by entering the INT 13H
instruction, you should load appropriate values (usually referred
to as input parameters) into the proper 8088 registers., The input
parameters are then passed to the appropriate registers in the
8250.

The RS232-C routine, also called RS232-C device driver, performs
the following four functions:

1) Initializes the 82540.

2) Transmits data - one character at a time.
3) Receives data - one character at a time.
4) Read the status of the 82540.

The RS232-C device driver can be divided into four modules or
blocks. Each module performs a specific function as described
above. The initialization function is identified by the 1lable
FUNG in the program listing. The character transmission function
is identified by the label FUN 1, while the character receive
function by FUN 2. The status read function is identified by the
label FUN_3.

The device driver starts with saving the current state of DX, BX,
and DS registers by pushing their contents onto the stack. The
fourth instruction CALL CDS sets the contents of data segment to
zero. By setting the value of DS to zero, the data stored in the
first 2K system memory for system use (@:0 to B:7FF) can then be
accessed by the RS232-C device driver. The sixth instruction
loads zero into the counter TIME COUNT. Since the counter is
located in memory location 0:51@, the device driver won't be able
to access the counter unless DS points to zero.

Since the AX register will be used for passing input parameters
to the asynchronous communications element 8250, the contents are
loaded into the BX register for temporary storage in the fifth
instruction, which is located in the offset address FCE®6H in the
code segment.

The seventh and eighth instructions - CMP AH,3 and JA R20 - are
designed to determine if a legal function call is made, If the
value stored in AH is greater than 3, than a jump instruction is
executed to return the control to the calling program.

1f the =zero flag is set, it means that the value of AH 1is 3.
When AH = 3, the module (function) for returning 8250 status will
be executed.

The 1@8th and 11th instructions test if @ is stored in AH. If it

5-15

is, the sign status is set to 1 and a jump instruction will cause
the function FUN@ to be executed.

The 12th and 13th instructions test if 1 is stored in AH. If it
is, the sign status is set to 1 and a jump instruction will cause
the function FUN1 to be executed.

If the above Jjump instructions are not executed, then it |is
obvious 2 is stored in AH. If this is the case, FUN_2 is
executed. As you may still remember, FUN_2 is responsible for
receiving data from a RS232-C device. Let's examine how this is
done by the RS232-C device driver.

INPUT A CHARACTER FROM AN RS232-C DEVICE

When data is to be input from an RS232-C device, a message should
be output to the transmission device telling the +transmission
device that the system is ready to receive data. The message
should be sent to the modem control register of the transmitting
8250.

To send information to a register inside 8250, you must know Lhe
address of that register. Two sets of I/0 port addresses can bhe
assigned to the registers inside 8250. The first set of I/0 port
addresses that can be assigned to 8258 registers ranges from 3F8H
through 3FEH, while the second set of 1/0 port addresses which
can be assigned to 8250 regiters starts from 2F8H through 2FEH.
The 1/0 port addresses assigned to 8250 registers are listed as
follows:

I1/0 Port|Input oq

Address |Output Register

3F8H Output |Transmitter holding register
3F8H Input Receiver data register

3F8H Qutput |Baud rate divisor (LSB)

3F9H Output |Baud rate divisor (MSB)

3F9H Output |Interrupt-enable register
3FAH Input Interrupt-identification register
3FBH OQutput |Line-control register

3FCH Output [Modem-control register

3FDH Input Line-status register

3FEH Input Modem-status register

As you can see from the above table, the 1/0 port address for the
modem centrol register is 3FCH. Since the DX is loaded with the
lowest port address assigned to 8250 registers, the first
instruction in the FUN_2 module adds 4 to DX (which contains
3F8H) in order to access the modem control register,

Actually two signals are sent to the modem control register --
data terminal ready (DTR) and request to send (RTS). The two
signals are sent to the modem control register by outputing the
value 3 through AL register.

5-16

After sending the two signals to the transmitting device, bit @
and bit 1 of the modem control register are set to 1. This 1is
illustrated as follows:

LA 3 0 L] i)l
.||'
Active Data-Terminal-Ready Modem Control Signal

Active Request-to-Send Modem Control Signal

*** Modem Control Register **%*

Before receiving information from the transmitting device, you
must also make sure that the transmitting device is ready to send
information. This can be done by reading the modem status
register, which is assigned port address 3FEH. The modem status
register contains eight bits with each bit signaling a specific
status. The modem status register is illustrated as follows:

if big = 1

| [| | T T Status exists
7|8 |s|a]3a |z 1| o

|De1ta Clear
to sSend
Delta Data Set Ready

belta Ring Indicator
Delta Data Carrier Detect
Clear to Send
Data Set Ready
Ring Indicator
Data Carrier Detect

*** Modem Status Register ***

To make sure 1if the transmitting device 1is ready, we check
whether bits 4 and 5 are set to 1. If they are set, i.e., data
set ready and clear to send, the device driver will check the

next condition - if bit @ of the line status register is set. If
it is set, then a character can be input from the transmitting
device. I1f bit @ of the line status register is not set, the
device driver will keep testing bit 0 of the line status register
until it is set to 1. The line status register is shown as
follows:

- 3 ‘ 2 l I [o I Tatus caLscs L 1t

Receive Data Ready
Overrun Error
Parity Error
Framing Error
Break Detect
Transmitter Holding Register Empty
Transmitter Shift Register Empty

Time Out (for Transmit and Receive Calls)

*** [Line Status Register ***

If bits 4 and 5 are not set, the RS232-C device driver will call
the CHK_TIME subroutine. The counter TIME_COUNT is decremented
by CHK_TIME subroutine. 1If the counter is not decremented to
zero, the device driver will loop back to check bits 4 and 5 of
modem status register. Tf bits 4 and 5 are set, the device
driver will check kit 0 of line status register, 1f that bit is
set, then a character will be transmitted from the transmitting
device to the system.

If the counter TIME COUNT is decremented to zero, it is assumed
that no data will be sent to the receiving device and a Jjump
instruction will cause CHK TIME 1 to be executed, This subrou-
tine will set the Carry flag and then execute a RET instruction.
After the RET instruction has been executed, the TIMEOUT subrou-
tine will be excuted. The TIMEQUT subroutine will make another
jump to IN STATUS before returning the control to the calling
program. -

READ THE STATUS OF 8250

FUN 3 1is used to examine the status of 8258. After making this
function call, AH will contain the contents of 1line status
register, and AL will contain the contents of modem status
register.

The first few instructions load zero into CH, and then add 4 to
DX so that DX will point to the line status register. Note that
the instruction MOV CH,@ is used to clear the contents of CH to
@. This instruction, together with OR AL,CH and MOV AH,AL,
sets bit 7 of the line status register to zero. When bit 7 of
the 1line status register is zero, time-out won't occur. The

contents of line status register are first input to AL. After
the 1line statuses are ORed with the contents of CH (zero), the
results are moved to AH. At this time, AH contains the 1line

statuses.

The contents of CH 1is then ORed with themselves. This
instruction is here in order to set the zero flag for future use
by the JNZ RTS instruction. If the zero flag is set, the origi-
nal contents of AL, which was moved to BL in the fifth instruc-
tion of the R5232-C device driver, are loaded from BL to AL.

Then program control will be returned to the calling program. If
the =zero flag 1is not set by the OR instruction, DX will be
incremented to point to the modem status register. The IN AL,DX

instruction is then used to return modem statuses to AL.

INITIALIZE THE 8250

To initialize 8250, vyou have to load AH with zero, AL with the
desired parameters, and DX with port address 3F8H.

An AND instruction is placed in the beginning of FUN_@ to isolate
the three most significant bits. In other words, this
instruction ignores the state of bit @ through bit 4 contained in
AL. Then CL, which is used as a counter here, 1is loaded with
five. The contents of AL are then shifted right five times.
After the shift operation, the contents of AL are loaded into CL.

We will pause here for a while to study how serial communications
protocol is loaded into 825@. The initialization will affect the
following registers in 8250@:

1) Baud rate divisor (LSB) - Port address 3F8H
2) Baud rate divisor (MSB) - Port address 3F9H
3) Line control register - Port address 3FBH

4) Interrupt enable register - Port address 3F9H

Initializing the Baud Rate Divisor Registers

After the initialization, each of the baud rate divisor registers
is loaded with a specific value. The value is called baud rate

divisor wvalue. For example, if a baud rate of 110 is desired,
P4H is loaded into baud rate divisor register (MSB) and 17H is
loaded into baud rate divisor register (LSB). 1f a baud rate of

150 is desired, @3H is loaded into baud rate divisor register
(MSB) and @0H is loaded into baud rate divisor register (LSB).
The relationship of the desired baud rates and their corres-
ponding baud rate divisor values are listed as follows:

*** Table of Baud Rate Divisor Values ***

Value for Baud-Rate-Divisor Registers

____________________ R e e e
Desired Baud Rate MSB LSB
50 - B9H @@H
75 @6H @@H
118 @4H 17H
134.5 @3H 59H
150 @3H BeH
300 @1H 80H
600 " @OH COH
1200 @OH 60H
1860 PoH 40H
2000 @OH 3AH
2400 GOH 30H
3600 @aH 20H
4800 @0H 18H
7200 P@H 10H
S600 @GOH @CH

5-19

Initializing the Line Control Register

The function call FUN @ will also load information on the type of
parity, stop bit, and character 1length to the 1line control
register. The function of each bit in the line control register
is briefly described in the following diagram.

7] 5 4 3 2]]

=4 BITS
26 HIT

C]

| CHARACTER LENGTH
]

[

[“

i =0 T
L i =k HITH

§TOP BITS
=1

—=

Lot ik CHAHACTER LENGTH = 5 HITS
=2 IF CHARAITER LEMGTH = &, 7, OF &k HITS

PARITY
Bl FARDTY 1T GENEHATED
P=PAKITY HIT GENFRATED
PARITY TYPE
B=0UL
1=EVEN
STICK PARITY
BeDISABLED
1=IF HIT 3=1 ANU BIT 4=0, THEN PARITY BIT ALWAYS |
IF BIT 3=1 AND HIT d4=1, THEN PAKITY HIT ALWAYS @
1F BIT 3=@, THEN NO PARITY BIT

SET BREAK

WTDISAHLED
L=THE SERIAL OUTPUT UATA IS5 FOHCEL TO A SPECING CONDITION
(LOGICAL @) REGARDLESS OF WHAT ELSE THE UART WISHES TO TRAMNSHIT

1/0 ADDRESSING

B=NORMAL VALUL
1=TO ARDRESS BAUD-KATE=-DIVISOR REGISTERS

*** Dijagram of Line Control Register ***

The line control register is initialized in our function call
with the o0UT DX,AL instruction. Before this instruction is
executed, the contents of AL is anded with a bit mask 1FH in
order to zero out the first three most significant bits.

Initializing the Interrupt Enable Register

After the line control register is initialized, the function call
will initialize (disable) the interrupt enable register. Handling
serial communications with interrupt would be very complex.
Since the use of interrupts is not necessary for serial communi-
cations, the interrupt enable register is usually disabled.

We will continue explaining the function call FUN@. After shifing
AL and loading the contents of AL to CL, the routine will
determine if CL contains @ using the OR CL,CL instruction. If it
is, a jump to BAUD_OUT will be executed. Note that before the OR
instruction, AX is loaded with the baud rate divisor value @417H
= 1047 (in decimal). The baud rate divisor value is then loaded
into CX in preparation for use by two MOV instructions which will
move the value to the baud rate divisor registers.

To access the baud rate divisor registers, bit 7 of the line
control register should be set to 1. To achieve this goal, we
use the instruction ADD DX,3 to make DX points to the line con-
trol register. Then the MOV AL,80 instruction and OUT DX,AL is
used to set bit 7 of the line control register.

To load the baud rate divisor value to the baud rate divisor
registers, we POP DX so that DX points to the baud rate divisor
register (LSB). Now the LSB value is loaded to AL and OUT to DX.
Then DX is incremented and the MOV and OUT instructions are used
again to 1load the MSB baud rate value to the MSB baud rate
divisor register.

Now the baud rate divisor registers have been set properly. The
following five instructions are used to initialize the 1line
control register so that 8250 will know the number of stop bits,
the parity type, and character length. As you may remember, BL

is actually stored with the original value of AL -- the input
parameter. We will move this value to AL and use a bit mask 1FH
to eliminate the first three most significant bits -- those bits

used to specify the baud rate. The AND operation performs this
job. After the AND operation, AL only contains such information
as the number of stop bits, the parity type, and character
length. After incrementing DX so that DX points to the 1line
control register, an OUT instruction is used to load the 1line
control register with appropriate serial communications protocol.

Now we are going to disable the interrupt enable register, which
can be disabled by setting its value to zero. We first decrement
DX so that the value of DX points to the interrupt enable re-
gister. Then we use the XOR instruction to zero out AL. By
using the OUT DX,AL instruction, zero are sent to the interrupt
enable register.

Now that the 8250 has been initialized, the IN_STATUS routine
will be executed to return serial communications statuses to AX.

OUTPUT A CHARACTER —-- FUNCTION 1

When you intend to ocutput a character through the serial communi-
cations line, you must load AH, AL, and DX with appropriate
values. This is listed as follows:

1) aH 1
2) AL The character to be transmitted.
3) DX = Port address.

Function 1 will return the contents of line status register in AH
if a character is transmitted successfully. If the character is
not transmitted successfully, then bit 7 of AH is set to 1.

FUON 1 will first output the status of the transmitting device
to modem control register., 1If bits ¢ and 1 of the modem control
register are set, it means that the transmitting device is ready
to send out information.

Then it will read the status of modem status register. If both
bits 4 (clear to send) and 5 (data set ready) are set, it means
that the receiving device is ready to receive information.

Even after vyou have ensured that both the transmitting and re-
ceiving devices are ready, character still will not be trans-
mitted wunless bit 5 (transmitter holding register empty) of line
status register is set. If it is set, then a character will be
output to the receiving device, and program control will be
returned to the calling program with the contents of 1line status
register stored in AH.

Things may not be going that smoothly sometimes. What will
happen if bits 4 and 5 of the modem status register are not set?
wWhat if bit 5 of line status register is not set as expected?

If bits 4 and 5 of the modem status register are not set

A time counter (TIME COUNT) is designed to solve this problem. As
you may remember, a zero was loaded into the counter when the
RS5232-C device driver was first invoked. Once FUN_1 finds out
that bits 4 and 5 are not set, it will <call the CHK TIME
subroutine. The CHK TIME subroutine will decrement the ~time
counter TIME COUNT by one from FFFFH and check if the counter has
counted to zero. If the counter has not counted to zero, FUN_1
will go back and check bits 4 and 5 again. If these two bits are
set, FUN_1 will check bit 5 of the 1line status register,
Otherwise, it will call CHK_TIME again.

If bits 4 and 5 are not set when TIME COUNT has counted to zero,
FUN_ 1 will jump to CHK_TIME 1, set the carry flag, and then
execute TIMEOUT and jumpt to IN STATUS so as to load the contents
of line status register to AH and return program control to
caller.

The counter is designed for returning program control to the
calling program if bits 4 and 5 of the modem status register are
not set.

If bit 5 of line status register is not set

If bit 5 of line status register is not set, FUN_1 will also call
CHK TIME, decrement the time counter TIME OUT, and check if the
contents of time counter is decremented to zero. If the counter
has not counted to zero, FUN 1 will go back and check bits 4 and
5 again. If these two bits are set, FUN 1 will check bit 5 of the
line status register. Otherwise, it will call CHK_TIME again.

If bits 4 and 5 are not set when TIME COUNT has counted to zero,
FUN_1 will Jump to CHK TIME 1, set the carry flag, and then
execute TIMEOUT and jumpt to IN STATUS so as to load the contents
of line status register to AH and return program control to
calling program,

5.4 LCD Driver

The MPF-1/88 supports a 2@0-column by 2-line physical LCD display.
Therefore, 20 by 2, or 40 characters can be displayed on the LCD
at one time. '

Each character can be one of the characters supported by the MPF-
1/88. 1t takes a byte to represent a single character.

A memory space of 480 bytes in the system RAM is used as a
display buffer so that MPF-I/88 supports a logical display screen
cf 20 columns by 24 rows. You can scroll the 1logical screen
freely to view the desired portion of the logical display. Refer
to MPF-I/88 User's Manual for how to scroll the display. In othet
words, with the buffer you are faciliated to see totally 24 rows
of memory contents by pressing the ALT_A or the ALT 7 key.

There are 40 display positions on the physical LCD with each one
has a physical address corresponding to it. However, each display
position of the LCD is not addressable by the 8@88.

The leftmost position of the first row is assigned with the
address 80H, the rightmost of the first row is 93H, the leftmost
of the second row is C@H, and the rightmost of the second row is
D3H. We can view the 40 display positions on the LCD screen as
memory locations separately ranging from 80H to 93H and from C@H
to D3H.

The 8088 CPU can not directly access the 4@ display positions on
the LCD screen. Instead, it accesses the 40¢ display positions
through four I/0 ports in order to display and read characters on
desired positions on the LCD. The four I/0 port addresses are:
1a0H, 1alH, 1A2H, and 1A3H.

Port 1A@H 1is used exclusively for receiving the write command
from the CPU and transfering it to the LCD driver; port 1lAlH is
used for receiving data to be output the LCD and transfering it
to the LCD driver. If you intend to know more about the functions
of the LCD, please refer to the data sheet supplied by the LCD
manufacturer.

Port 1A2 is used for receiving the read command from the CPU and
tranfering it to the LCD driver; port 1A3 is used for receiving
data to be input from the LCD and transfering it to the CPU.

Each LCD read or write operation involve many actions. For
example, 1if you want to display a character on a certain display
position, first you have to tell the CPU the display position you
require; next, have the CPU check if the LCD is busy performing
some operations; third, issue a display command through the CPU
to the Command Write I/C port; and finally transfer the data you
want to display on the screen to the Data Write I1/0 port. This
holds true for reading data from the LCD screen,

The LCD device driver is identified by the procedure name
OUT_LCD in MPF-I/88 Monitor Program Source Listing. You can

refer to the procedure OUT_LCD in order to know how the LCD is
driven. In order to find the OUT_LCD procedure, you must first
refer to the «cross reference section of the monitor source
program to find the entry with OUT_LCD and then use the 1line
number to locate the OUT_LCD procedure.

In order to let you trace the OUT_LCD procedure easier, an
example program which is slightly different from the OUT_LCD
procedure is provided as follows. Now let us look at our example
program on LCD.

We will explain some of the frequently used assembler directives
using examples in the example program, ;

9¢-%

The Microsoft MACRO Assembler , Version 1.25

baae
oooR

a1ee

paBa
oeel
0ee3
gea4
2085
0006
@ea7
eees
oees
6aec
@aen

GO0E

e022

glee [

14

2016

7
?7
??
8@

@een

{4

7

14

14 |

14

20

ae

L)

STRCK

STACK
i

DATA
i 1,/0 PORTS

OMD_PORTW
DATA_PORTW
CMD_FORTR

DATA_PORTR

Page
12-2]1-84

PAGE
SEGMENT
DB

EQU
EQU

r
7 CONTROL CODE

L

ALT

BELL
LINEFEED
RETURN
FORMFEED
BACKSPACE
RIGHTARROW
LEFTARROW
UPCODE
DOWNCODE

TR

TWENTY
ROW
ADDRESSA
ADDRESSB
R_DATA
COUNT

i THE LCD BUFFER IN MEMORY
i

ROWE1

LT T VA O |

DB
DwW
DB
DB
DB
DB
oW
Dw
DB
DB
DB

DB

DB

1-1

60,132

PARA STACK 'STACK'

256 DUP (2@H)

PARA PUBLIC 'DATA'

@1ApH
B1AlH
@1lA2H
BLA3H

80H
@7H
@RH
@DH
BCH
@8H
44H+ALT
S53H+ALT
41H+ALT
SAH+ALT

QONSTANTS AND VARIABLES

20

22

?

T

i

80H
BBeDH
@FFFFH
2

2

F4

20

20

DUP (@)

DUP (@)

DuP (@8)

FALT-D
FALT-S
JALT-A
FALT-2Z

(20 COLUMNS BY 24 ROWS)

&e=4

The Microsoft MACRO

56
57
58
59
6@
61
62
63

65
66
67
68
69
79
7

7z

74
75
76
77
78
79
8@
81
82
83
84
85
86
87
88
89
98
91
92
93
94
95
96

98

1e@
101
182
193
164
105
1@6
187
198
109
1108

@a4n

g0sSE

8a72

@086

BB9A

B3AE

aec2

08D6

BOEA

0OFE

8112

9126

@13A

14

14

14

14

14

14

14

14

14

14

14

14

14

Asgombler , Version 1.25

oe

@e

@0

20

a9

ROWB3

ROWE4

ROWDS

ROW@7

ROWEY

ROWLG

ROWLL

ROW12

ROWL3

ROW14

ROW1S

Page
12-21-B4

DB

DB

DB

DB

DB

DB

bR

1=z

20

20

20

20

20

20

20

24

20

20

20

20

DUP (@)

DUP (@)

DUP (@)

pue (@)

DUP (@)

DUP (@)

DUP (@)

DUP (¢)

DuUP (@)

DUP (@)

Due (@)

DUP (@)

DUP (@)

8Z-SG

The Microsoft MACRO

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
13@
131
132
133
134
135
136
137
138
139
146
141
142
143
144
145
146
147
148
149
158
151
152
153
154
155
156
157
158
159
160
161
162
163

164
165

@L4E

#l62

8176

B1BA

@L9E

2182

21ce

@1Da

daee
L[]0]

a0aa

aea3
286

14 [

14 [

14 [

14 [

14 [

14 [

14 [

14 |

E8 @346 R

BB —- R
BE DB

@a

oa

e

[£10]

a8

28

ae

%10]

aAssembler , Version 1,25

Page

12-21-84
ROW16 0B
ROW17 DB
ROW1E DB
ROW19 DB
ROW28 oe
ROW21 DB
ROW22 CB
ROW23 DB
DATA ENDS

1-3
20 DUP (8)
26 DUE (8)
20 DUP (8)
20 DUE (@)
20 DUP (@)
20 Due (@)
20 DUP (@)
20 DUP (@)

etk o e ok e e e ke ke o i o o e o ol e e o e o e i ol e o ol e ol e o ok o ol e ke ok e ok o R R R R R e i e

LCD START *

e s e i v ol e ol o i e ok i e ol ok ke ol ok ke ol ok ok ol ok ok ok ok ok e ok ok e ook e o e e e e e ek ek e

INPUT REQUIREMENT:

AL - CONTAINS THE ASCII CODE OF A CHARACTER TO BE OUTPUT

CH = @ : MEANS THE CURSOR SHALL NOT BE PLACED ON THE SCREEN.
CH < @: MEANS THE CURSOR SHALL BE PLACED ON THE SCREEN,
CL = @ : CAUSE THE SCREEN NOT TO BE ABLE TO SCROLL.
CL <> @: PERFORM THE REVERSE OF "CL = @"
CODE SEGMENT PARA PUBLIC 'CODE’
OUT_LCD PROC FAR ;FUNCTION—> CONTRAL LCD
ASSUME CS:CODE,DS:DATA
CALL PUSH__R ;PUSH ALL THE REGISTERS
MOV BX,DATA
MOV DS ,BX

6Z-6G

The Microsoft MACRO Assembler , Version 1.25

166
167
168
169

\ 17@

171
172
173
174
175
176
177
178
179
18@
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
289
210
211
212
213
214
215
216
217
218
219
220

poees
L))
@06r

2812
@a12
8014
@a16
@019
ae1c
gelc
@21
2823
8826
2829
2929
6028
2@2p
282rF
8632
8832
2034
"k
2239
aa3c
ea3c
683E
ga48
@043
6046
@046
2848
go4a
284D
2058

2050

ga52
2856
2859
ea5C
@esC
@o5E
2060
8063
2866
@966
@068
@a6a
2@6D
0076
2a78
@a72
8@74

A3 @887 R
89 QE 2009 R
E8 @32F R

@c

@6
gese R
62 9@

BESE

3E G661 R 16
@6

8364 R

55 9@

L

hJClEig
8 o

» m - o
[T=J U~
=

BE38 BES8 HBEG8 BBESs BEys BOs8 BBIEE

EZ8E RNIs8e

90

3C D3
75 @6
ES 0176 R

UDTEST:

BELL1:

BKSP:

uo:

Page 1-4
12-21-84

MOV AREAAX ,AX
MOV AREACK,CX
CALL CUR_ONOFF
CMP AL,FORMFEED
INZ UDTEST

CALL FF _SUB

Jup RIGHT

ap ROW, 22

Jz BELL1

CALL TEST LD
JMP RIGHT

awp AL,BELL

INZ BKSP

INT 6CH

JMP RIGHT

QfF AL,BACKSPACE
JNz LF

CALL BS_SUB

JMP RIGHT

CMP AL,LINEFEED
INZ BT

CALL LF_SUB

JMp RIGHT

a1 AL, RETURN
NZ uu

CALL RT_SUB

Jup RIGHT

oMP AL, UPCODE
INZ DD

CALL UP_LCD

JMP RIGHT

ar AL , DOWNCODE
INZ RA

CALL ~ DOWN_ICD
JMP RIGHT

awp AL , RIGHTARROW
INZ LA

CALL RA_SUB

Jmp RIGHT

@ AL,LEFTARROW
JINZ DISPLAY
CALL LA _SUB

+ FORMFEED

32

Fee

;ACTIVE

He 4

s TEST WINDOW POSITION
sFIRST ROW = 22

;TEST UP OR DOWN

Fas

Ag-S

The Microsoft MACRO Assembler , Version 1.25

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

274
275

ee77
ea7n
@a7a
ee7p
@a7D
0080
PLLT
ae87
ap8s

0988
aess
Besa
[[“1:]s]
2094
Bg92
0095
0897
009
@eac
@O9F
@ond
8oAn
BEAF
eeB2
aep3

aee3
o3
aeB6
eees

@0BC
BOBE
a0cl
Beca
a0ce
eecs

eepl
@dpl
@an2

eap2
aep2

@eDs
*en7

EB

Al
8B

AQ
74

74
E8

BO

E8
E8

c3

68

@z 9@
@17A R

@987 R
GE 0089 R
8359 R

38

@@ R

@iD8 R

@D

@1D8 R

@6

@108 R

a1

21o@ R

@6 @@d6 R 80
96 0001 R 0016
36 0000 R 14
@31E R

Be@E6 R
80

17

ce

86
@lB4 R
PE 99
94
108 R
@1B4 R
@6 PO06 R 93

2026 R

33

page 1-5
12-21-84
JMP RIGHT ;0K
DISPLAY: +DISPLAY
CALL DISP_SUB ;ACTIVE
RIGHT: FEaE D o
MOV AX,AREAAX ;RESTORE AX
MoV CX,AREACX iRESTORE CX
CALL POP R :POP
RET Y N
OUT_LCD ENDP fesinwsssima
r
; FORMFEED SUBROUTINE
'
FF_SUB PROC NEAR ;FUNCTION FOREFEED
= MOV AL, 38H ;RESET CODE
CALL OUT FUN ; WICE
CALL OUT_FUN ;FUNCTION SET TWICE
MOV AL,BDH ;SET ON DISPLAY AND BLINK
CALL OUT FUN ;ACTIVE
MOV AL,6 ;SET CURSOR MOVE DIRECTIVE (RIGHT)
CALL OUT_FUN FACTIVE
MOV AL,1 ;CLEAR DISPLAY, CURSOR TO HOME
CALL OUT_FUN ;ACTIVE
MOV COUNT, 80H ; INITIAL
MOV ROW, 22 ;INITIALIZE ROW TO 20
MOV TWENTY, 20 s TWENTY EQUALS TO 28
CALL CLRTAR ;CLEAR LCD TABLE
RET P T T
FF_SUB ENDP TP g R
r
; BACKSPACE SUBROUTINE |
r
BS SUB PROC NEAR s FUNCTION=——> BACK SPACE
i MOV AL ,COUNT JCURSOR IN ADDRESS @ (ROW 1)
e AL, 80H i ?
Jz SUBRIGHT ;0K
o 12 AL, 0COH ;CURSOR IN ADDRESS 21 (ROW 2)
Jz BKSPB
CALL BACKSP ;ACTIVE
JMP SUBRIGHT ;0K
BKSPB: MOV AL, 94H ;CURSOR TO ADDRESS 20
CALL OUT FUN ; ACTIVE
CALL BACKSP ;BACK SPACE
MOV COUNT, 93H ;ON ROW1 COL20
SUBRIGHT: FOK
RET Fossessssesnnnss -
BS_SUB ENDP R
¥
r
¢ LINEFEED SUBROUTINE
;
’
LF_SUB PROC NEAR ;LINE FEED
i MOV AL, COUNT ;CURSOR IN ROW(1l) OR ROW(2)
(o1 AL, BCOH ;ROW2 ?
JL CLR_ROW2 FCURSOR TN ROW(1)

TE=S

The Microsoft MACRO Assembler , Version 1.25

276
277
278
279
2808
281
282
283
284
285
286
287
288
289
299
291
292
293
294
285
296
297
298
299
360
301
362
383
304
385
386
367
388
389
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

Bens
@enc
BOEL
BOES
BOEY
@¢EB
POED
eere
2@F3
0eFe
QaF9
@erC
QOFF
g1e2
0106
21en
@14c
2111
@114
2116
@118
a11B
@11D
@120
@124
@126
8126
@129
@l2e
@120
e12F
8132
B135
136

2136
2136
213B
@13p
@13F
9142
@144
@147
B14a
61l4B

@148

E8 Q1F9 R

C6 06 0003 R B0
C6 @6 0004 R CO
AP 0005 R

3C D4

74 1IF

E8 @1D@ R

EB @1F3 R

A2 0605 R

AP @203 R

E8 @108 R

A @@as R

EB QlED R

FE @6 0003 R
FE 06 0004 R
EB DA

C6 06 @6@4 R CO
AQ POG4 R

3C D4

74 BE

E8 @1D@ R

Ba 20

E8 @LED R

FE 06 0004 R
EB EB

RO 0006 R
3C ce

70 @5

84 49

A2 0006 R
EB @1D@ R
c3

8@ 3E 0006 R C@
7 @5

BO B0

EB @3 99

BO CO

A2 (0996 R

E8 @108 R

c3

Page 1-6
12-21-84
CALL SCROLLER 3 SCROLL TABLE
LE_ROW2: MOV ADDRESSA, 80H ;CURSOR IN ROW(2)
MOV ADDRESSB, 8COH ;ROW2 COL1
NEX DATA: MOV AL,ADDRESSB Feessersnssnssnssssceas
P AL, BD4H i ROW2 COL20
JZ CLR_ROW2 ;CLEAR ROW 2
CALL OUT FUN ;ACTIVE
CALL IN_DATA ; INPUT DATA
MOV R DATA,AL ;R_DATA<--AL
MOV AL ,ADDRESSA ;ON LCD ADDRESS
CALL OUT_FUN ;ACTIVE
MOV AL,R DATA ;AL = R DATA
CALL QUT VAL FACTIVE
INC ADDRESSA ;MOVE CURSOR POSITION
INC ADDRESSB SRR R S
JMP NEX_DATA sNEXT DAT.
CLR_ROW2: MOV ADDRESSB, BCOH jROWZ2 LCD LOCATION
CLR_SPA: MOV AL,ADDRESSB A O oo D
P AL, @D4H JEND ROW 2 7
JZ OUT_POSITION T
CALL OUT_FUN FACTIVE
MOV AL, 20H ;SHOW " "
CALL OUT_VAL FACTIVE
INC ADDRESSB JNEXT LOCATION
JMP CLR_SPA jCLEAR SPACE
OUT_POSITION: ;0UT POSITION
MOV AL, COUNT ;COMPARE CURSOR POSITION
op AL, 8CeH FON ROW2 COLL1 2
JGE NO_CHANG R A
ADD AL, 40H ;CURSOR ON ROWL
MOV COUNT AL Jesnsesinsaasss
NO_CHANG: CALL OUT_FUN ;ACTIVE
RET Jesas
LF_SuB ENDP
H
’
: RETURN SUBROUTINE
i
r
RT_SUB PROC NEAR ;FUNCTION —> RETURN CURSOR
0,13 COUNT, 8CaH jCCMPARE ROW 7
JGE RT_ROW2 jessssannannns
MOV AL, 80H ;RETURN ROW 1 COL 1
RT_ROW2: MOV AL, GCOH ;8COH IS ROW2 COL1 LOCATION
RT_ROWL: MOV COUNT , AL fumossnessssssensns
CALL OUT_FUN JACTIVE
RET
RT_SUB ENDP
H
r
’ RIGHTARROW SUBROUTINE
H
r
RA_SUB PROC NEAR ;FUNCTION --> MOVE CURSOR TC RIGHT

Ze-§g

The Microsoft MACRO Assembler , Version 1.25

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
368
36l
362
363
364
365
366
367
368
369
379
371
372
373
374
375

376,

Eyy
378
379
386
381
382
383
384
385

@148
2150
g152
@157
@159
@158
@15E
g161
9161
2163
@167
9167
gl6a
@160
816D
@172
#175
@175
@176

2176
2176
2179
eL7a

B1l7a
2178
817
2181
8184
2186
9188
218a
@18C
@18E
@191
194
@197
@197
@192
819
@198

80

3E @U@6 R D3

74 1B

80
75
BO
A2
EB

B@#
FE

E8
EB

cé
EB

c3

EB
c3

E8
FE
Ag

74
75
B@
A2
E8
E8

c3

3E 06@e R 93
@8

ce

006 R

@7 9@

14
@6 @a06 R

@108 R
B9 9@

#6 2096 R C@
#eD2 R

gaB3 R

@lED R
@6 0086 R
g@ge R
D4

@r

94

aE

ce

2096 R
21D@ R
24 g8 -

2198 R

Page 1-7
12-21-84
P COUNT, @D3H jCURSOR ON ROW2 COL2E 2
JE NEX ROW Fesasssssnsunnasannnsnn
op COUNT, 93H ;CURSOR OW ROWL COL2@ 7
JNEZ RA_CTN T T P
MOV AL, @CaH FMOVE CURSOR ROW2Z COL1
MOV COUNT , AL Fesnianneas cnann
JMP RA_ROW2 H T e S
RA_CTN: ;RIGHT CONTINUE
MOV AL,14H sLCD TO RIGHT FUNCTION
INC COUNT Frsessssssssnssnnsnns
RA_ROW2: ;0N ROWZ TO RIGHT
CALL OUT_FUN ACTIVE
JMP RA RET ;0K
NEX ROW: sNEXT ROW
MOV COUNT , 8CaH s ROW2
CALL LF_SUB :LINE FEED
RA_RET: ; RETURN
RET i YT
RA_SUB ENDP A A e B B
H
!
] LEFTARROW SUBROUTINE
¥
L
LA SUB PROC NEAR ;FUNCTION --> TO LEFT
CALL BS_SUB + EQUIMENT BACK SPACE
RET . T
LA SUB ENDP F 8 R R e R
H
r
; DISPLAY CHARACTER TO LCD ‘
H
i
DISP_SUB PROC _NEAR s FUNCTION ——> DISPLAY
CALL OUT_VAL ;ACTIVE
INC COUNT FevEiaeeias
MOV AL ,COUNT P
P AL, @D4H ;IF CURSOR OVER ROW<2>
JE DISPSCROLL ; SCROLL
P AL,@94H :IF CURSOR OVER ROW<1>
JNZ DISPRIGHT jesesssssssscscnsanenn
MOV AL, BCOH +SET CURSOR ON ROW2 COL1
MOV COUNT , AL jasscensvesasnssasnnannn
CALL OUT_FUN s BCTIVE
Jup DISPRIGHT ;0K
DISPSCROLL: ;DISPLAY SCROLL
CALL SCROLL ;BCTIVE
DISPRIGHT: ;OK
RET fesssmssussssessassnasnannnsas
DISP_SUB ENDP R
H
r
H IF CL=@ THEN MO SCROLL
= NOT =@ THEN SCROLL

EE=S

The Microsoft MACRO Assembler , Version 1.25

386
387

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

8198
2198
B19E
@1ra

B1A5
@1ln8
@1AB
21AB
9188
@1B3
@183
91B4

dlB4
2184
2186
@1B9
g1BC
@1BE
g1ce
eic2
B1cs
e1c7
g1ca
d1CA
21CF
6108

8100
a1ng
@1D1
#1D4
21D4
2105
2106
9109
B1DA
@1pC
@1DE
B1DF
B1E@
21E4
G1E6
g1E7
B1lEA
@1EA
@1EB

8@
75
B0
A2
EB

cé

c3

BO

3c
74
Bé
EB
BO

8@
[ok]

81

F9 @@
@B

D3
oees R
¢lDe R
@3 9o

26 @@@6 R C@
@enp2 R

1@
@1Dé R
2667 R
D3
@A
20
B1lED R
1@
#1D@ R

2E @906 R @1

@1nE

21a2

FA O1A3
B4

82 9@

Page 1-8
12-21-84
H
SCROLL PROC NEAR sFUNCTION —> SCROLL LCD
oMP CL,@ jCL =6 2
JNZ ASCROLL Tesssssnnse
MoV AL,BD3H ;DONOT SCROLL
MOV COUNT AL feenssnnsan e
CALL OUT_FUN ;ACTIVE
JMP SCRRIGHT 1 OK
ASCROLL: fessssssannnsnsss
MOV QOUNT , BCEH 3CL NOT BQU @ ,S_FLAG
CALL LF_SuUB ;LINE FEED
SCRRIGHT: 7 SCROLL RIGHT
RET § i iR
SCROLL ENDP PR SRR
‘e
i BACKSPACE ROUTINE
H SUBROUTINE
b
rr
BACKSP PROC NEAR sFUNCTION —> BACK SPACE
MOV AL,10H ;CUROR SHIFT LEFT
CALL QUT_FUN JACTIVE
MOV AX , ARERAX 7GET CHARACTER VALUE
P AL, LEFTARROW ;COMPARE LEFTAROW CODE ?
JZ FINISH i OK
MOV AL, 2@H j20H = ' !
CALL OUT_VAL ;ACTIVE
MOV AL,16H ;LCD CURSOR TO LEFT
CALL OUT FUN ;ACTIVE
FINISH: HI
SUB COUNT, 1 HET T
RET JRETURN...... sessssnenss s
BACKSP ENDP P oA et s ssnsh s st nsetdsenied
r
H OUT _FUNCTION H
’
OUT_FUN PRCC NEAR FUNCTION —> DO LCD FUNCTION
PUSH DX e
MoV DX,CMD_PORTW ;OMD_PORTW = 1A0H
CUTA: Pevesipeesnsnns -
PUSH DX ;PUSH REGIST
PUSH AX HI I
MOV DX,OMD_PORTR ;OMD_PORTR = 1A2H
WAIT: N AL, DX ;DX = PORT
OR AL, AL ;SET (SF)=1
Js WAIT ;LCD BUSY ?
POP AX Fesssssnnsas
2o DX Fesesasaasss i
P DX,DATA PORTR 7DATA PORTR = 1A3H
JZ READ DATA jasssssssananes ves
ouT DX,AL FACTIVE
JMP FINE ;0K
READ_DATA: ;READ DATA
IN AL,DX ;ACTIVE

FINE:

Fesssnsan

FE-S

The Microsoft

441
442
443
444
445
446
447
448
449
45@
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

483

484
485
486
487
488
489
499
491
492
493
434
495

@LEB
@1EC
@1ED

@1lED
@1ED
GlEE
@lFl
GlF3

BlF3
B1F3
@1F4
BlE7
@1F9

B1F9
B1F9
B1FE
9200
@201
9292
2203
0204

#2885
0208
B2ea
028D
p218
@213
8214
g216
8217
@218
B219
B21a
821B
@Z1E
B21E
B21F

B21F
B21F

MACRO Assembler , Version 1.25

SA
Cc3

BER

BES

83
75
5@
51
57
56
26

B8
8E

BE
B9

#1al
El

@1Aa3

3E 0001 R 16
1E

ce
B90E R
P@22 R
B81ce

F3/ a4

a7
SE
5F
59
58
E8

C3

56

BZ1F R

Fresevenns srssssssssnnnnnnn e

jFUNCTION —> READ DATA

;FUNCTION —-> SCROLL TAELE

; ROW (22) IS START ADDRESS

; AX = DATA SEGMENT

r

; ES =>DATA SBEGMENT

; ROWOG ADDRESS

; ES:[DI1 <== DS[81]

; MOVE 460 BYTES 20%23
r
r

; COPY LCD ROW TO TRBLE

Page 1-9
12-21-84
POP DX S
RET -
OUT_FUN ENDP
r
: QUT VALUE
: QUT VAL
r
oUT VAL PROC NEAR
e PUSH DX
MOV DX, DATA_PORTW
JMP OUTA Feesvanua
QUT_VAL FNDP
r
; READ DATA :
r
IN _DATA PROC NEAR
PUSH DX
MOV DX ,DATA PORTR
JMP QUTA R T
IN_DATA ENDP ;
r
H SCROLL TABLE UP ONE LOW
H SCROLLER
r
SCROLLER PROC NEAR
CMP ROW, 22 ;ROW = 22 2
JNE SCRIGHT
PUSH AX ;PUSH
PUSH X I
PUSH DI
PUSH SI
PUSH ES
ASSUME ES:DATA
MoV BX,DATA
MOV ES,AX
MoV DI ,OFFSET ROWG@
MOV SI,OFFSET ROWE1
MOV Cx, 468
CLD (DF) =0
REP MOVEB 3
POP ES ;POP REGISTER
POP sI Yoauie srssane
POP DI Fese
POP Cx i
POP AX P aa s
CALL LCD_TABLE
SCRIGHT: ; OK
RET -
SCROLLER ENDP
[
; MOV LCD ROW(@) TO TABLE ROW(21)
; LCD_TABLE
r
LCD_TABLE PROC NEAR
PUSH 51

SeE=-g

The Microsoft MACRO Assembler , Version 1.25

496
497
498
499
508
581
582
503
504
585
506
5d7
508
5@9
51@
511
512
513
514
515
516
517
518
519
528
521
522
523
524
525
526
527
528
529
538
531
532
533
534
535
536
537
538
539
548
541
542
543
544
545
546
547
548
549
558

0220
B223
B228
B22D
0230
3238
@231
8232

pz32
B232
0233
234
A234
8237
B23B
823D
3249
B243
8245
@249
a24n
B24C
B24C
824D
B24E
@24F

B24F
@24F
8250
@253
3258
@250
8260
6263
B268
826D
#27a
@271
@272

6272
9272
0273
8276

BE
cé
cé
E8

SE
Cc3

5@
56

ha
3A
74
E8
E8
88
FE
46
EB

S5E
58
c3

56
BE
[o1:]
cé
E8
BE
cé
o]
E8
5E
c3

51
B9
E8

#1B2 R
@6 @eeC R BO
26 GRED R 94
B232 R

@gaec r

36 @e9D R
aF

BlDe R
P1F3 R

B4

26 GEeC R

E8

B1C6 R
@6 @@0C R BO
36 @GadD R 94
@232 R
@lDA R
@6 @eeC R CO
@6 999D R D4
232 R

o 0110
B32F R

Page 1-1a
12-21-84

MOV SI,OFFSET ROW21
MOV COL_VALUE, 86H
MOV COL_END, B94H

TABLE ADDRESS ROWZ1
START RDDRESS
INPUT LCD ADDRESS

r
H
r
CALL COPYROW ; COPY ONE ROW
SRIGHT: i OK
POP sI Fasenisiasses
LCD_TABLE ENDP O S
r
: COPY ONE ROW T0 TABLE :
; COPYROW 2
'
COPYROW PROC NEAR ;INPUT => SI
PUSH aX s COL_VALUE
PUSH SI ; COL_END
SCR_CON: et
MOV AL,COL _VALUE ;ADDRESS LCD
4P AL,COL_END ;LCD END ADDRESS
Jz CRIGHT FOK
CALL OUT_FUN ;IN DATA TO TABLE
CALL IN DATA JACTIVE
MoV [s1],AL ;MOVE CHARACTER TO TABLE
INC COL_VALUE Peeiviivasians
INC SI Tesesssraranns
JMp SCR_CON CET NEXT VALUE
CRIGHT: ;0K
roP 5L ;POP REGISTER
POP AX Fesesrsassanas
COPYROW ENDP Fesssstantassasasrnsrnsrssasns
L
; COPY LCD TWO ROW TO TABLE ROW(22,23) :
H COPYLCD :
r
COPYLCD PROC NEAR ;FUNCTION --> COPY LCD TO TAELE
PUSH I ;
MOV SI,0FFSET ROW22 ; ROW22 ADDRESS
MOV COL_VALUE, B@H ;COPY LCD ROW(@)
MOV COL_END, 94H COL END
CALL COPYROW ;COPY ROWL
MOV SI,0FFSET ROW23 ;COPY ROW2
MOV COL_VALUE, @COH ;COPY LCD ROW(1)
MOV COL_END, @D4H ;COL END
CALL COPYROW i ACTIVE
POP 51 .
COPYLCD ENDP S P
r
i UP LCD :
H UP_LCD :
L]
UP_LCD PROC NEAR ;FUNCTION —> TO UP
PUSH CX SRR
MOV Cx, o X =8

CALL CUR_ONOFF

7 OFF CURSOR

9£-¢6

The Microsoft MACRO Assembler , Version 1.25 Page 1-11

12-21-84
551 @279 83 3E 00@1 R 00 P ROW, & iROW = @ 2
552 B27E 74 19 JE URIGHT +CAN NOT OP
553 @288 83 3E @O0l R 16 @412 ROW, 22 ;TABLE BUTTON 2
554 @285 75 ©B JNZ NONCOPY sNOT IN CORRECT POSITION
555 @287 Ba PE 2006 R MOV CL ,COUNT ;CL = CURSOR POSITION
556 @28B 88 PE @00B R MOV KEEP__CUR,CL jasessunuss
557 @2BF EB B24F R CALL COPYLCD ;D0 COPY
558 g292 NONCOPY 3 FNO COPY
559 @292 FF OE 0001 R DEC ROW jROW - 1
560 @296 EB 92D9 R CALL MOVLCD jUP LCD
561 9299 URIGHT: Ho
562 @293 59 POP CX AN
563 @29 C3 RET A R AR
564 3298 UP_LCD ENDP A N B e
565 7
566 1 DOWN LCD 3
567 H DOWN_LCD 4
568 3
569 @298 DOWN_LCT PROC NEARR ;PUNCTION --> DOWN LCD
57@ @298 50 PUSH AX P
571 @29C 51 PUSH CX 4
572 @290 B3 3E @001 R 16 cMP ROW, 22 FROW = 227
573 @282 74 14 JZ DRIGHT 7 IN BUTTON
574 @2rn4 FF @6 0001 R INC ROW T Ay o e o
575 @2n8 B3 3E 00FL R 16 P ROW, 22 ; IF RETURN CORRECT POSITION
576 @2an 75 @6 JNE NOMAL Fesasassssencsas
577 @2aF EB @2BB R CALL RES LCD 7 RETURN CORRECT POSITION
578 @282 EB B4 90 JMP DRIGHT ;0K
579 #2B5 NOMAL: 7 NOMAL
589 @2B5 E8 @209 R CALL MOVLCD sDOWN LCD
5481 @288 DRIGHT: ;0K
582 @28 59 POP Ccx 2
583 @2B9 58 POP AX 1
584 @2Bn C3 RET fasasessssesssaranssn e nnns
585 @2BB DOWN_LCD ENDP P amamamseemsanssesersrtnasnnnn
586 i
587 i RESET LCD POSITION -
588 H RES_LCD H
589 H
598 82BB RES_LCD PROC NEAR sFUNCTION —>» RETURN LCD POSITION
591 @2BB 50 PUSH B e SRR
592 @2BC 351 PUSH CX Jeessssscnnsncerrnen
593 @280 C7 @6 QU@L R 2016 MOV ROW, 22 JROW = 22
594 g2C3 E8 P2D9 R CALL MOVLCD ;COPY TRBLE ROW(22,23) TO LCD
595 3206 BB O& 9089 R MOV CX,AREACX +ON CURSOR
596 @2CA EB #32F R CALL CUR_ONOFF ;CURSOR ON OR OFF
597 @2CD A0 0@0B R MOV AL, KEEP CUR 7 SET CURSOR
598 d208 A2 066 R MOV QOUNT ,AL e
599 @203 EB8 @1D@ R CALL OUT_FUN 7 ACTIVE
600 @2p6 59 POP CX Jaiasesesnsanan
601 @207 58 POP ax HP T G e
602 @2p8 C3 RET HPER P A R R e e e T
6d3 @209 RES LCD ENDP Jasesssssnananancsssssrssannany
604 §—
6ds] MOVE LCD UP OR DOWN :

LE-S

The Microsoft

606
697
68
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
649
641
642
643
644
645
646
647
648
649
658
651
652
653
654
655
656
657
658
659
660

B2D9
@#2Ds
a2oa
B2DB
@zpc
@2DE
#2E1
92E4
827
@2EA
@2EE
a2rag
@2r2
A2F5
@2F5
@2F6
@2F7
22r8
B82ra
@2FD
@2FE
a3pa
@301
@302
@363
B394

8304
2304
@3as
8307
@399
@a3ac
@38F
B3eF
g311
@313
@316
@319
@319
@31c
@31c
31D
@31E

@31E
@31E

5@
51
56
B@
A2
EB

Al
Bh
Fé
a3
B9

51

AC
Bl
EB
59
E2
5E
59
58
Cc3

5@
3c
75
E8

75
E8
EB

58
c3

MACRO Assembler , Version 1.25 Page 1-12
12-21-84
H MOVLCD :
r
MOVLCD PROC NEAR ;FUNCTION --> MOVE LCD UP OR DOWN
PUSH Ax
PUSH CX
PUSH SI Javesesssenes
80 MOV AL, B8GH ;CURSOR ON ROWL COL1
#@ge R MOV COUNT , AL +SET COUNT .
@lDd R CALL OUT_FUH ;SET CURSOR IM START
PAGE R MOV S1,0FFSET ROWBO ;ROWS@ ADDRESS
@0l R MOV AX,ROW ; ROWBB+ROW* 20
BE @063 R MOV CL, TWENTY I
ELl MUL CL ;GET ADDRESS
F@ ADD 51 ,AX e
#@28 MoV CX, 48 ;48 TIMES
MOVCHAR: sMOVE CHARACTER
PUSH CX e
CLD ; (DF) =@
LODSB ; [5I] => AL
[£14] MOV CL,8 7OFF SCROLL
217A R CALL LISF _SUB ;DISPLAY A CHARACTER
POP CX Fessssnnas
F5 LOOP MOVCHAR jessssenannunun
POP S1 Fesssssnsns
POP Cx i
POP aX H
RET Jesssssssssssssssssssssasanans
MOVLCD ENDP Fassssssssasssnnsnnnnnnnnnnnss
r
H TEST UP DOWN CONDITION :
H TEST_UL :
’
TEST _UD PROC NEAR ;FUNCTION ——> TEST ROW CONDITION
BUSH BX H
Cl (1 AL, UPCODE ;UPCODE 2
@6 JNE CMPDOWN 7 IF DOWNCCODE CODE
8272 R CALL up_LCD FACTIVE
BE 9@ JME TUDRIGHT ;0K
CMPDOWN: ;COMPARE DOAN
DA CMP AL , DOWNCODE ;DOWNCODE 2
26 JNE RES_UD Hre
B29B R CALL DOWN_TCD
@4 99 JMEP TUDRIGHT Hel e
RES_UD: ;RESET
B2BB R CALL RES_[LD ;ACTIVE
TUDREIGHT : 7 RIGHT
POP ax
RET
TEST_UD ENDP e b e e
r
H CLEAR LCD TABLE H
; CLRTAB 2
i
CLRTAB PROC NEAR ;FUNCTION —> CLEAR TABLE
PUSH 51 ;PUSH REGISTER

56

8E-G

The Microsoft MACRC Assembler , Version 1.25

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
698
691
692
693
694
695
696
697
698
699
700
701
762
7e3
764
785
766
707
788
789
710
711
712
713
714
715

@31F
@320
@323
9326
9326
8329
@32n
@32c
932D
0328
@3zr

@32F
@32F
@330
0331
@334
0336
0336
@338
@338
033E
@33E
@340
@343
@343
9344
@345
0346

@346
0346
2348
@34Cc
@34D
@34E
@34F
9350
@351
09352
8353
9358
9359

9359
0359

51
BE
B9

cé
46
E2
59
S5E
C3

5¢
51
80
75

E8
B

B@
E8

59
58
c3

2E:
5@
53
51
52
57
56
1E
a6
2E:
£3

2E:

Q@BEE R
@188

B4 20

FA

FD 29
08

@10@ R
96 90

8D
8106 R

BF @6 @36C R

FE 36 B36C R

8F 86 @36C R

page 1-13
12-21-84
PUSH cxX Fesssassssnane
MoV S1,0FFSET ROWE0 ; ROWA@ ADDRESS
MOV CX 440 ;28 * 22
TABLP: ;LooP
MoV BYTE PTR [SI],20H ;ASCII CODE 20H = SPACE
INC SI ST+ 1
LOOP TABLP 1 LOOP
POP CX ;POP REGISTER
POP 51 Jessssesasans
RET H I T T
CLRTAB ENDP Feessssssssnsnancnes ssessssssssssssssnnan
N KSR P PR R AR TR R AR R R LR 2L
32 1%
3 CURSOR ON OR OFF -+
it is
FesssszEsisessissssssuszisisis: (EE TR ERESLBE.
CUR_ONOEF PROC NEAR ;INPUT CX = @ CURSOR OFF
PUSH aX ; =/ @ CURSOR ON
PUSH CX H
o)1 CH,8 ;CH=@ 1S NO CURSOR
JINZ CUR_ON B e wn e b bR S
CUR _OFF: ;CURSOR OFF
MoV AL,@CH jCURSOR OFF
CALL OUT_FUN ;ACTIVE
JMP CURRET - 7 RETURN
CUR_ON: 7CURSOR ON
MOV AL,@DH ;CURSOR ON
CALL OUT_FUN ;ACTIVE
CURRET: + RIGHT
FOP Ccx jPOP REGISTER
POP AX Pawnaeeweaeee
RET ; RETURN
CUR_ONOFF ENDP ;END
jeszrzsasserIIIIILesS SIS InLS LS LSRN
rr -
i REGISTERS PUSHING & POPING 22
H ROUTINES
HH
rprerETEILELLLY bRt R A AR
PUSH R PROC NEAR jPUSH ALL REGISTER
POP CS:IP_MEM
PUSH AX
PUSH BX
PUSH cX
PUSH DX
PUSH DI
PUSH SI
PUSH Ds
PUSH ES
PUSH CS:1IP_MEM
RET
FUSH R ENDP
BOP_R PROC NEAR ;POP ALL REGISTER
- eop CS:IP_MEM

6£-G

The Microsoft MACRO Assembler , Version 1.25

716
17
718
719
720
721
722
723
724
725
726
727
728
729
738
731

@35E
@35F
@360
@361
2362
2363
@364
@365
2366
@368
B36C

836C

@36E

07

1F

5E

5F

sa

59

58

58

2E: FF 36 036C R
c3

POP_R

0000 1P_MB4

CoDE

POP
POP
POP
POP
POP
POP
POP
POP
PUSH

ENDP

ENDS

Page
12-21-84

ES
DS

SI

DI

DX

CX

BX

ax
CS:IP_MEM

OUT_LCD

1-14

p¥—9

The Microsoft MACRO Assembler , Version 1,25 Page Symbols-1

12-21-84

Segments and groups:

Name Size align combine class
CODE & a-e a o s o s o o s o =& @36E PARA PUBLIC 'CODE'
DATA o o o ¢ 2 = s ¢ s s o a = = GlEE PARA PUBLIC 'DATA'
STACK: o ¢ o « & & o e el 2108 PARA STACK 'STACK'
Symbols

Name Type Value Attr
ADDRESSA . « v« s s s 5 s 5 = = = L BYTE 8003 DATA
ADDRESSB . . « o o » o s » s » » L BYTE 0064 DATA
ALT. « « « P T T ST S Number @@80
AREAAX . . & « & & & aLE e L WORD @@@7 DATA
BAREACX o o o o o 0 o 0 s 0 ¢ 5 s L WORD @009 DATA
ASCROLL. « « & & o e R L NERR @lAB CODE
BACKSP P P R N PROC @1B4 CODE Length =B@1C
BACKSPACE, o « o o » o « o ¢ 4 » Number 0008
BELL o o o' 4 o = A R e Number @007
BELLL: ¢ o s v = » e e - L NEAR @229 CODE
BESP ¢ o o ¢ o s s 5 5 5 s % = L NEAR ©@32 CODE
BESPBa « o o ¢ o 5 2 2 = 2 s = » L NEAR @0C4 CODE
BS_SUB) PO N PROC @@B3 CODE Length =0@1F
CIRTAB o « 2 = 2 5 5 ¢ o 5 ¢ & « N PROC @31E CODE Length =B@11
CLRRWZ & &« + s s s = s s s = = [, NEAR @laC CODE
CLR“SPH T T L LT L NEAR . @111 CODE
QD PORTR. & & 4 o o s o & o & » Number @1A2
CMD PORTW: + + « s s 5 s s s = = Number @LlAG
CMPOY M. o o o o 0 o 2 2 o o o o L NEAR @3@F CODE
COL_END. « « « .« « e L BYTE @88D DATA
COL_VALIE. O L BYTE 068C DATA
OOPYLCD. « « =« = = S T T N PROC @24F CODE Length =p@23
COPYROW: o+ » s s s o o s o s ¢ o N PROC 0232 CODE Length =@@1D
COMT. o o v 4 L BYTE 0066 DATA
CRIGHT o« v &« & & o o = s o = = & L NEAR @24C CODE
CURRET o v &« o s o s = s s = « & L, NEAR 0343 CODE
CUR OFF. . . « . . e L NEAR @336 CODE
CURON ¢« « o o s o s s o s o o« L NERR @33E CODE
CUR ONOFF. o o o 2 2 o @ o @ o @ N PROC @32F CODE Length =@@17
DATA PORTR « « « + . L A Number @1A3
DATA PORTW = = « = = s o s « & =« Number @1A1
DD v v o oo s oo 5220 I, NEAR 0@@5C CODE
DISPIAY. « & e L NEAR @087A CODE
DISPRIGHT. « » » » 5 » s » & a » L NEAR @19a CODE
DISPSCRIL . . o s 5 5 5 5 s s = L NEAR @197 CODE
DISP SUB + + =« s = = s s = s s = N PROC @17A CODE Length =#@21
DOWNCODE « » « » o o o o # o o Number @@DA
DOWNICD o« « o s s s s s s s s = N PROC @298 CODE Length =@@20
DRIGHT « o = » ¢ o # s o 2 & = = L NEAR @ZBB CODE
FF 4 o 4 o o = s a s s o o s s » L NEAR @812 CODE
FESUB o o = o % & 2 %4 o 8 5= N PROC @@88 CODE Length =B@2B
0 ¢ P R L NEAR @1EB CODE

FINISH « « =« = = s = = = = = = = L NEAR @1CA CODE

T%-S

The Microsoft

FORMEEED

IN_DATA.
IP MEM .

INZ. .

KEEP_CUR

LA . .
L& suB

LCD TABLE.
LEFTARROW.

LF . .

LF_ROW2.

LF SUB

LINEFEED

MOVCHAR.

MOVLCD

NEX_DATA

NEX_ROW.

NOMAL.

NONCOPY ,

NO CHANG

OUTA .

OUT_FUN.
OUT_LCD.

OUT POSITION

OUT VAL,

POP_R.

-

PUSH R .

RA . .
RA_CTN
RA_RET

.

RA_ROW2.
RA_SUB .
READ_DATA.
RES_ICD. .

RES UD

RETURN . .

RIGHT.

RIGHTARROW

ROW. .
ROWEA.
ROWEL.
ROWE@2.
ROWG3,
ROWG4 .,
ROW@S.
ROWE6 .
ROWG7.
RCW@B.
ROWAS
ROW1G.
ROW11.
ROW12.
ROW13.
ROW14,
ROW15.

MACRO Assembler

s, Version 1.25

. Number
. N PROC
. L WORD
. L DWORD

. .
| il b - e
563
RS

£

NEAR
PROC
NEAR
. N PROC
i L. NEAR
. Number
. L NEAR
£ Number
WORD
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
RYXTE
BYTE

CcErfrrrhEsR s o
o)

R e i e B) o o B e] B e

. s
| vl

agac
ALE3
a36C
@52
[oe]o):)
Ba70
@176
@21F
BED3
@e3c
Banc
4en2
aeen
BZF5
209
JUE6
@16D
@2B5
@292
@132
@1D4
a1pd
¥aee
a126
@1ED
@359
@346
AB66
3161
8175
d167
A14B
@1EA
B2BB
2319
BEeD
ae7n
#aca
Aol
BoeE
ap22
@a936
Bo4n
BO5E
Be72
3386
B@9A
GAAE
gac2
@eDe6
FBEA
ARFE
@112
126
@813a

Page
12-21-84

CODE
CODE

DATA
CODE
CODE
CODE

CODE
CODE
CODE

CODE
CODE
CODE
CODE
QODE
CODE
CODE
CODE
CQODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
QODE
CODE
CODE
CoDE
CODE
COLE

CODE

DATA
DATA
DAT?

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

Symbols=2

Length

Length
Length

Length

Length

Length
Length

Length
Length
Length

Length

Length

Length
Length
Length
Length
Length
Length
Length
Length
Length
Length
Length
Length
Length
Length
Length
Length

=0ad6

=@da4
=0E13

=gdo4

=0E2B

=ga10o
=(i3g8

=006
=A@13
=3@L3

=0aze

=@@1E

=g@14
=0@l4
=pEld
=0014
=3@14
=0@14
=014
=0p14
=G@E14
=@@14
=034
=@014
=014
=pB14
=0@14
=p@l4

Zvr—4

UP LCD &

The Microsoft MACRO

3
&

URIGHT + - = «
WBIT a « 5 5 5 =

Warning Severe
Errors Errors
a @

P T

® % 8 8 s 8 &8 8 = 8 = &

® 5 8 = = 8 8 & s = % = 8 ® s o8 8 8 8 & 8 8 8 & = 88w

Assembler

% % = ® 8 = % & % % & 8 ® = 8 F % & = & & 8 & & = & & = @

s 8 % ® 8 8 & 8 B3 % = 8 ® s o= % 8 8 & 8 8 8w w8 = & & 8 @

® % 8 % % 8 8 % & = % =2 ® B 8 m o® % = 8 8 8w w A s s s oew

S L)

a8 0 8 & 8 8.8 & s 8w w

R I A

e 8 8 & % 8 8 8 8 8 8 a s

’

I I]

Version 1.25

(a N el ol & Nolalol Salclololol-S - foli-F Salalalalal o8 2l 2l o 28 o

BYTE

BYTE

f

B1l4E
Bl62
8176
@18a
B19E
@182
21ce
@1DA
2e46
@144
g142
8136
2eas
821
2198
@1F9
21B3
#234
0230
@aDl
2326
2304
@31c
2060
aelc
aecl
@272
8299
2as5a
21D9

Page
12-21-84

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

CODE

CODE
DATA
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
DATA
CCDE

CODE
CODE
CODE
CODE

Symbols-3

Length

Length
Length

Length

Length

=014
=0014
=gel4
=g014
=p014
=0@14
=g014
=0014

=0015

=pELo
=026

=001a

=0829

£v-S

Symbol Cross Reference

ADDRESSA « o & « & e e s e

ADDRESSE + «

ALT. « « «
ARERAX . .
BREACX . .
ASCROLL. .

BACKSP . .

BACKSPACE. . .

.

BELL « « « & +» & & P e s e a e
BELLL, + « «

BESP . . .
BESFB. . .

BS SUB

CLRTAB

CURRET & « « o o o ¢ = 2 2 = » &

DISPLAY. . .

DISPRIGHT.

DISPSCROLL .
DISP SUB o« o & & + o “ e e e e

DOWNCODE

IR S & 5 55 B e

354
6%
204
39¢
484
389

258
254
214

179

184

257

196

246
275
2934#
158
13%
641
1584
433
428
530%
499
388
366

514
685
682%
681
168

9%
le#
144

207%
219
371
369
223
204
219
573

172%
175
437
419
244

283
761

2044

is definition)

277
278
26
166
167
394#

262
188
183
1824
1874
260%
252%

6594
281
389
428
424
6444
158
498
497
542
5084
243
367

521%
6894%

686#
550

9
434
450

222%
375
3764
3644
208
5694
578

2334
4404
415#
173

4564
718

285
279

27
225
226

4354

266

B71
292%

166
513
512
557
525
253
373

596

143
458

378%

380
645
585
5814%

248

460
715

289
299

28
408
595

418

356

739
534
518
535

263
39l

6774

166

626

647

516
724

Cref-1

292
29

538
533

539

273
395

693

163

728%

293

537

382
416

473

299

386
555

474

316
598

321
613

331

333

349

345

A 4]

Symbol Cross Reference

KEEP'GUR o w o & s s s 2o 4 »

T
DEROWZ: = # v o w o 4 2 o & 50
EFS0B w =+ w = w0 e m @ w .
LINEFEED o » + 4 o+ &

OUT_LCnD. .

OUFVALS & i o 4 s w6 o 5 v a4

414

214
220
486
274
1a9
2774
195
224

6214#
560

279%
332
576
554
304

4258
235
487

1594
295
288

227
161

209
334
343
337
215
435
577
646
23%
176
264
34%
474
51#
554
594
634
67%
714
754
79%
834
87%
914
954

(# is definition)

556

217%
355%
4943
218

192%

272¢%
193

628
58@

291

3444
5794
5584
3074

451
236
414

229
3014
298

7144
7004

212¢
3384
3474
3414
330§
4384
5904
6493
198
181
213
178
476
477

597

358
503
409

369

594

459
238
4224
731
365

726
712

186

244
615

346

608%

240
443

412

650

191

466
662

Cref-2

396

633

242
515

4484%

196

551

261 282 286 296 387
599 614 684 688

452

261 206 211 216 221

553 559 572 574 575

322

224%

593

342

616

374

392

S¥-S

Symbol Cross Reference

I I)

ROWI3. o o o v o o o v
ROWl4. & & o o o o & 3.3
ROWIS. o o v v o o v o
ROWIE. v v v o w v u s .
ROWLT. v'v o o o o o o
ROWIB. o v v s o o o .
BRI, v vcervie e it s
BOW2D,- o0 00w momcwis
BON2L.. v cwswemmony i
B2 ¢ 0 wmnnisowo
ROW23. o o v« w o s s
BT o o oe aimaiee .
RT_ROWL. « o v o &
RETROWZ 4o io 5o om0
RESUB: o oo arene s
REDRIR: o cocarvamaronrs i
SCRIGHT: o-vasveanaase
SCROLLER o o s » o s o »
SCRRIGHT . + . . .
ECROON. o o o s o s s
SRIGHT v .o wisiiainis
BIIORG & e i o o s
SUBRIGHT + + & « « & + &
TRBLP, o 5 o 5 5.5 s
TEST UD. « « « « «
TUDRIGHT . . « » . . . ’
TWENTY v « v o oo s e
UPCODE & v v v o v v o
17 o P,
S SR
S T

WAIT . .

" v s oo

R R T S T

a v s a

" s s 8 s 2 @

T

. " e

]

L R T T

994
1934
1874
1114
1154
119¢
123¢
1278
1318
135%
139%
194
319
317
208

37

467
37
276
393
511#%
Seu#
2%
255

6643

18@

643
338

174
288
205
552
199

429%

(# is definition)

496
532
536
1974
3214
3204
3154
284

4878
387¢
465#
397%
520

259

667
638¢
648
245

177%
203

5474
5614
2028

431

324
287

399

489

2644

654
651#
617

640
564 642

Cref-3

The Assembler directive -- SEGMENT

In the beginning of this program, an assembler directive SEGMENT
instructs the Macro Assembler to reserve a memory space of 258
bytes as the stack segment so that data can be saved in the stack
segment before a CALL or JUMP instruction. You should refer to
the Macro Assembler Manual for more details of the assembler
directive SEGMENT.

Each time you use a SEGMENT directive to allocate a memory space
to a segment, you have to use the directive ENDS to tell the
assembler that it is the end of a segment.

The Data Segmert

After the stack segment is set aside, another SEGMENT statement
is used to define the data segment for the_ program. Data and
variables to be processed in an 8088 assembly language program
should be defined in the data segment.

The Assembler directive -- EQU

The EQU (EQUATE) directive assigns a value of an expression to a
name. For example, the EQU statement

CMD_PORTW EQU 0@1A0H

assigns the hexadecimal value 1A@GH to the name CMD_PORTW. In a
source program, an H is affixed to a value to designate that the
value is in hexadecimal.

The EQU directive sometimes takes the form of an equal sign =.
As you can see from the example program, the first four EQU
directives assign the I/0 port addresses to the four LCD ports.,

Values are assigned to control codes with the EQU directives.

The Assembler directive -- DEFINE

The DEFINE assembler directive assigns a pre-defined value to a
byte or multiple of bytes according to the second letter of the
directive, The DEFINE directives are represented by different
mnemonics such as DB (DEFINE BYTE), DW (DEFINE WORD), DD (DEFINE
DOUBLEWORD), DQ (DEFINE QUADWORD), and DT (DEFINE TENBYTES). You
should refer to the Macro Assembler Manual for more details of
that assembler directive,.

Constants and variables are defined using the DEFINE directives.
The LCD buffer are initialized to zeros with the DB directives.

The Code Segement

The code segement follows the ENDS directive for the data seg-
ment. Before the SEGMENT assembler directive, there is a comment
field which defines the contents of some registers which should
be set before entering the LCD routine. Here, we will explain the
comment field in detail:

1) AL - holds the ASCII character (parameter) to be output to
the LCD.

2) CH=@ - indicates that you do not expect the cursor to
appear on the LCD.

3) CH<>@ - means the reverse of CH=@; 1i.e., you expect the
cursor to appear on the display.

4) CL=0 - indicates that you expect the system not to scroll
up the screen.

5) CL<>@ - means that you expect the system to scroll up the
screen,

The example program consists of 23 subroutines, including the
main program named OUT_LCD. The function of each subroutine is
described as follows:

Name Functions
l. OUT_LCD The main program checking for the input data
type.

2. FF_SUB A subroutine processing the form feed code.

3. BS_SOB A subroutine processing backspace initialization.
4. LF_SUB A subroutine processing the line feed code.

5. RT_SUB A subroutine processing the carriage return code.
6. RA_SUB A subroutine processing the right-arrow code.

7. LA_SUB A subroutine processing the left-arrow code.

8. DISP_SUB A subroutine processing the cursor positioning
ol after displaying a character.

9. SCROLL A subroutine for decision-making on scrolling
LCD when the end of the second row of the LCD
screen 1s reached,

1. BACKSP A subroutine processing the backspace code.
11. OUT_FUN A subroutine communicating with the LCD 1I/0
ports.

5-47

12,

13.

1l4.

15.

16.

17.

18.

19,

29.

21.

225

23.

Name

OUT_VAL
IN_DATA
SCROLLER
LCD_TABLE

COPYROW

COPY_LCD

UP_LCD
DOWN_LCD

RES_LCD

MOVLCD
TEST_UP

CLRTAB

Functions

A subroutine for writing characters to 1/0
ports.

A subroutine for reéding characters from 1/0
ports.

A subroutine for scrolling the contents of the
buffer one line up.

A subroutine for making some .preparations for
copying the images of the first row on the LCD

to the 21st row of the buffer in memory.

A subroutine performing the copying operation.

A subroutine for making some preparations for
copying the two rows of images on the LCD to the
22nd and 3rd rows of the buffer in memory
respectively.

A subroutine for scrolling the screen so that
the upper part of the screen can be viewed.
A subroutine for scrolling the screen so that
the ‘lower part of the screen can be viewed.

A subroutine for restoring the original
back to the LCD screen from the 22nd and
rows of the buffer.

images
23rd

A subroutine for moving a line of characters in
buffer to the LCD screen.

A subroutine testing if the input parameter is
ALT A or ALT 2.

A subroutine clearing up all the contents of the
buffer to blanks.

We can now look at the LCD program. After the comment field, a
SEGMENT directive 1is used to set aside a memory space for the
instruction code.

The first thing the program will do is to push the contents of
all registers onto the stack. This is done by the instruction
CALL PUSH_R. The procedure PUSH_R is listed in the example
program as the last procedure,

Why must we push the contents of all registers onto the stack?
Because we want to give the program flexibility so that it can be
used with or called by other programs. We assume that this
program can be called by another program.

One thing you have to keep in mind is that if your program Iis
associated with (or called by) another program, you have to save
onto the stack the current status (the results the calling
program Jjust produced before calling another program) of all
registers before calling another program. Then as the called
program finishes execution, the POP instruction is executed to
restore the system status back to their original state. This
practice ensures that when the called program finishes execution,
program control will return to the calling program without des-
troying the status before calling.

An alternative to ensure that system status will be kept intact
is to push the current status onto the stack as soon as a called
program is executed. This is what the example program does to
save the system status. You can adopt this programming technique
in your own program.,

In order to access the memory in the data segment (DS), the
program initializes the DS register to point to the beginning of
the DS (Data Segment) by the instruction MOV BX,DATA and MOV
DS,BX.

Since the input parameters are important for subsequent opera-
tions, we use two word variables, namely AREAAX and AREACX, to
save them in advance. The instruction CALL CUR ONOFF determines
whether to turn off the cursor based on the contents of the CH
register input from the calling routine.

Initialize the LCD

Before sending a character to the LCD, you have to initialize the
LCD by sending a set of values to the LCD. In our example
program, the FF SUB procedure can be used to initialize the LCD.
The FF SUB procedure outputs the following set of LCD initializa-
tion values -- 38H, ODH, 6, and 1. The comments for the FF_SUB
procedure explain briefly the function of these values. The LCD
data sheet provides more information on why the LCD initializa-
tion values should be sent to the LCD.

The easiest way to initialize the LCD is wusing the following
instructions:

MOV AL,@CH
CALL OUT_LCD (OUT_LCD here is our example program.)

After initializing the LCD, then you can send a character to the
LCD to display. For example, 1if you intend to display the
character A, you can use the following instructions:

MOV AL,@CH ;Initialize the LCD.

CALL OUT LCD ; (OUT LCD here is our example program.)

MOV AL,41H ;Load the AL register with the ASCII code of
the character A.

CALL OQUT_LCD ; (OUT_LCD here is our example program.)

Generally speaking the form feed code demands for the action of
printer. But in our program, this code (@CH) is to cause the
system to reset the LCD and clear up the LCD screen. To the
hardware of the LCD, resetting the LCD screen requires four
actions - function set, display and cursor on/off set, mode set
(cursor movement direction), and display clearance.

The wvalue 38H in the first MOV instruction aims at setting the
function of the LCD. The procedure OUT FUN is called twice in the
FF SUB rountine in order to achieve the purpose of function
setting.

Each time you want to output a character onto the LCD screen, you
have to call the OUT_FUN routine which performs the actual output
process, The procedure OUT FUN is responsible for communicating
with the I/0 ports of the LCD.

The value @DH 1s to set the LCD screen to be able to display
images and to set the cursor to be able to blink after the system
has been powered up.

The value 6 is to set the cursor to operate or scan from left to
right. Last, the value 1 is used to clear up the TLCD screen and
set the cursor to the upper left-hand cornor of the LCD screen.

Now, the number of position where the cursor stays is 80H, repre-
senting the first column of the first row. Therefore, we move the
value B8@GH into the variable COUNT which is used throughout all
the associated LCD routines to indicate the current position of
the cursor.

The subsequent instructions up to the end of the OUT LCD routine
check for the control characters to determine which routine
should be executed. It should be easy for you to trace and under-
stand these intructions.

Another important Jjob FF SUB performs is to move the constant 22
into the variable ROW. The variable ROW used in our program
contains the current row number of the buffer in memroy whose
contents are being shown on the LCD screen.

The Display Buffer

The buffer contains a total of 24 rows of lines (ranging from row
@ to row 23), and each line contains 20 columns. Thus, we get 480
bytes of memory, or 24*20@ bytes. The display buffer can be
visualized as follows:

2@ Characters

{aLT-a
«— window
1ALT——Z
24
Lines
The variable ROW is used as a pointer, which contains (always
points to) the current row number of the display buffer whose

contents are being shown on the LCD. The value of ROW 1is
initialized to 22 after the FF_SUB routine is executed.

When you <call the QUT_LCD procedure to output a character or
characters to the LCD, the characters are stored beginning from
row 22 of the display buffer (which corresponds to row 1 of the
LCD). After both of the two rows of the LCD (which correspond to
row 22 and row 23 of the display buffer) have been filled with
characters, any further incoming characters to the LCD are dis-
played on the second row of the LCD, but the characters
originally displayed on the first row of the LCD was shifted one
line up into row 21 of the display buffer and the second row was
shifted one line up into row 22 of the display buffer.

Each time the user enters the codes ALT A or ALT Z, the program
will increment or decrement the variable ROW by one. 1In other
words, the value of ROW will not change unless the codes ALT A or
ALT_Z are sent to the LCD.

The wvariable TWENTY represents the symbol of the value 28 which
will be used in the associated routine (MOVLCD) to calcalate the
starting address of a certain row of line in buffer required to
output to the screen. :

UDTEST will be executed only when the control codes ALT A o
ALT_ 7 are entered. Note that the CALL TEST_UD 1instruction in
routine UDTEST will not be executed at the first calling of the
LCD_OUT routine, because the contents of ROW was initialized to

22.

As you can see, the routines FF:, UDTEST:, and BELLl: through LA:
all comes under the comment field "CONTROL CODE TEST". These
routines test if a control code is entered. 1If the contents in
the AL register does not match any of the control codes (such as
bell, backspace, 1linefeed, return, and others supported by MPF-
I1/88), the program will fall through to the instruction labelled
DISPLAY to output it onto the LCD screen.

Let us go on looking at the next routine called BS_SUB. The
backspace control code is used to cause the cursor to move back-
ward by one space on the same line. Two considerations in this
routine should be taken into account. One is that when the cursor
stays at the leftmost position of the first row, the backspace
operation to the cursor must not occur. The other is that when
the cursor stays at leftmost position of the second row, the
cursor should skip to the rightmost position of the first row
after the program recognizes the backspace code.

Now look at the LF SUB routine. The linefeed control code that
our program recognizes is used to cause the cursor on the LCD
screen to advance by one line, If the cursor stays on the second
line of the LCD screen, what we have to do is to move the current
contents of the second line to the first line instead of causing
the cursor to advance by one line. The routine labelled NEX_DATA
performs the data movement operation. After making the cursor
advance one line, we should clear the line (second line) which
the «cursor currently stays to blanks. Then the program will
prompt the cursor at the position corresponding to the one where
it stayed before.

Let us go on with the RT_SUB routine. The carriage return code is
used to cause the cursor to stay at the beginning of the next
line.

The RA SUB routine advances the cursor by one space. The value 14
in the move instruction labelled RA CTN is required by the hard-
ware to advance the cursor to the right by one space. If the
cursor stays at the rightmost position of the first 1line, the
program will call the LF SUB routine to move the cursor to the
first column of the second row.

Next, 1look at the LA_SUB routine. This routine performs the same
operation as the BS_SUB routine. However, when BS_SUB detects the
backspace control code, it will clear the position preceding the
current cursor position while moving the cursocr. When the program
encounters the leftarrow control code, it simply move the cursor
backward by one space,

The DISP SUB routine 1is used to output the character stored in
the AL register, If the cursor reaches the end of the second row,
the program will determine if the screen should scroll up based
on the parameter in the CL register. Thus, the program calls the
SCROLL routine to perform this job when the value in the AL
register is equal to @D4H.

It is considered not difficult for you to trace the SCROLL
routine. Therefore, let us skip it over to the BACKSP routine. In
this routine, we use a value 10H in the first move instruction
which is required by hardware to move the cursor backward by one
space. Then, the program will check which of these two control
codes -- backspace and leftarrow, invokes this BACKSP routine,
According to the logical judgement result, the program determines
if it should perform a clean-up operation. There is another 1@H
value in the third move instruction of this routine; Its function
is the same as the first move instruction. Because each time the
program outputs a character onto the screen, the LCD hardware
will automatically advance the cursor by one space. Thus, we have
to rewrite the MOV AL,l1@H instruction after performing the clean-
up instruction MOV AL, 20H which is used to clear up the position
where the cursor stayed last time,.

Now, let us go to the OUT FUN routine. This routine functions to
interface with the four 1/0 ports and plays the actually output
role in our program. This routine can be accessed from two
entries- OUT FUN and OUTA. Normally, this program is accessed
from the ent?y OUT_FUN to output a character to the I/0 ports. It
can be also invoked by the IN DATA routine to read in a character
from I/0 ports and invoked by the OUT_VAL routine to output a
character to the I/0 ports. The routine labelled WAIT is used to
test if the LCD driver is busy at the time when we want to output
or input a character to or from the LCD screen. If the LCD driver
is busy, it returns a value in the AL register with the sign bit
set to 1.

The SCROLLER routine is invoked when the screen is filled up with
characters and the cursor cannot move down any more lines; i.e.,
once the cursor is on the bottom line (second), the screen should
scroll up instead of moving the cursor down.

Before we replace the contents of the first line of the LCD
screen with the contents of the second line, we have to move up
the contents of the buffer in memory (from row 21 to row 1) by
one row in order to move the contents of the first line of the
LCD screen to row 21 of the buffer in memory. The SCROLLER,
LCD_TABLE and COPYROW routines perform what we just stated.

The entire scrolling operation is accomplished with a string
operation, using the MOVSB instruction.

The original contents of row @ are always spoiled each time this
routine is performed. Note that the use of the special assembler
operator, OFFSET, in the MOV DI ,OFFSET ROW@G@ instruction. It
provides us with the offset address of the variable ROW@J.

The COPYLCD routine is invoked to move the contents of both the
LCD screen lines to the row 22 and 23 of the display buffer in
order to respond to the ALT_A or ALT_Z control code.

The UP_LCD routine is invoked by the ALT A code. In this routine,
the program wuses the variable KEEP_CUR to record the cursor

5-53

position the first time it receives the ALT A control code in
order to restore the cursor to its origianl position once the
user enters any command or character except the ALT A and ALT_7%
control codes. ' N

The DOWN LCD routine does the reverse of the UP LCD routine.
However, the DOWN LCD routine performs a decision-making process
which is not performed by the UP LCD routine. The decision-making
process examines whether the ROW variable contains the value 22.
If the ROW contains the value of 22, this means that the
displaying of the LCD screen has already reached the buttom of
the buffer in memory and no more down-scrolling can be performed.

The RES LCD routine is used to move the orignal contents shown on
the LCD screen Erom rows 22 and 23 of the buffer in memory back
to the LCD screen and also restore the cursor to its origianl
position based on the contents of the KEEP_CUR variable.

Let us keep going with the MOVLCD routine. This routine first
calculates the starting address of the lines in the buffer to be
output onto the LCD screen based on the value that the wvariable
ROW contains, and Gthen wmoves to the LCD screen two lines of
contents (48 characters) in the buffer from the starting address
it calculated.

The TEST UD routine is used to determine which one of the ALT A
and ALT Z codes 1is entered after one of them has been Jjust
entered ~once. If the code entered is not of one of them, the
program will call the RES LCD routine to restore the original
images shown on the LCD screen.

Finally, let us see the CLRTAB routine. As its name implies, this
routine 1s used to clear all the contents of the lines from row @
to row 21 in the buffer to blanks.

Please take note that the above example program is assembled

using Microsoft's Macro Assembler. Since the MPF-I/88 does not
support Microsoft's Macro Assembler, the example pregram can not
be entered and run on the MPF-I1I/88. However, you can adapt the

example program to a form which can be run on the MPF-1/88. If
you intend to do this, you have to change the lables and names
into absolute addresses. Also, you are suggested to trace the
QUT LCD procedure contained in MPF-1I/88 Monotor Program Source
Listing, and compare that one with the example program.

5.5 Audio Interface Driver

The MPF-1/88 supports an audio interface circuit for buzzer

output. Please refer to Sheet 2 of schematic diagram for the
buzzer circuit. Bit 6 of port 18@¢H is used to control the buzzer
circuit. A sound is generated by applying a sequence of ones and

zeros to this circuit.

You «can visualize the buzzer as the paper cone of a speaker. To
generate a sound, the paper cone must be attracted and released
at high frequency by the audio interface circuit. To attract the
paper cone, we apply a nominal voltage one (bit 1) to the audio
interface circuit. To releae the paper cone, we apply a nominal
voltage zero (bit @) to the audio interface circuit.

A nominal voltage one can be applied to the sound-generating
circuit by using the OUT instruction to output a bit 1 to bit 6
of port 18¢H. A nominal voltage zero (bit @) can be applied to
the audio interface circuit by outputting a bit @ to bit 6 of
port 18@H.

You can locate the procedures BEEP and SOUND at lines 1552 and
1574 in the MPF-I/88 Monitor Program Source Listing. The subrou-
tine which actually generate sound is labelled SOUNDl:. As you
can see from the comment field for the procedure SOUND, the BX
can be loaded with a value that controls the frequency of the
sound to be generated, while the CX register can be loaded with
the value which controls the pitch of the sound to be generated.

As demonstrated in the MPF-1I/88 Monitor Program Source Listing,
you can use the SOUND procedure by including the INT 18H instruc-
tion in your own program. Before using the INT 18H statement, you
can use the CX register to set the frequency of the sound we
desire and the BX register to set the duration of the sound.

At the start of the BEEP subroutine, we move two initial values
20@H and 208H to the BX and CX registers, respectively. You can
change them as you wish,

At this point, please refer to the chapter on I/0 Programming of
this manual for I/0 port addresses where the function of bit 6 of
the 1I/0 port @180H is clearly described. Thereafter, vyou can
understand why we set the constant label SPEAKER IO to @#18¢H and
BEEP BIT to 40H (=01000000). B

At the beginning of the program execution, we disable all the
functional bits of port @180H so that the program execution might
not be interrupted by outside devices, and at end of the execu-
tion we re-enable them. This point is very important to keep in
mind when you write a program like this.

You can input a sound table using the DEFINE assembler directive.
An example program is provided as follows. You can type in the
example program and run it on your MPF-I1/88.

This program when executed, will produce the basic music notes
continuously. . To stop the program, press the RESET key. The
program will remain in the RAM after the RESET key was pressed.

Address Mnemonics Operands Comments

¢o80:0000 CALL 5 ;Invoke routine addressed by
memory location 5.

@ge80:00803 JMP @

GP8@F:0005 MOV SI,208 ;Move address 20@ to SI

@@8@:0608 CLD

@g80:0002 LODSB jMove a byte of data addressed
by the SI register into the AL
register.

g@8@:00@8A CMP AL,1 ;Check if the end of the prede-
fined data is encountered.

@080:000C JNE 18 ;If data ends, Jjump to the
instruction contained in
memory location 18H.

P80 :000E LODSW ;Move a word of data addressed
by the SI register into AX.

0@80:000F MOV CX,AX ;Move frequency into CX.

P@8@:9¢11 LODSW

@go8@:0012 MOV BX,AX ;Move music pitch into BX.

@PB8@:0G14 INT 18

@@8@:8016 JIMP 9

@08@:0018 RET

Pe8@:0200 DB i

P@8@:0201 DW 1D5,88

@g8@:8205 DB 1

PP8P:0206 DW 1B3,840

@@80G:920A DB 1

P@8@:920B DW 196,80

@uY8@:020F DB 3

¢@8@:9218 DW 184,80

Pyo8@:0214 DB i

¢@8@:9215 DW 168,80

@e8B:0219 DB 1

GR8@:921A DW 155,80

@P80:021E DB 1 .

G@8@:321F DW 148,80

@@80B:0223 DB 1

@@8@:9224 DW 136,80

P@8@:0228 DB 1

@080:9229 DW 114,89

@@8@:022D DB 1

@98@:222E DW F8,84d

@@8@:2232 DB 1

FI80:v233 DW E6,80

@@8@6:98237 DB 1

$e8@:0238 DW B8,80

@@8@:623C DB 1

$@80:023D DW A2,80

PEBB:08241 DB 1

ge80:0242 DW 9A,8@

0080:0246
go8G:0247
P80 :024B
go8G:024C
0080:0250

DB
DW
DB
DW
DB

88,80

78,80

5.6 Keyboard Driver

A keyboard 1is an interface between the system and the outside
world. Physically, the keyboard of the MPF-1/88 consists of 59
keys, including the space bar.

To wunderstand the keyboard driver program, you need to refer to
the schematic diagram for the keyboard, which shows the keyboard
circuit. You will find that it resembles a matrix, consisting of
12 columns by five rows (12 x 5). Each node (intersection) of
the column and row lines is assigned with one or two characters.

1
ST] !
|
o1 By -“‘- J‘» /‘\ ‘/'I'-- T {-
DD D€
Dy D e Dy D A D
\NZANPANFANFAT VAT VA
i I W0 O e . Wt o W o W
O o\
MDD DD
QWA PA AT A ANV S ¥
T8 AN 2T TN AT ETN TN
QAN P AN B P P
l 1]

Each character supported by MPF-1/88 is assigned with a position
code (scan code). The position code is a number between 1 and 71
with each uniquely identifing a specific key (there are 71
charaters supported by the MPF-1/88 the keyboard).

The keyboard driver program detects any change in the state of
the keys by scanning (reading) the keyboard matrix every 15 ms.

Each time you enter a key from the keyboard, the keyboard pro-
gram knows which key you are entering by examining the the posi-
tion code (which is also generated by the keyboard program.)
Tables ©5-1 and 5-2 illustrate all of the 71 position codes with
each corresponding ASCII code and character on the keyboard.

View of Table:
Input key

ASCII code
Table 5-1Keyboard Position Code To ASCII Code
(Without holding down the SHIFT key)
PTA_TAB:
Fl !] 4 = [/ RET BKSP F2 CAP
(@) (5) (19) (15) (20) (25) (30) (35) (48) | (45) (58)
BlH 6@H SDH 27H 3DH SBH 2FH @DH @BH B82H 20H
] M P —_—]) L @ K '
{1} (6) (11) (16) (21) (26) (31) (36) (41) (46) (51)
4FH 4D S@H 3BH 2DH 39H 2EH 4CH 3@H 4BH 2CH
5 R 4 E D s X F c T v
(2) (7) (12) (17) (22) (27) (32) (37) (42) (47) (52)
35H 52H 34H 45H 44H 53H S58H 46H 43H S54H 56H
- 1 A 2 Z 3 W ESC Q \ SPACE
(3) (8) (13) (18) (23) (28) (33) (38) (43) (48) (53)
@9H 31H 41H 32H 5AH 33H 57H 1BH S1H SCH 28H
6 g G N H 7 J 8 ¥ u)
(4) (9) (14) (19) (24) (29) (34) (39) (44) (49) (54)
36H 49H 47H 4EH 4BH 37H 4AH 38H 59H 55H 42H
Table 5-2 Keyboard Position Code To ASCII Code
(With holding down the SHIFT key)
SHIFT:
Fl 5 } B + { ? RET | BKSP F2 CAPS
(8) (5) (19) (15) (2@) (25) (3@) (35) (40) (45) (54@)
83H TEH 70H 22H 2BH 7BH 3FH @DH B8H B4H 20H
o - < > 1 > k <
(1) (6) (11) (16) (21) (26) (31) (36) (41) (46) (51)
B6FH TUH 3AaH 5FH 28H 3EH 6CH 29H 6BH 3CH
r S e d 5 X £ c t v
(2) (7) (12) {17) (22) (27) (32) (37) (42) (47) (52)
25 72H 24H 65H 64H T3H 78H 66H 63H T4H 76H
Cmm ! a @ z # w ESC iy SPACE
(3) (8) (13) (18) (23) (28) (33) (38) (43) (48) (53)
99H 61H 40H 7AH 23H T7H 1BH 71H 7CH 28H
- i g n h & j * u b
(4) (9) (14) (19) (24) (29) (34) (39) (44) (49) (54)
SEH 69H 67H 6EH 6BH 26H 6AH 2AH 79H 75H 62H

The keyboard program of MPF-I/88 is automatically invoked every
15 milliseconds by the CPU. The MPF-I/88 invokes the kebeard
program in such a manner that every 15 milliseconds the timer

chip 555 sends out a signal to interrupt the 8088 processor
through the NMI pin of the 8@#88. Upon receipt of the interrupt
signal, the 8088 initiates the following events:

1) First, the 8088 saves the machine status by pushing the con-
tents of the Flags register onto the stack.

2) Next, the 8088 clears the interrupt enable and trap bits in
the Flags register to prevent subsequent maskable and -single-
step interrupts. ?

3) Then, the 8@88 establishes the interrupt routine return
linkage by pushing the current CS and IP register contents
onto the stack.

4) Finally, the 8¢88 1loads the CS and IP registers with the
starting address of the keyboard program from the Interrupt
Vector Table, and then accesses it.

It is the responsibility of the keyboard program to detect the
keyboard interrupt and respond to it by returning a position code
if a key is pressed.

On the MPF-1/88, the position code is generated by reading in a
binary value which represents the key just being entered from the
1/0 port 1COGH. The position code itself may be interpreted in any
manner desired. That is to say, the meaning of each key can be
pre-defined by software.

Since the keyboard interrupt occurs asynchronously with respect
to other program running in the computer, the striking of a key
can occur at any time, and it is completely independent of when
another program may wish to read keyboard. Our keyboard program
is therefore required to save or buffer any keyboard input that
it receives. To accomplish this, we use a "first-in, first-out"
buffer, most often referred to as a "key queue",

A position code generated by the keyboard program is converted
into a proper ASCII character code and then placed onto the key
queue. When another program wishes to get keyboard input, it just
takes the characters off the queue in the order in which they
were received.

The size of the queue determines the maximum number of characters
that can be buffered at any time. This represents the number of
keystrokes you can type before causing the system to perform any
operation.

Now we are going to explain how a keyboard scanning operation is
performed. When reading the following paragraphs, please refer to
the schematic diagram.

As with what we have stated before, there are 12 columns and five
rows which result in a matrix on the keyboard circuit. Columns
KC-@ to KC-7 are physically assigned to I/0 port @l60H; and
columns KC-8 to KC-11 are assigned to 1/0 port @180H. Next, let
us see the row lines. Rows KR-0 to KR-5 are assigned to I/0 port
@1C@H. Ports @l6@H and @186H are keyboard array outputs to the
keyboard program; in reverse, they are inputs to the keyboard.
Port #61C0H is a keyboard array output to the keyboard.

To find out if a key among all the keyboard keys is pressed, what
we have to do is to start scanning from KC-11] through KC-@. A
complete scanning operation from KC-11, KC-10, KC-9 through KC-@
is called a "scan-out" in our keyboard program.

In addition to column KC-11, each column of the keyboard matrix
is scanned for five times. This is because during the scanning
of each column, we have to scan five keys (from row KR-0 to row
KR-4 with the exception of column KC-1l1l,) i.e., each column needs
five scanning operations. At this point, you might ask how the
keyboard program knows which column is required to scan at a
certain time during scanning. Now, let us have a futher discus-
sion about it; that is, indeed, only a programming technigue.

Before the keyboard program starts scanning the keyboard, it
will set «column KC-11 to zero (low voltage) and the rest of
columns to one (high voltage) by outputting to both the I/0 ports
018JH and @G160H the value @F7FFH (=1111611111111111). 1In other
words, the column which the program wishes to scan is pre-set to
zero and the rest of columns to one, for the number of columns
that the keyboard program can scan at a moment is only one column
of five keys.

After scanning a column, the hardware (keyboard) will send out to
port @1C@H a byte of value of which only cne of the least signi-
ficant five bits contains a zero value, .Thus, the keyboard pro-
gram can read that value into the AL register through the DX
register which always connects to I/@ ports. At this time, vyou
can determine which key is pressed by shifting left the least
significant five bits one by one to the Carry flag that we use as
a "check-count" in our program. In our keyboard program, we also
use a counter (namely, the DI register) to ‘record the position of
the key being pressed.

Through the value stored in the DI register, we can determine the
position code of the key just being pressed which had been de-
fined at the time when we designed the keyboard program. Then,
we can also find the ASCII code of that key through a corres-
ponding look-up ASCII code table defined in our program.

Our keyboard program is quite complicated and many factors should
be taken into consideration, for it should normally handle many
features, such as uppercase/lowercase characters, "ALT", "SHIFT"
and "Shift-Lock" keys, and special control-key combinations,
Thus, many tests and determinations are regiured to make during
the program execution.

There is also an important topic that should be stated here. That
is the subject on the keybounce:

The keytops of the keyboard are usually depressed by hand. 1In
general, the speed of the computer response to each of them is
much faster than that of the human beings. No matter whether a
key is pressed on the keyboard or not, the keyboard program must
always scan the keyboard repeatedly. When being depressed or
released, a key bounces for a short time. Fig. 5-1 is a time
response diagram of typical key-depressing and -key-releasing
operation., Thus, a key-depression might be identified as two or
more key-depressions if the keyboard scanning rate is too fast.
To avoid this problem, the pericd of scanning we use in the
program is longer than the bouncing time.

depressing releagsing
bouncing bouncing
e, —ee,
.—_—ss_
key rel, keych'fr) H ku}(ful. key dep.
1 I s i I 2 1 TIME
Tn Tn+1 Tn+2 Tn+3 TTn+3 Tn+4 Tn+5
Fig 5-1

In Fig. 5-1, at the instant indicated by the upward arrow the key
is examined. At Tn+2, the keyboard program found that the key was
depressed and indentified the position code. At Tn+3, the key was
also found depresseed. Since the key was found depressed in the
previous scannings, the keyboard program will determine that this
is not a new key-depression (i.e. the key has not been released
during this time interval). Only if the key is found released at
Tn+4 or Tn+5, a new key-depression will be really recognized at
Tn+6.

A program for getting data from a keyboard designed by this rule
will be immune from error, no matter how long the duration of the
key-depression is and whatever is found at this period between
Tn+l and Tn+4 (@ or 1).

In our keyboard program, we use also a variable as a repeat-count
to test if a key is always depressed after the keyboard has been
scanned out for 30 times. If yes, the same character will be
shown on the screen. After that, if the program finds the same
key still being depressed, it will output the same character onto
the screen every 4 scan-out operations.

The MPF-I/88 keyboard interface program begins with the procedure
KEY NMI. You can locate it by referring to the cross reference
section of the MPF-I/88 Monitor Program Source Listing. In order
to let you understand keyboard interface programming more easily,
an example program with a more detailed comment is provided as
follows.

£9-6

The Microscft MACRO Assembler

WOl hin W -

L Lo LI R R B BRI RS R R N KD bt et e el b e
B A0 L0~ O U i W N SR D D] OY L e W NS

33

(B R S R B o - - S SV PL PV PSR LRI}
Dl Wk &AW 0] d WS Ww o= ds

gaae

= @189
Pl6@
glce

gega

ae6a

aa1s

BaLF
pg21

p@23
pp24
@26
pE28

B@29
gaz2a

9928
@ggac
882D
GO2E

oReg
gega

gaga
gael
BEa3

Ba

PB

@A

wRaa
GoEa

ea
pgae
eaea
L1')

Be
ae

@a
ad
ea

1E
33 Ca
54

g

ea

ea

r

version 1,25

page 1-1

1z

-18-84

PAGE 68,132
DATA SEGMENT PARA PUBLIC 'DATA'

e e

I/0 PORTS
r
OPD_PORT1 EQU @L8UH
OPD_PORT2 EQU Bl60H
IPD_PORT EQU G1CaH
: VARIABLES
’
KEY Q DB 16 DUP(B) JALLOCATE 1@ BYTES OF MEMORY
;FOR THE KEY QUEUE BUFFER.
NEW_KEY_BUF DB 3l ¢ DuB(@) ;ALLOCATE 11 BYTES OF MEMORY FOR
;THE INPUTS JUST BEING KEYED IN.
OLD_KEY_BUF DB 16 DUP(B) ;ALLOCATE 1@ BYTES OF MEMORY FOR
;THE INPUTS KEYED. IN AT THE LAST
; SCAN-OQUT OPERATION.
NEW_NO_FLG DW [;THE NUMBER OF INPUTS JUST BEING
2 ;KEYED 1IN,
OLD_NO_FLG DW] ;THE NUMBER OF INPUTS KEYED IN
;AT THE LAST SCAN-OUT OPERATION.
CAPS_COUNTER DB 2 ;CAPS LOCK COUNTER
REP_COUNTER DW a ;FIRST REPEAT COUNTER
REP_COUNTERL DW a ; REPEAT AGAIN COUNTER
LAST_KEY FLG DB] ;A FLAG TO IDENTIFY IF ANY CHARACTER
;HAD BEEN TYPED IN AT THE LAST
; SCANNNG OPERATION. IF YES, A VALUE
;OF "FF" IS MOVED INTO THIS VARIABLE,
CTRL_P_COUNTER DB] jCTRL-P COUNTER
NO_KEY COUNTER DB [} ;A COUNTER FOR THE RECORD OF HOW
;MANY TIMES OF SCAN-QUT OPERATION
;& CHARACTER HAS BEEN NOT DETECTEC.
SPECIAL DB] i CTRL,SHIFT,ALT FLAG .
PTR_FLG DB] iPRINTER FLAG
CAPS_LOCK DB] "; CAPS LOCK FLAG
DATA ENDS
r
CODE SEGMENT PARA PUBLIC 'CODE'
KEY_NMI PROC FAR
ASSUME CS:CODE,DS:DATAR,ES:DATA
PUSH DS
XOR AX,AX ;EQUIVALENT OF "MOV AX, 8"
PUSH AX

The above three

instructions are used to store onto the stack the address

t9-g

The Microsoft

56
57
58

59 .

6@
61
62
63
64
65
66
67

69
7@
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9@
91

92
93
94
95
96
97
98
99
lee
181
le2
1e3
104
185
166
187
les
189

pop4

geee
8089
paec
e@er
epl2
@o1s

Bo17

gela
@glc
@gelp
81D

0626
ge22
@824
0024
0e27
B@2a
ge2B
gBac
Bezp

082E
@82E
ge31
0034
@@3s
8037
ge3a
@e3B
@@3E

#O3F

o044

@046
Ba4s

MACRO Assembler

8E

B8
A3
B8
A3
B8
HE

BA

BO
EE

EB

cp
EB

E8
B8
5@
5@
1F
a7

B8
BA
EE
86
BA
EE

Ccé

A8

75
8@

D8

=== R
eeada
0024 R
eees

-=== R

na

6180

FF

@2E5 R

029
F9

922D R

---- R

F7FF
@16@

E®
o186

elca

@6 002B R @@

20
@5
@E 0828 R 04

Version 1.25

TINE.

e ma wa owa

AGAIN:

NMI_IN:

MOV

MOV
MOV
MOV
MOV
MOV
MOV

MOV

MOV
ouT

CALL

INT
JMP

CALL
MOV
PUSH
PUSH
POP
POP

Page 1-2
12-18-84

DS, AX

AX,SEG NMI_IN
DS: [@AH] ,AX

AX,OFFSET NMI_IN

DS: [8] ,AX
AX,DATA
DS, AX

DX,0PD_PORT1

AL, OFFH
DX ,AL

GET_KEY

9H
AGAIN

PUSH_R
AX,DATA
AX
AX
DS
ES

of a instruction next to the one that the MS-D0OS is executing when we start
to run our keyboard program. With the address stored in the STACK segment,
the system can return back to the MS-DOS prompt once the program ends with
its last instruction "IRET".

fSET A VECTOR FOR THE NMI_IN ROUTINE
iIN THE VECTOR TABLE WHICH STARTS FROM
iBEGINNING (@) OF THE DATA SEGMENT (DS).

i THE GET_KEY ROUTINE WILL USE
;THE DS REGISTER, SO THE DS IS SET HERE
i IN ADVANCE.

;ENABLE THE NMI OF THE B8@88 BY
jSETTING THE FIFTH BIT (BIT 4) OF
;1/0 PORT 188H TO ONE.

;FETCH A CHARACTER FROM THE KEY QUEUE
;BUFFER.
;T0 PLACE IT ON THE SCREEN.

;PUSH ALL REGISTERS ONTO THE STACK.

i :
;THE KEYBOARD SCANNING OPERATION STARTS HERE, THREE OUTPUT PORTS ARE USED IN THE "SCAN" ROU

;THEY ARE: OUTPUT PORTS @18@H AND @16@H, INTPUT

i
SCAN:

MOV
MOV
ouT
XCHG
MOV
ouT
MOV
N

MoV
TEST

JNZ
OR

AX, @F7FFH
DX,0PD_PORT2
DX, AL

AH, AL

DX, 0PD_PORT1
DX, AL

DX, IPD_PORT
AL,DX

SPECIAL,®
AL,20H

CHK_SHIET
SPECIAL .4

PORT @1C@H

;OUT AH TO PORT @18@H; AL TO PORT 016@H
;DX POINTS TO PORT @16@H

jEXCHANGE AH AND AL
;DX POINTS AT PORT @188H

;OBTAIN AN INPUT VALUE FROM PORT @1C@H AND
;PASS IT ONTO THE AL REGISTER.E

CLEAR SPECIAL WHICH WILL

;BE USED TO SAVE THE FLAG

;OF CTRL, SHIFT AND ALT

;TEST IF CTRL KEY IS PRESSED.

;OTRL KEY PRESSED, SAVE SPECIAL WITH THE VA

G9-§

The Microsoft

119
111
112
113
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
168
161
162

2e4p
ge4p
B@4F
gesl

@a56

6059
@059
8@58
@@5D
0062
ee62

2065
po6e
3068
poen
ae6c
686D
066F
@@72
ee73
BE76
ea77

@a79
@@7B

@e70
@e7D
@e7E

Besl

au83
e84
B086

oess
ee8B
ge8B
GOBE
pa91l
ae93

2098
Be9A
ae9p

MACRO Assembler

D@
72
80

EB

D@
72
80

B8
BF

BA
EE
50
86
BA
EE
BA
EC
Bl

pe
73

47
80

75

58
Dl
72

E9

E8
B3
75
80

74
E8
EB

[s2:]
@8
@E @@2B R 01

@A 98

D8

@5

@E 002B R 02
FBFF

egeo

Ale@

Eg@

@180

elce

as

F8
oE

E9 @1
F6

F8
E@

21B4 R

822D R

FF 32

18

3E 0023 R @0

a5
@242 R
DE

s Version 1,25

CHK_SHIFT:
RCR
Jc
OR

JMp

CHK_ALT1:
RCR
Jc
OR
KCOL:
MOV

MOV
KCOL1:

MOV
ouT
PUSH
XCHG
MOV
our
MoV
IN
MOV

KROW: SAR
JNC

FIND_NEXT_KEY:

INC
suB

JNZ

POP
SAR
Jc

Jup
KEY_DN:

CALL

CMP

JINE

cMP

JE
CALL
JMP

Page 1-3
12-18-84

AL,1
CHK_ALT1
SPECIAL,1

KCOL

AL,1l
KCOL
SPECIAL,2

AX,GFBFFH
DI,®

DX ,OPD_PORT2
DX, AL

AX

AH,AL

DX, OPD_PORT1
DX ,AL

DX, IPD_PORT
AL,DX

CL,5

AL, 1
SHORT KEY_DN

DI

cL,1

SHORT KROW
AX

AX,1

SHORT KCOL1
SCaN_OUT
PUSH_R

DI, 58
KEY_DN_1
CAPS_COUNTER, 0@
CAL_CAPS
POP_R

FIND_NEXT_KEY

;CHECK IF SHIFT KEY PRESSED?

;SET SPECIAL'S BIT FOR SHIFT, ALT, AND CTRL

;i SPECIAL=1, MEANING THPY THE SHIFT KEY
;HAS BEEN PRESSED.

i SPECIAL=2, MEANING THAT ALT PRESSED
;SPECIAL=4, MEANING THAT CTRL PRESSED

;PREPARE THE AX WITH THE VALUE FBFFH FOR
jOUTPUT PORT.
;DI REPRESENTS THE POSITION CODE COUNTER.

jOUTPUT THE AL ONTO PORT @16@H

;OUTPUT THE AH ONTO PORT @188@H

;CL IDENTIFIES THE ROW NUMBER OF KEYBOARD
iMATRIX TO-BE SCANNED.

iSHIFT THE AL ONE BIT TO THE RIGHT
iNO CARRY MEANS THAT A KEY JUST ENTERED
;HAS BEEN DETECTED.

;INCREASE THE POSITION COUNTER BY ONE.
;DECREASE THE ROW NUMBER BY ONE IN
;ORDER TO SCAN THE NEXT ROW.

;IS THE SCANNING OF ALL OF THE 5 ROWS
i FINISHED?

;IS5 THE SCANNING OF ALL THE COLUMNS
; FINISHED?

15 CAPS LOCK KEY PRESSED?

;GO ON SEARCHING FOR THE NEXT CODE

;IS IT THE FIRST TIME FOR THE "CAPS LOCK"
;KEY TO ENTER? i

89-¢9

The Microsoft

163
164
165
166
167
168
169
17e@
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
208
201
202
283
204
285
206
287
2e8
209
218
211
212
213
214
215
216
217

Ga9F
¢e9F

GeA3
gane
@ens

QgaB
GOAB

eese

weB2

eeny
aeBY

@@BC

@0BF
gocl
@ecl

e@c4
eec?
eecs
eeco
gecc
QacE
Qun4

@op6
aop6
eens
Hana

8@DF
GOEL
@RE4
@BES
@@ES

@GEAR
@eEC
00FQ
@eF3

MACRO Assembler

FE @6 080823 R

E8 @25F R
E8 0240 R
EB D2

F6 @6 ©02B R @1

74 17

F6 @6 0B2B R 04

74 @8
BB @2FC R
2E: 8a @1
EB 15
BB @333 R
2E: BA 01
EB 2E
BB 82FC R
2E: 8A @1

F6 ©6 802B R 04
74 21

3C 5@
75 1B
8@ 3E 0829 R @0

74 @5
E8 0246 R
EB 97

FE @06 @@29 R

B@ FF

30 @6 #@2C R
E8 @244 R

EB B8

L4

version 1.25

CAL_CAPS:
INC

CALL
CALL
JMP

KEY_DN_1:
TEST

JZ

TEST

JZ
MOV

i
; (OPERATOR "OFFSET" PROVIDES US WITH THE OFFSET

MOV

JMP
NOCTRL:
MOV

MOV

JMP
NOSHIFT:

MOV

MOV

TEST

JZ

CHECK_CTRL_P:

CMP
JNE
CMP

JE
CALL
JMP
CTRL_P_1:
INC

MOV
XOR
CALL
JMP

Page 1-4
12-18-84

CAPS_COUNTER

CAPS
POP_R
FIND_NEXT_KEY

SPECIAL,1

HOSHIFT

SPECIAL,4H

NOCTRL

BX,0FFSET PTA_TAB

AL,CS8: [BX+DI]

SHORT CHECK_CTRL_P

BX,0FFSET SHIFT

AL,CS: [BX+DI]
SHORT CHK_ALT

BX,0OFFSET PTA_TAB

AL,CS: [BX+DIT
SPECIAL,4H
CHK_ALT

AL, 'P'
AND_9FH
CTRL_P_COUNTER, 8

CTRL_P_1
POP_R
FIND_NEXT_KEY

CTRL_P_COUNTER

AL, OFFH
PTR_FLG, AL
POP_R
FIND_NEXT_KEY

;CAUSE™ THE CAPS LOCK NOT TO BE ABLE
iTO REPEAT.

sTEST IF SHIFT KEY IS PRESSED BY
+BY USING LOGIC "AND" WITHOUT
jDESTORYING THE CONTENTS OF SPECIAL.

7 ZERO FLAG SET TO @ MEANS THAT SPECIAL
;DOESN'T CONTAIN THE VALUE OF 1,

jSHIFT KEY PRESSED, CHECK AGAIN IF
jCTRL KEY IS PRESSED

iBOTH OF SHIFT AND CTRL KEY ARE PRESSED
ADDRESS OF THE VARIABLE PTA_TAB.)

jMOVE THE CORRESPONDING ASCII CODE
;OF THE "PTA_TAB" TABLE INTO THE AL.

;NO CTRL KEY, SFIFT KEY ONLY

;MOVE THE CORRESPONDING ASCII CODE
;OF THE "SHIFT" TABLE INTO THE AL.
;NO SHIFT KEY PRESSED, CHECK CTRL KEY

#NO SHIFT KEY TAKE ASCII INTO AL
jTEST CTRL KEY

158 IT THE FIRST TIME FOR THE
;"CTRL_P" CODE TO ENTER?

;CAUSE THE CTRL_P NOT TO BE ABLE
; TO REPEAT TWICE.

;SET CTRL P FLAG

i
;AFTER CONFIRMING THAT A "CRTL" KEY HAS BEEN PRESSED, PERFORM THE LOGICAL "AND"
;INSTRUCTION TO OBTAIN THE ASCII CODE OF A CERTAIN CONTROL CHARACTER.

L9-§

The Microsoft MACRO

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
258
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
276
271
272

BOFS
@eF5

@oF7
GOF7
GarC
GOFE
eloe
elez

ele4
gle4
8149
alee
plle
@112
@114

116
@118
BllA

gllc

@11F
@11F
#9121
0123
6125
@127

@129
@129

812D
132

@134

@137
@139
@13E
0140
8144
6146
Bl4B

Gl4E

24

Fé
74
3ic
76
@4

8@
74
Fé
75
ic
72

3c
71
@4

EB

3C
72
3C
77
2c

FE
BO

74

E8

75
-1
74
3a
75
ce
EB

9F

06
a6
84
a2
8@

3E
1E
@6
@D
41
13

5A
ar
20

[*):]
61
:13
A
62
2@
36
3E

54

Assembler

#@2B R 02

@920 R @0

g62B R @1

s

Gelr R
8821 R @0

8253 R

4F
3E
34
@6

@6
a8

9@28 R FF
6015 R

06828 R FF
9@

s Version 1.25

AND_9FH:
AND

r

CHK_ALT:
TEST
Jz
cMp
JBE
ADD

Page 1-5
12-18-84

AL,9FH

SPECIAL,2H
CHK_CAPS
AL,BOH
CHK_CAPS
AL,BOH

iCHECK IF THE "ALT" IS PRESSED.
;THE ALT ASCII CODE = B8@H

7ALT PRESSED;

r
i THE CORRESPONDING ASCII CODE FOR THE FUNCTIONAL (CONTROL) CHARACTER IS THE SUM
;OF BOH PLUS THE ASCII CODE OF THE CHARACTER JUST BEING ENTERED.

CHE_CAPS:
CMP
JE
TEST
INZ
CMF
JB

CMP
JA
ADD

JMP

SHIFT_CAPS_LOCK:

CMP
JB
CMP
JA
SUB

CHK_OLD_NO:
INC

CMP

JE

CALL

JNZ
CMP
JE

CMP
JNE
MOV
IMP

FILL_IN_NEW_BUF:

CAPS_LOCK, @
CHK_OLD_NO
SRECIAL,1

SHIFT_CAPS_LOCK

AL, 41H
CHK_OLD_NO

AL, S5AH
CHK_OLD_NO
AL,Z0H

CHK_OLD_NO

AL,61H
CHK_OLD_NO
AL, TAH
CHK_OLD_NO
AL, 20H

BYTE PTR NEW_NO_FLG
BYTE PTR OLD_NO_FLG,0

FILL_IN_NEW_BUF_AND_Q

COoMP

FILL_IN_NEW_BUF_AND_Q
LAST_KEY_FLG,@FFH

FILL 1

AL,BYTE PTR [OLD_KEY BUF]
FILL_IN_NEW_BUF
LAST_KEY_FLG, OFFH

FILL_@

iCHECK CAPS_LOCK FLG
;CHECK IF THE "SHIFT" KEY IS PRESSED.

fCAPS_LOCK ENTERED ONLY, NO SHIFT
jCHECK IF ANY OF THE CAPITAL LETTERS
i(A - Z) I5 PRESSED.

;i TO GENERATE THE ASCII CODE OF A
;LOWERCASE LETTER.

;CHECK IF ANY OF THE LOWERCASE LETTERS
;15 PRESSED.

;TO OBTAIN THE ASCII CODE OF
A CAPITAL LETTER.

;TO RECORD HOW MANY NEW KEYS HAS BEEN
JENTERED WITHIN A SCAN-OUT OPERATION.
;CHECK IF ANY KEY HAD WEEN ENTERED AT
i THE LAST SCAN-OUT OPERATION.

jIF YES, NO MORE CHECKS ARE RECUIRED,
;JUST MOVE THE ASCII CODE OF THE KEY
;JUST NOW ENTERED INTO “NEW_KEY_BUF"
;AND "KEY_Q".

sTHERE IS5 A KEY PRESSED BEFORE,
jCHECK IF IT IS A NEW KEY.

iSAME AS OLD KEY 2

;CHECK IF THE LAST KEY HAS BEEN PRESSED.

iNEW KEY SAME AS OLD KEY,CHECK

;I8 IT LAST KEY ?

i FFH MEANS THAT THERE IS5 A KEY PRESSED
JAT THE LAST SCANNING, AND VICE VERSA.

896G

The Microsoft

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
285
296
29T,
208
299
El]
301
3@2
383
3p4
345
306
a7
3p8
309
ila
311
312
313
314
315
316
317
318
319
32@
321
322
323
324
325
326
327

Jl4E
B153
@155
#155
2159
@158
@15E
hlien
@163

2168

glea
@l16A
@168

AL6F
@171
#1174
@174
g178
@174
@17D
@17F

g182
g182
@185

#188
@188
@18D
B1oa
@192
@195
B197

@192
B19D
@19F
#1a2
Blad

B1a7
Plaa

a1ap
@1aD
21849
PlB1

21B4
P1B4
#1BY
@1BE

BlCy
a1cs

MACRO

8@
74

8D
8g
E8
T2
EB
8@
75

Fa
FF

72

BD
8B
E8
72
E8

E8
E9

Ccé
BE
8B
E8
72
E8

BF
BB
E8
72
E8

ES
E9

E8
58
EB

Ccé
8@
74
cé
83

3E
¥

3E
DE

Assembler

0@28

aada

@266 R

4D

@278 R

3E
18
06

F9
aF

3E
DF

@928

@024

9@

@aeB

266 R

2E

B278 R

9249 R
@e7D R

R

R

FF

@6 @@28 R FF
#@da R

3266 R

@278 R

@6
3E
65
B6
3E

ge28
@alr

Ba2a
BE2l

R

13

L)
ea

e
ae

r

Version 1.25

cMp
JE
FILL_8:
LEA
MOV
CALL
Jc
CALL
cMP
INE
INC_1:
e
INC

Jc
JMp
FILL_1:

LEA
MOV
CALL
ac
CALL

CHK_OLD_NO_1:
CaLL
JMp

Page 1-6
12-18-84

LAST_KEY_FLG,@FFH
FILL 1

DI,NEW_KEY_BUF
BX, DI

CHK_BUF
BUF_OR_Q_FULL
MV_DATA
LAST_KEY_FLG,@FFH
CHK_OLD_NO_1

REP_COUNTER

INC_L
CHK_OLD_NO_1

DI,NEW_KEY_BUF+1
BX,DI

CHK_BUF
BUF_OR_Q_FULL
MV_DATA

POP_R
FIND_NEXT_KEY

FILL_IN_NEW BUF_AND_Q:

MoV
MOV
MOV
CALL
JC
CALL

MOV
MoV
CALL
JC
CALL

CALL
JMP

BUF_OR_Q_FULL:

CALL
POP
JMP

SCAN_OUT:
MOV
CMP
JE
MOV
CcMP

LAST KEY_ FLG,0FFH

DI ,OFFSET NEWﬁKEY_BUF
BX,DI

CHK_BUF

BUF_OR_Q_FULL

MV _DATA

DI ,OFFSET KEY Q
BX, DI

CHE_BUF,
BUF_OR_Q_FULL
MV_DATA

POP_R
FIND_NEXT_KEY

POP_R
ax
REN_NMI

LAST_ KEY_FLG,®
BYTE PTR NEW_NO_FLG,6
CAL_NO_KEY

NO_KEY COUNTER,8
DLD_NO_E‘LG 8

;CHECK IF THE NEW KEY HAS BEEN PRESSED.

;LAST KEY NOT PRESSED BEFORE

;IS5 IT THE LAST KEY?

jYES, IT IS THE LAST KEY. INCREASE
;THE REP_COUNTER BY ONE.
;REP_COUNTER OVERFLOWS?

;LAST KEY PRESSED BEFORE
;: PLACE THE OLD KEY AT THE 2ND POSITION
;OF THE NEW_KEY BUF.

;IT IS NOT THE LAST KEY, GO ON SEARCHING
sFOR THE NEXT KEY.

;CHECK IF NEW_KEY BUF IS FULL. -

;NEW_KEY BUF NOT FULL YET, MOVE THE ASCII
;CODE OF THE KEY JUST ENTERED INTO IT.
jMOVE THE AL TO THE KEY Q.

;CHECK IF THE KEY_Q IS FULL.

;KEY_Q NOT FULL YET, MOVE THE ASCII CODE
:OF THE KEY JUST ENTERED INTO IT.

;BUFFER OR QUEUE IS FULL, REJECT TO
;s ACCEPT ANY KEYS FROM THE KEYBOARD.

sCHECK IF ANY KEY ENTERED.
;IF NOT, JUMP TO ROQUTINE CAL_NO_KEY.

69-6

The Microsoft

328
329

338

331
332
333
334
335

336
317
338
339
340
341
342
343
344
345
346
347
348
349
358
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

e1ca
@lcc

@LCF

@1D3

¢1D5
8109
@1pD
@1DF
@lE3
@lES
@1ES
GLEA
@LED
#1ED
B1F3
B1F3
B1F6

B1F9
@1F9
@1FE
@200
@202
@206
@208
826D

8213
213
8216

g218
B821B
821D

0220
0220
8223

9225
8225

8228
9228
@229
@22¢C
922D

MACRO Assembler

74
e

3a

74

BB
3B
73
BD
8B
E8
72
E8

c7

E8
EB

83
72
74
FF
83
72
c7

BF
8B

E8
73
EB

E8
EB

E8

FB
E8
CF

27
g88a R

26 @015

24

1E @GLlF
1E @821
2E

3E @089

86 ©Bg24

@2C5 R
39 99

3E 0624
F3
11
86 @626
3E @826
E6
86 0o26

0808 R
DF
@266 R

@3
89 5@

9278 R
CE

@285 R

2242 R

R

R

R

R

eeoe

1E

24

pooe

s Version 1,25

Page 1-7
12-18-84

JE SCANL
MOV AL,BYTE PTR [NEW_KEY_BUF]
CMP AL,BYTE PTR [OLD_KEY BUF)
JE CHK_REP_COUNTER
MOV BX,NEW_NO_FLG
CcMP BX,0LD_NO_FLG
JAE SCAND
LEA DI,KEY_Q
MOV BX,DL
CALL CHK_BUF
Jc BUF_OR_Q_FULL
CALL MV_DATA
SCANG:
MOV REP_COUNTER, @
SCANL:
CALL TRANSFER
JMp REN_NMI

CHK_REP_COUNTER:

cMP REP_COUNTER, 30
JB SCANL

JE FIRST_REP

INC REP_COUNTERL
cMP REP_COUNTERIL, 4

JB S5CAN1

MOV REP_COUNTERL, @

FIRST_REP:
T MOV DI,OFFSET KEY_Q

MOV BX,DI

CALL CHK_BUF

JINC CAL_MV_DATA

JMP REN_NMI
CAL_MV_DATA:

CALL MV_DATA

Jue SCAN1
CAL_NO_KEY:

CALL NO_KEY
REN_NMI:

STI

CALL POP_R

IRET

KEY_NMI ENDP

EE R R R S % 8% B8 8 s e EETeEEsesanaerewEAE

jCHECK IF THE LAST KEY IN THE NEW_KEYBUF 1S
THE SAME A5 THE ONE IN THE OLD_KEY BUF. TH

jLAST KEY IS ALWAYS PLACED AT THE FIRST
jPOSITION OF THE CORRESPONDING BUFFER.

;jLAST KEY SAME AS BEFORE, JUMP TO ROUTINE
;CHK_REP_COUNTER TO CHECK FOR THE DELAY TIM

; TRANSFER NEW_KEY BUF T0 OLD_KEY BUF

;1S REP_COUNTER LARGER THAN 3087
i REP_COUNTER < 38

i INCREASE SECOND REPEATEED COUNTER
; SECOND REPEATED COUNTER > 4

jREP_COUNTER LARGER THAN 30
;THEN MOVE THE KEY NEEDED TO REPEAT
i INTO KEY_Q.

iCHECK IF KEY Q IS FULL.

;NO KEY ENTERED, CLEAR Afl, BUFFERS AND
; COUNTERS TO ZEROS.

BL-g

The Microsoft MACRO Assembler , Version

380
38l
382
383
384
385
386
387
388
389
399
391
392
393
394
395
396
397
398
399
490
481
4082
4¢3
494
485
406
487
408
449
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
438
431
432

433
434

622D
922D
@232
8233
@234
@235
@236
@237
@238
6239
@23A
B23F
9240

8240
0246
6245
B246
0247
p248
0249
P24n
B24B
p24c
824D
p252
B253

8253
@253
@254
@255
259
p25C
B25E
B25F

B25F
@25F
2261
B265
2266

2E:
58
53
51
52
57
56
1E
a6
2E:
c3

2E:
a7
1F
SE
S5F
SA
59
5B
58
2E:
c3

1E
a7

BF

FF

8F

PE

@6

36

@6

36

@2FA R

A2FA R

@2FA R

@2FA R

8B OE @021 R

BF @615 R
F2/ AE

c3

B@ FF
39 @6 982D R

c3

1.25

PUSH_R

’
POP_R

.
i
'
&

R =

-
"

P T T]

COMP

CcoMp

i
CAPS

CAES

Page 1-8
12-18-84

COMPARE THE OLD KEY BUF WITH THE

KEY JUST TYPED IN AND STORED IN

THE AL REGISTER.

ES

CX, OLD_NO. FLG
DI,OFFSET OLD_KEY_ BUF
SCASB

NEAR
AL, BFFH
CAPS_LOCK, AL

;PUSH ALL REGISTER

; POP ALL REGISTER

e #s wr se ae ab a

Z=1 AL IS ALREADY FOUND
Z2<>1 AL IS A NEW KEY

;THE SYSTEM DEFAULT DIRECTION FLAG IS

:SET TO ZERO, S0 THE DI REGISTER WILL
:BE INCREMENTED BY ONE EACH TIME.

; INVERSE CAPS_LOCK FLAG.

L5

The Microsoft MACRO Assembler , Version 1.25 Page 1-9
12-21-84
435 ;THE DI POINTS AT THE OFFSET OF A CORRESPONDING BUFFER.
436 ;CHECK IF A BUFFER OR. QUEUE IS FULL.
437 i
438 0266 CHK_BUF PROC NEAR
439 #0266 1E PUSH DS
440 8267 07 POP ES
441 @268 56 PUSH AX
442 8269 BY 0@0A MOV ‘TX, @AH ;CX=10, AL=@
443 926C B@ 00 MOV aL,d ;REPEATEDLY COMPARE THE AL WITH A BUFFER
444 §26E F2/ AE REPNE SCASB ;FOR 1@ TIMES OR UNTIL ZF=1, ONE BYTE PER T
IME.
445 jAFTER SCANNING IS SUCCESSFULLY FINISHED, T
HE DI 2
446 sWILL ALWAYS POINT AT THE BYTE OF MEMORY NE
XT TO
447 jTHE ONE CONTAINING ZERO VALUE, e.g.,
448 i
449 ; DI
450 P 1 2 3 I 5 voa
451 ;
452 i 3 R Ealiae
453 ;
454 1
455 ; A BUFFER
456 =
457 @278 E3 03 JCXZ CAL_BEP ;1F A BUFFER IS FULL, JUMP TO ROUTINE
458 @272 F8 CLC ;CAL_BEP.
459 8273 58 POP AX
460 #274 C3 RET
461
462 8275 CAL_BEP: _
463 8275 58 POP AX ;BUFFER OR QUEUE IS FULL, SET THE CARRY FLA
G.
464 8276 F9 STC
465 8277 C3 RET
466 0278 CHK_BUF ENDP
467 i
468, CONTAINING ZER ;THE DI ALWAYS POINTS AT THE BYTE OF MEMORY NEXT TO THE ONE
0 VALUE
469 3
478 @278 MV_DATA -PROC NEAR oy G
471 @278 86 65 FF MV XCHG [DI-1],AH| " L — " X ™ | EXCHANGE THE BYTE OF MEMORY CONTAINING
472 @278 88 25 MOV [DI],AH “| £3 AL _ [E13 [;2ERO VALUE WITH THE UNCERTAIN CONTENTS
473 827D 4F DEC DI 7 % [uw |;OF THE AH REGISTER FOR THE NEXT
474 @27E 3B FB cMP DI,BX [(nla]:Je[~ [%]+] | ;INSTRUCTION USE. THE AH IS USED AS A
475 8280 77 F6 Ja MV = = w | iTEMPARARY BUFFER FOR DATA TRANSFERMATION.
476 Glel[:]— [+]s] |iTHE BX POINTS AT THE OFFSET (START) OF
477 W . ;A CORRESPONDING BUFFER.
478 9282 STORE_Q: 0 e) % w | <PHE AL CONTAINS- AN ASCII CODE TO BE SAVED,
479 9282 88 @7 MOV [BX] ,AL [rlefaTeT* [o]9 | ;AFTER SEVERAL DATA TRANSFERMATION, MOVE
480 9284 C3 RET s T ;THE AL's CONTENTS INTO THE FIRST BYTE OF
481 = ;A CORRESPONDING BUFFER.
482 @285 MV DATA ENDP ux mnn
483 ; 1 il] i AL A
ill i a L EEE &1 1

cL=§

The Microscoft MACRO Assembler , Version 1,25 Page 1-1@

537

12-21-84
484 0285 NO_KEY PROC NEAR
485 @285 FE @6 802A R INC NO_KEY_COUNTER
486 289 80 3E @622 R @3 cMP NO_KEY_COUNTER, 3 ;IF NO_KEY_FLG>=3, CLEAR NEW_KEY_BUF
487 @28E 72 34 JB NO_KEY_1 ;AND OLD_KEY_BUF TO ZERO. OTHERWISE,
488 it ;JUMP TO ROUTINE NO_KEY_ 1.
489 #290 BO 0@ MOV AL, @
494 @292 B9 go6a MOV CX,le
491 9295 BF 0@0a R MOV DI, OFFSET NEW_KEY_BUF
492 @298 BE @915 R MOV SI,0FFSET OLD_KEY_BUF
493 2298 NO_1:
494 8298 88 @5 MOV [DI]),AL ;CLEAR NEW_KEY_BUF AND OLD_KEY_BUF
495 829D 88 @4 MOV [SI],AL
496 @29F 46 INC SI
497 0250 47 INC DI
498 92a1 E2 F8 LOOP NO_1
499 02A3 C7 @6 @924 R 0000 MOV REP_COUNTER,@ ;CLEAR ALL THE COUNTERS USED.
560 @2A9 C6 96 @@23 R GO MOV CAPS_COUNTER, @
501 @2AE C6 06 #0829 R 00 MoV CTRL_P_COUNTER,@
502 @92B3 C7 @6 @GOLF R 0060 MoV NEW_NO_FLG,@
503 G2B9 C7 @6 0821 R 0600 MOV OLD_NO_FLG,@
504 U2BF C6 06 @O2B R 0@ MOV SPECIAL,@
565 v2c4 NO_KEY_1: ;NO_KEY_COUNTER <3, BUFFERS AND COUNTERS W]
LL

586 ;BE LEFT AS WHAT THEY ARE NOW.
587 92Cc4 C3 RET
508 82cs NO_KEY ENDP
589 :
518 ; COPY ALL THE ASCII CODES STORED IN THE NEW_KEY_ BUF INTO THE OLD_KEY BUF, AND
511 ; AFTER THAT, CLEAR THE NEW_KEY_BUF TO ZEROS.
512 :
513 g2cs TRANSFER PROC NEAR
514 @2¢5 8B OE @OL1F R MOV CX,NEW_NO_FLG
515 @2C9 BF 008A R MOV DI,OFFSET NEW_KEY_ BUF
516 @2CC BE @015 R MOV SI,0FFSET OLD_KEY_BUF
517 @2CF T1l:
518 02CF B4 00 MOV AH, @
519 6201 86 25 XCHG AH,BYTE PTR [DI] ;EXCHANGE THE AH WITH A CERTAIN BYTE OF
529 {THE NEW KEY BUF. AFTER THAT, CLEAR A
221 ;BYTE OF THE NEW_KEY_BUF.
522 g2D3 88 24 MOV [S1],AH ;MOVE TO OLD_KEY BUF
523 02D5 46 INC SI
524 0206 47 INC DI
525 @207 E2 F6 LOOP T1 ; ITERATE ROUTINE TI FOR THE NUMBER OF TIMES
526 ;STORED IN THE CX REGISTER.
527 8209 A@ BO1F R MOV AL,BYTE PTR NEW_NO_FLG ;MOVE NEW_NO_FLG TO OLD_NO_FLG
528 @2DC A2 6821 R MOV BYTE PTR OLD_NO_FLG,AL
529 @2DF C6 96 GALF R @0 MOV BYTE PTR NEW_NO FLG,@ ;CLEAR NEW_NO_FLG
530 g2E4 C3 RET
531 @2ES TRANSFER ENDP
532 FlrrrerssITINSIIIIIONLISIIISIIEIIIIrIIISIIILIINLIGS
533 it s
534 R GET AN ASCII CODE FROM THE KEY QUEUE s
335 Pt IF QUEUN LS EMPTY, ROUTINE WILL LOOP it
536 i1 UNTILL A KEY IS KEYED IN R

i :

£L-S

The Microsoft MACRO Assembler

538
539
540
541
542
543
544
545
546
547
548
549
55@
551
552
553
554

555

556
557
558
559
560
561
562
563
564
565
566
567
568
569
578
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

B2ES
82E5
82E5
B2E6
B2E7
B2EA
82EC
@2EF
U2F1
B2r4
B2F6
B2F9
@2FA

@2FA

@2FC

- 8300

831e

d31F

3325

gizr

8333
6337

@346

8356
235n
6361

g36a

1E
a7

BF @@@@ r

B@

ae

B9 @@d@a

F2/ AE

B3 F9 @89

74

EF

86 45 FE

c3

aooo

81
36
5D
3B
3D
39
58
8D
30
54
2C

A3
SE
7D
A
6E
7B
3E
éD
2A
84
6B
76

4F
60
50
45
2D
53
57
4c
43
5C
56

6F
7E
7@
65
2B
28
78
6C
@8

74
20

35
4D
34
32
44
33
4A
46
51
55
2@

25
6D
24
4@
5F
73
77
66
29

ic
62

29

41
4E
5A
37

1B
59
20
42

@9
72
61

64
23
BA
1B
63

75

3l
a7

48
2F

38
82

21
67

7A
26
71
20

., Version 1,25

49
27

5B
2E

08
4B

69
22

68
3F
79
3c

Page 1-11

12-21-84
grIsIsIiIIIIIIIIISILILLIIRGIIGRRGSGOIROZGIIIRIUIGSGSILGS
GET_KEY PROC NEAR
WAIT_KEY DN:
PUSH DS
POP ES
MOV DI ,OFFSET KEY Q
MOV AL, 0
MOV CX,0aH
REPNE SCASB
CMP cx,9
JE SHORT WAIT_KEY_DN
XCHG [DI-2},AL
RET

GET_KEY ENDP

i

IP_MEM DW)

H

PTA_TAB DB 81H,'05"',9H
DB '6"MRL1I])P4AG',27H,';E2N'
DB '=-DZH[9537/.XWJ"
DB @DH, 'LF',1BH,'8"',08H
DB '@CcQY’ ,82H, 'KT\U '
DB ',V B!

SHIFT DB 83H,'0%",9H
DB '"“mr!i}pSag”:e@’
DB "n+_dzh{ (s#&?>xwi’'
DB @DH,'1f",1bh
DB ‘%', @8h,")cqy',84H
DB ‘kt|u <v b'

CODE ENDS

END KEY_NMI

;CHECK IF QUEUE IS EMPTY.

;LOAD A ASCII CODE INTO AL

;A WORD MEMORY TO TEMPRARILY STORE THE OFFS
+ADDRESS OF AN INSTRUCTION WHICH WAS AUTOMA

;TICALLY ONTO THE STACK BY THE "CALL"
i INSTRUCTION.

jDEFINE ALL THE ASCII CODES OF UPPERCASE
;CHARACTERS ON THE KEYBOARD.

;EACH CODE CORRESPONDS TO A POSITION CODE.

8lH T0 1, '0' TO 2,

i e ’
T0 3 ,AND SO ON.

.g.
; ISI

iDEFINE ALL THE ASCII CODES OF LOWERCASE
7CHARACTERS ON THE KEYBOARD.

¥L-S

The Microsoft MACRO Assembler

Segments and groups:

CODE .« « «
DATA . .+ + &

Symbols:

AGATN. . . .
AND_9FH, . .
BUF_OR_Q_FULL
CAL_BEP. . .
CAL_CAPS . .
CAL_MV_DATA.
CAL_NO_KEY .,
caps 7. . .
CAPS_COUNTER
CAPS_LOCK, .
CHECK_CTRL_P
CHK_ALT. . .
CHK_ALTL . .
CHK_BUF, . .
CHK_CAPS . .
CHK_OLD_NO .
CHK_OLD_NO_1

CHK_REP_COUNTER.
CHE_SHIFT. . . .

COMP . . +
CTRL_P 1 . .

CTRL_P_COUNTER

FILL ¢ . . .
FILL_1 . & .

.

.

.

FILL_IN NEW BUF., . .
FILL_IN_NEW_BUF_AND_Q.

FIND_NEXT KEY
FIRST REP. .
GET_KEY. . .
THE 1w % 5 %
IPD_PORT . .
1P MEM , . .
KCOL. & 3 » &
REOLYS & i &
KEY DN . . .
KEY DN_1 . .
KEY_NMI. . .
KEY 04 < o »
KROW
LAST_KEY_FLG
MV L. . .
MV_DATA. . .
NEW_KEY_BUF.
NEW_NO_FLG

Name

Version 1.25

Size

A36A
Ga2E

NEAR
NEARR
NEAR
NEAR
NEAR
NEAR
NEAR
PROC
BYTE
BYTE
NEAR
NEAR
NEAR
PROC
NEAR
NEAR
NEAR
NEAR

[l vol - A B o P el

PROC
NEAR
BYTE
NEAR
NEAR
NEAR
NEAR
NEAR
NEAR
PROC
NEAR
umber
WORD
NEAR
NEAR
NEAR
NEAR
PROC
BYTE
NEAR
BYTE
NEAR
PROC

BYTE
WORD

(ol A o o o o B o B o B i T e o o o o o B -8 o e B B0 o)

NEAR-

align

PARA
PARA

Value

@d1D
@@FS
PlAD
@275
@g9F
6220
B225
B25F
Pa23
aazn
PaD6
@eF7
A@59
#2686
2104
@129
@182
@1F9
@@4D
@253
POE6
ge29
p155
@174
A14E
gl8g
B@7D
6213
@2E5
g16a
plce
@2ra
pg62
gees
HO8E
deaB
pupeg
gaae
aa79
@028
p278
9278

aen
bGelF

Page Symbols-1

12-21-84

combine class

'CODE'
'DATA'

PUBLIC
PUBLIC

Attr

CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE Length
DATA
NA'TA
CODE
CODE
CODE
CODE Length
CODE
CODE
CODE
CODE
CODE
CODE Length
CODE
DATA
CODE
CODE
CODE
CODE
CODE
CODE
CODE Length
CODE

CODE
CODE
CODE
CODE
CODE
CODE Length
DATA Length
CODE
DATA
CODE
CODE Length

DATA Length
DATA

=0ea7

=g@12

=08ucC

=0015

=0220D
=@oea

=@e@D
=0@eB

GL-G

The Microsoft

NMI_IN . .
NOCTRL . .
NOSHIFT. .
NO_1l . . .
NO_KEY . .
NO_KEY_1 .
NO_KEY_COUNTE
OLD_KEY_BUF.
OLD_NO_FLG .
OPD_PORT1. .
OPD_PORT2. .
POP_R. + . .
PTA_TAB. .
PTR_FLG. .
PUSH_R . .
REN_NMI. . .
1

REP_COUNTER
REP_COUNTER
SCAN . .
SCANG. . . .
SCANl. ., . .
SCAN_OUT . .
SHIFT. « + o«
SHIFT_CAPS_LOCK
SPECIAL. . .

STORE_Q. . .

.
Tl o ¢« ¢« ¢ o &

S 8 8 8 8 8 % 8 s s e 8 o e e s De s s e s

TRANSFER . .
WAIT_KEY_DN.

Warning Severe
Errors Errors
[} [’}

MACRO

P T T T

® # 5 8 % 8 8 8 B E W e 8 T oW oEoEomoaowm

" & 8 = ® 8 8 & & &8 % & ® 8 ¥ BV s & 8 v & =W

= s o2 o= o

)

® % 8 % B 8 B 8 ® B o® oW B R A w s oas B

Assembler

I L R

s 8 a2 8 8 % s s =

% % s 2 % = ® 8 8 8 8 8 8 U B oW

R T R T R R

" % 8 8 B 8 ® S 8 8 = 8 3 ® & B & = = 8 & &8 "W

L T R T R

r

R T T S

Ve.sion 1,25

oo es

oSl alal ol ol ol ol ol ol alalal-4 o

ve24
gecl
eaco
6298
8285
62C4
Bo2a
6@1ls
ge21
@180
¥16@
G240
@2FC
@gazc
@220
6228
ap924
6026
6082E
B1ED
@1F3
@184
@333
@11F
8@e28
@282
@2CF
@2cs
@2ES

Page
12-21-84

CODE
CODE
CODE
cone
CODE
CODE
DATA
DATA
DATA

CODE
CODE
DATA
CODE
CODE
DATA
DATA
CODE
CODE
CODE
CODE
CODE
CODE
DATA
CODE
CODE
CODE
CODE

Symbols-2

Length =d@40

Length =@00A

Length =@0@13

Length =3413

Length =0020

9L-5

Symbol Cross Reference

BUF OR Q FULL. « « « « o « « & -

CAL BEP.
CAL_CAPS

CAPS « &

CHK_BUF.

CHK_CAPS .
CHKOLD NO + v v v o v o o

P I R

.
.
IR . .
.

CHK OLD MO 1 v v v o o o o = = «

FILL_IN NEWBUF. 4 & « 4 4 + & &
FILL_IN NEW BUF AND Q. . + « . .
FIND NEXT KEY. & « & = o » o & .
FIRST REP. « « + = & + » ‘e

GET_KEY.

s s & % % * & % w o= 0w

LAST KEY FLG o o o o o o + + = &

o
MV_DATA.

I R .

NEW KEY BUF. e

TB#
201

279

457
159
364
325
166
324
ASE
187
192
113
278
223
233
282
334
108
484
261
204
394

24

269
265
267
257
1424
353

(# is definition)

82
218%

293

462%
1634
367#
371%
429%
157
232
1994
197
1184
292
225
237
288
3504
111#
48
4204
207%
202

2

2754
274
2724
263
161
359%

5404

287
1@l
335

124
150
153¢
1704
378
@8
146

264

475
294

276
253
66

305

433
le4
431
2214
ig4
231%

248
296%

50
427
208

46

2894%

ki

168

552
133
L)

1224

585
339

268

306

290
324
83%#

311

51 11]

319

243

584

581

5@

206

439

360

273

312

302
336

Cref-1

3174#

341
247

50

213

554#

544

281

343

329
582

342

363

249

68

298

3081

368

491
514

438%

2524

85

315

323

470%

515
527

466

482

529

LL=§

Symbol Cross Reference (# is definition) Cref-2

NOCTRL « « v v o« o o » o w » . 186 1884
NOSHIETw o o « o u o o« o o . . 175 193§
MOl oea o wauaoeeasa. 4934 498
NOKEY T T S 372 4844% 588
MOKEY 1 . . ¢ 44 PRI R 487 5054

408 326 485 486

OLD KEY BUF. W e s .. 2246 266 330 424 492 516

OLD NO_FIG . W« s e+ . 3@§ 255 327 337 423 503 528
OPETPOBTLs ia o ¢ i» 0 % 10 o0 4 o 6 64 73 99 131

OPD_PORT2. . . « .+ . v ae e i 7 96 127

BOP-B,, <4, 5 zimcaner s «.... 168 167 205 212 297 314 318 376 399 41l
BTATAB. + « o « o o s o s s s+ 181 194 550§

BTE BT i i o Yo i) 0 6 e Mo 7 448 211

PUSHR o « « « « a2 s s o « =« - B84 154 385§ 397

REN MMI. o o o o 4 o o o o s s . 320 348 365 3744

REP COUNTER. + + « « + + » » « « 334 285 345 351 499

REP COUNTERL . « « o+ o & o o » . 344 354 355 357

SCAN v v v o o v o o s & & » & = 944

SCANG. sae e w3380 3444

SCANL. .+ «» & » s e e e s ...« 328 346 352 356 369

SCAN OUT « « « = & & e e e ... 152 3224

SHIFT, 25 <5 % s B

SHIFT CAPS LOCK. . . » » 235 2458

SPECIAL. « « + v v v o v s+ .. 43% 164 169 114 121 171 178 196 222 234 504
STORE Qs = = v v v v s o o o o o« A78%

TLo v s o caomanonsss 5L7# 525
TRANSFER « + o o o o o s o + . .« 347 5134 531

WAIT KEY DM. . . & « S541% 549

At the start of the example program, the DEFINE assembler direc-
tives are used to define the variables used in the program. Here,
we are going first to explain some of the critical ones in more
detail: '

1). OPD_PORT1l: A name used by the Assembler to represent the
1/0 port 188H, which is an output port to the
program.

2). OPD_PORT2: A name used by the Assembler to represent the
1/0 port 166H, which is an output port to the
program,

3). IPD_PORT: A name used by the Assembler to represent the
1/0 port 1C@H, which is an input port to the
program.

4) . KEY_O: A buffer (an area of memory), referred to as
key queue for storing keyboard inputs. It has
16 bytes of memory.

5). NEW_KEY BUF:

A buffer whose function is’ somewhat similar to
key queue. It stores one up to 11 latest key-
board inputs after a complete scan-out. Then,
data in this buffer will be always transferred
to KEY Q and OLD KEY BUF, respectively, after a

. complete scan-out. Thus, the program can deter-
mine the key just being entered is a new key or
a repeated key by making a comparison’ with the
values in both variables NEW_KEY_ BUF and
OLD_KEY BUF.

6) . NEW_NO_FLG:
A word variable storing the number of latest
keyboard inputs. Its contents will be trans-
"ferred to the variable OLD_NO_FLG after each
scan=out.

7). OLD_KEY BUF:
A 10B-byte buffer storing the keyboard inputs
that were keyed in at the last scan-out
operation.

8). OLD_NO_FLG:

A word variable storing the number of last
keyboard inputs.

9). CAPS_COUNTER:

A byte variable whose contents will be auto-

5-78

matically incremented by one if one holds down

- the CAP LOCK key continuosly. When it equals to
one, the program will enable the CAP LOCK key;
otherwise, disable that key.

10) . REP_COUNTER:

A word variable used to determine if a key same
as the 1last key should be repeated. If one
holds down a key continuosly, the program will
recognize its subsequent keys as repeated keys
after scanning it for 3¢ times; the program
will perform 30 times of scan-out operations to
accept the first repeated key.

11) . REP_COUNTER1:

A word variable used to determine if a key same
as the last key should be repeated. If one
still holds down a same key after the program
has displayed its corresponding character twice
on the screen, the program will keep going to
recognize its subsequent keys as repeated keys
every 4 times of scan-out.

12) . LAST_KEY_ FLG:

A byte variable used as an internal flag to set
the 1last key one entered from the keyboard
after the program completes a scan-out opera-
tion. If it contains the value of FFH, then the
program will know that the key one just entered
is the same as the last key of last scan-out.

13) . CTRL_P_COUNTER:

A byte variable whose contents will be automa-
tically incremented by one if one holds down
both the keys CTRL and P continuosly. The code
CTRL P 1is wused to. enable the printer driver.
When this variable's content equals to one,
the program will accept this code; otherwise,
it won't accept.

14) . NO_KEY COUNTER:

A byte variable which is initialized to 6. How
does the program assume that there is no more
key entered from the keyboard after a scan-out
operation? What the program does for this pur-
pose 1is to perform three scan-out operations
successively. After completing each scan-out,
the wvariable is incremented by one. If no key
is definitely sighted after performing three
scan-out operations, the program assumes, based

5-79

on the fact that the value of the variable has
been incremented to three, that there 1is no
more key entered.

15) . SPECIAL: A Dbyte variable which has three basic usages.
The program wuses 1its first bit (bit @) to
determine if the SHIFT key 1is pressed, its
second bit (bit 1) to determine if the ALT key
is pressed, and its third bit (bit 2) to deter-
mine if the CTRL key is pressed.

16) . PTR_FLG: A byte variable used as a flag to determine if
the printer drive shall be enabled or not. It
is the only variable used in the keyboard pro-
gram whose contents will be needed by some
external routines associated with the printer
driver. 1Its contents are either FFH or @H.
Thus, to our program, it is an output.

17). CAPS_LOCK: A byte variable used as an internal flag to
determine if the CAP_LOCK key shall be enablgd
or not., If it contains the value FFH, then the
CAP_LOCK key will work.

Now, please take a look at the end of the example program. You
can see two variables, named PTA_TAB and SHIFT respectively. As
with all the keyboards designed by other manufacturers, every key
on the keyboard of the MPF-1/88 has its own corresponding ASCII
code, We define the ASCII code of each key in the keyboard pro-
gram by two Define-Byte look-up tables whose names are stated
above.,

The first one, PTA_TAB, (Position code to ASCII code Table)
defines the ASCII codes of the lowercase keys. The second, SHIFT,
(position code of the uppercase key to ASCII code Table) defines
the ASCII codes of the uppercase keys.

Those characters in both tables PTA_TAB and SHIFT with two apos-
trophys tells the assembler to generate standard ASCII codes,
Others, such as 81H, 9H, 27H, etc., are our own codes which
indicate special keys. Refer to Tables 5-1 and 5-2 Conversion
Tables for each key's position code and its corresponding ASCII
code.

Before analyzing the program, let us first examine its structure
and the function of each routine. The keyboard program totally
consists of ten major routines, including the main program
KEY_NMI. They are:

Name Functions
1. KEY_NMI The main program which is composed of two parts.

Part one stores the starting address of the core
keyboard program into two memory locations
addressed by 068 and @A, which are part of the

5-80

10.

PUSH_R

POP_R

COMP

CAPS

CHK_BUF

MV_DATA

NO_KEY

TRANSFER

GET_KEY

interrupt service routine address table, and
initializes the keyboard hardware interface by
sending out a value of @FFH to the 1/0 peort
@180H.

Part two is an infinite loop labelled AGAIN that
reads in keyboard input and displays it on the
LCD screen., The other components of the program
is our major keyboard program starting with
statements labelled NMI_IN.

A subroutine for pushing the status of all
registers onto the stack.

A subroutine for restoring all register from the
stack.

A subroutine which determines if the key Jjust
entered is a new depressed one.

A subroutine for initializing the variable
CAPS_LOCK to the value FFH as stated before.

A subroutine for checking if any buffer used in
the program is full of valid data any time it is
needed to test.

A subroutine for moving data in the AL register
(a key just entered) into one of both buffers
NEW_KEY BUF and KEY Q, depending on the
situation.

A decision-making subroutine for determining
if there is no more key entered from the key-
board after a complete scan-out and initializing
to zero all the variables used as counters 1in
the program if the program recognizes that there
is no key entered after performing two complete
scan-out operations.

A subroutine for moving current data in the
buffer NEW_KEY BUF into the buffer OLD.KEY_ BUF
and then clearing the buffer NEW_KEY_BUF to
Zeros.

A subroutine for moving the "first-in" data in
the Dbuffer KEY 0O into the AL register in order
to display it on the screen.

We can now look at the main program KEY_NMI. The program first
has to set the starting address of our own keyboard program
(starting with the instruction labelled NMI IN) into proper
entries addressed by 08H and 0AH of the interrupt-service- osutine
vector table.

Remember that the program will be invoked every 15 milliseconds.
Once the vector table is modified, the program enables the fifth
bit (bit 4) of the I1/0 port @1l80H to allow external interrupt
sources to interrupt pin NMI of the 8888 by outputing the value
@FFH through the DX register.

The second part routine labelled AGAIN is a finite 1loop that
calls the routine GET KEY to obtain characters input from the
keyboard. Each character so received is echoed on the screen by
the instruction INT 9. Please refer to the chapter on useful
subroutines of the MPF-I/88 User's Manual for the usage of INT 9.

If we strike a key while this loop is running, an NMI interrupt
will occur. This will cause our keyboard program starting with
the instruction labelled NMI_IN to be activated.

Let's go down to the routine labelled NMI_IN. One thing you have
to keep in mind is that if you program is associated with (or
called by) someone's program, you have to save onto the stack the
current status of all registers in the CPU that the «calling
program just produced before executing your own program; then at
the end of program, restore them back to their original respec-
tive register., Thus, you will not destroy them during the course
of the program's execution. Based on- the rule of programming,
Statements labelled NMI_IN start with the instruction CALL PUSH_R
performing what we stated just now - push all the registers onto
the stack.

Routines from SCAN through CHK_ALT1 are used to check 1if the
three keys of column KC-11 (CTRL, SHIFT, and ALT keys) are
entered, If the key entered is of CTRL key, then bit 3 of the
variable SPECIAL will be set to 1 for future use somewhere else
in the program. This is true for the SHIFT and ALT keys.

Statements, starting from the instruction 1labelled KCOL and
ending with the 1last instruction JMP SCAN_OUT of the routine
labelled FIND_NEXT_KEY, begin to scan the keyboard matrix from
column KC-10 by sending the value @FFH to I/0 port @l60H and the
value OFBH to I/0 port @180H, respectively.

After scanning up each culumn, the equivalent binary number of
PFBFFH will be shifted one digit to the right in order to scan

the next column. This is done by the instruction SAR AX,l con-
tained in the routine FIND_NEXT_KEY.

If the program recognizes that there is a key entered from the
keyboard, control of execution will turn to the instruction
labelled KEY DN (key down). Remember that the DI register is used
as a count for the position code of a key in our program. It will

5-82

be automatically incremented by one after a key of the matrix
(KC=180 x KC-0) has been scanned out.

Routines from KEY DN through CTRL P 1 first check if the key
entered 1is the CAP LOCK key (a key to set the uppercase
character) whose position code in our program is 58. How can we
obtain the ASCII code of a key? Because each key has its own
position code stored in the DI register, we use it as a displace-
ment (namely, offset) between the beginning of table PTA TAB and
the ASCII character desired. BAnd then we again find out the
starting address of table PTA_TAB by the instruction MOV
BX,offset PTA_TAB. Finally, by adding the BX and DI, we get the
corresponding ASCII code of a key and store it in the AL register
again.

Let us now look at the routine AND 9FH. This "AND" instruction is
used to obtain the ASCII code of a certain control character. For
instance, the hex value of character A is 41H. And performing
this AND logic operation will result in the ASCII code (@1H) of
the control character CTRL_A.

The default image of characters shown on the LCD screen of the
MPF-1/88 1is in upper case (capital letter). If one enters any
alphabetic character with the CAP LOCK key, the program will
accept it as lowercase characters. Try to trace the routines
CHK CAPS and SHIFT _CAPS_LOCK, you will understand the meaning of
those statements.

The statements starting from the instruction labelled CHK_OLD_NO
seem to be a little difficult to trace, for there are some
factors we have to take into account. For example, one might
strike more than one key (up to ten keys) at a time without
releasing them. What the program should have to do is to accept
them and display them on the screen, then repeat displaying the
character on the screen which was depressed last. This is
accomplished by routines labelled CHK_OLD NO, FILL_IN_NEW_BUF,
FILL_@, FILL_1, and CHK_OLD_NO_1.

Assuming that a valid key has been struck, we now have its ASCII
code in the AL register. We must place this byte onto the key
queue so that it is available to the GET_KEY routine. One more
thing we have to do is to place this byte into buffer NEW_KEY BUF
as well for next scanning comparison. This is accomplished by the
routine labelled FILL_IN_NEW_FUF_AND_ Q.

Now, let us look at routines from SCAN_OUT through REN_NMI. Each
time the program completes a scanning operatlon from KC-11 to KC-
G, control of the pregram execution will be tranfered to here to
initialize some counters and internal flags. Finally, the program
‘returns control of the execution to the CPU to end up itself by
executing the instruction IRET which is located at the end of the
REN_NMI routine.

Recall that the Instruction Pointer (IP) is used to tell the CPU
the address of the next instruction to be executed. When you use

5-83

the CALL instruction, the CPU will save the IP on the top of the
stack for jumping back, and then control of the program execution
will be transferred to the subroutine desired. Let us now look at
the PUSH_R routine and see its first instruction POP CS:IP_MEM.
This instruction is used to pop off the stack into memory some-
where in the Code Segment the IP which the CPU just pushed onto
the stack.

At this point, you might ask why we put this instruction here,
This 1is because the PUSH R routine is used to push the current
status of registers required onto the stack. If we don't write
this instruction in this routine, the IP will be forced down to
the bottom of the stack; thus, once this PUSH_R routine is com-
pleted, the RET instruction can not cause control of the program
to go back to the address that the CALL instruction saved
earlier, for the address stored on the top of the stack is not of
the origianl contents of the IP. Therefore, 1in order to ensure
that the IP is always on the top of the stack, we first pop it
off the stack, and then push it again onto the top of the stack
after pushing all the register we required.

The rest of the program we do not explain are considered not
difficult for you to trace. Try to trace all the program, then
you can experience many skills in programming in 80688 assembly
language.

5-84

. []
un Introduction to

8088 Assembly
Language

1. Data Transfer Instructions

Data transfer instructions are used to move data from a specified
point to another. The data that is transferred may be in groups
of 8 bits or 16 bits.

Most data transfer instructions have two operands, such as MOV.
The first operand is called the destination operand, in which the
result of the operation is stored. The second operand 1is the
source operand, which stores the data before transfer. Some of
data transfer instructions only have one operand, such as POP and
PUSH. The only operand can be a source operand or a destination
operand,

Data transfer instructions that we will introduce to vyou
below includes: MOV (move), PUSH, POP, XCHG (exchange), 1IN, QUT
(input/output ports), and XLATB (translate). Each instruction is
described 1in parts as follows: Description, Flag register bits
affected,; Syntax, and Example.

1. Data Transfer Instructions

Data transfer instructions are used to move data from a specified
point to another. The data that is transferred may be in groups
of 8 bits or 16 bits.

Most data transfer instructions have two operands, such as MOV,
The first operand is called the destination operand, in which the
result of the operation is stored. The second operand is the
source operand, which stores the data before transfer. Some of
data transfer instructions only have one operand, such as POP and

PUSH. The only operand can be a source operand or a destination
operand,

Data transfer instructions that we will introduce to you
below includes: MOV (move), PUSH, POP, XCHG (exchange), 1IN, OUT
(input/output ports), and XLATB (translate). Each instruction is
described in parts as follows: Description, Flag register bits
affected,; Svntax, and Example,.

MOV

Description: MOV = move

Move a byte or a word from the source operand to the destination
oparand, The source operand can be memory, register or an

immediate value. The destination operand can be memory or
register.

Flag registers affected: none.

Syntax:
MOV reg,mem/reg
MOV mem/reg,reg

MOV mem/reg,numb

Example 1:
MOV DX, 3 ;move 3 to DX
MOV AX,O ;jinitialize AX to @
MOV AX, DX ;move the content of DX to AX

PUSH
Description: PUSH = push
Decrease SP (the Stack Pointer) by 2, and then store a word from

the source operand to the current top of the stack that SP
points to,

Flag registers affected: none.

Syntax:

PUSH reg/mem
Example 1:

PUSH BX ;store the contents of BX to the stack
Example 2:

PUSH [123] ;jstore the contents of the memory location

;jin the NS that is addressed by the value
;123H to the stack

POP
Description: POP = pop
Remove the word at the top of stack that SP points to the

destination operand, and then increase the SP by 2 to point to
the new top of the stack.

Flag registers affected: none.

Syntax:
POP reg/memlé

Example 1l:

POP DX ;store the word at the top of stack to
; DX
MOV AX,DX ;store contents

Example 2:

POP [123] ;pop off the stack to the memory location
;in the DS which is addressed by the value
;123H

XCHG
Description: XCHG =exchange

Swap the contents of the source and the destination operands.

Flag registers affected: none.

Syntax:
XCHG mem/reg,reg
Example 1:
MOV AX,3 ;move 3 to AX
MOV BX,5 ;move 5 to BX
XCHG AX,BX ;jmove the contents of AX to BX and

;move the contents of BX to AX

IN

Description: IN = input port

Transfer a byte or a word from an input port to AL. The port
number can be an immediate constant or can be stored in the DX.

Flag register bits affected: none

Syntax:
IN AL/AX,port
Example 1:

MOV AX,0
MOV DX,1a3

IN AL,DX
INT 7

After the program has

;Initialize AX to 3.

;jMove the I/0 port address 1A3 into the DX
;register. The content of current cursor
jposition can be read from the I/0 port
;1A3.

;Read the content of cursor position from
;I1/0 port.

; Return control to the monitor program.

been executed, the AX register will contain

@023 and the DX register will contain @1A3.

our
Descripiion: OUT = output port
This instruction outpuks « bytke or a word from AL or AX to an

output port. The port number may be an immediate value or may be
olaced in the DX.

Flag register bit affected: none

Syntax:
OUT port,AL/AX
Bxample 1:
MOV AL,41 ;Move ASCII code 41H ('A') to AL.
MOV DX,1Al ;Move 1/0 port address 1Al 1into the DX

;register so that the contents of DX point
;to the output port, which is used by the

;LCD.
QUT DX,AL ;Write data contained in the AL onto LCD.
INT 7 ; Return control to the monitor program.

The character 'A' will be displayed on the LCD after executing
the program,

XLAT

Description: XLAT = translate

This instruction is used to translate characters from one code to
anether, such as, ASCII to EBCDIC ot vice versa. It replaces a
byte in the AL with a byte from a 256-byte, user-coded
translation table, BX is usually assumed as the beginning of the
translation table. AL is regarded as the offset. The instruction
plus BX and AL and then move the content of the result address to
AL.

Flag register bits affected: none

Syntax:

XLAT

Example 1:

MOV AL, 0F

MOV BX,40

MOV BYTE[4F],11

XLAT ;change the content of AL from F to 11
INT 7

After the execution, the AL will be loaded with 11H which is
originally stored on the memory location 4F,

2. Arithmetic Instructions

In this section, we will describe the arithmetic instructions as
follows: ADD (addition), INC (increment), SUB (subtract), DEC
(decrement), NEG (negate), CMP (compare), MUL (multiply), and DIV
(divide) . ’

The arithmetic instructions provide the following Ffour basic
operations: addition, subtraction, multiplication and division.
You can use these instructions to manipulate the following types
of numbers: unsigned binary, signed binary, unsigned packed
decimal, and unsigned unpacked decimal.

The contents of the flag register can be 1ls or @s. Like all
registers, it is a 16-bit register. Nine of the 16 bits are used
independently as flags and are used to reflect different kinds of
results from arithmetic operations. Seven bits are unused on the
8088. Some of the more important flag bits are described below. A
flag is set if it is 1, It is clear if it is @.

CF (carry flag) 1is set if there is a carry out of the most
singificant bit or Dborrow into the most significant bit.
Otherwise, it is cleared.

PF (parity flag) is set if the result of an arithmetic operation
has an even number of l-bits. Otherwise, it is cleared. Note that
the parity flag only tests byte length data.’

AF (auxiliary flag) is set if there is a carry out of bit 3 to
bit 4, or a borrow from bit 4 to bit 3. Otherwise, it is cleared,
You can use this flag in both 8-bit or 16-bit arithmetic
operations.

ZF (zero flag) is set if the result of the operation equals @.
Otherwise, it is cleared.

SF (sign flag) is set if the result of the operatiocn ig less than
@. It is cleared if the result is larger than or equal to 0.

OF (overflow flag) 1is set if the result of the operation Iis
larger than its destination operand.

ADD
Description: ADD = addition
Add the source operand to the destination operand and place the

sum in the destination operand. The sum may be a byte or a word.

Flag register bits affected: AF, CF, OF, PF, SF, ZF.

Syntax:
ADD reg,mem/reg
ADD mem/reg,reg
ADD mem/reg,numb
Example 1:
MOV AX,7
MOV CX,2
ADD CX,AX ;add contents of AX to CX and return Lhe
;result to X
Example 2:
MOV CL,5
ADD CL,2 ;add immediate wvalue 2H to CL and

;return the result to CL

INC

Description:

INC = increment

Add one to the destination operand,

word,

Flag register bits affected: AF, OF,

Syntax:

INC reg/mem

Example 1:
ADDRESS

¢o80:0000
gO80G:0003

Pe80:0008

¥EB@:000B

P80 :0G0UE

@680:6010

@80 :3011

@eE8B:@015

pE8@:0017

After execution,

MNEMONICS

MOV
MOV

MOV

MOV

MOV

INC

INC

LOOP

INT

will be as follows:

100
101
192
193
104
195
106
1ag7
le8
169
16A

@B
g1
B2
B3
24
@5
a6
87
g8
@9
aa

OPERANDS

CX,A
BYTE[10@] ,01

DI,1l01
AL, [100]

[DI],AL

DI

BYTE[16@]

¥B

which may be a byte or a

PF, SF, ZF.

COMMENTS

;move value 10 into CX
;move value @1 into the
;memory location

;move the contents of the
;memory location addressed
;by 10¢ into AL

smove the contents in the
; AL into the memory
:location addressed by the
;contents in DI

;add one to DI and return
; the result to DI

;add one to the memory
;location addressed by 100
;if CX is not equal to @,
s jump to the memory
;location addressed by the
;jvalue @B

;transfer control to the
;monitor program

the memory locations ranging from 1¢0 to 10A

SUB
Description: SUB = subtract
Subtract the source operand from the destination operand, and

place the difference into the destination operand. The contents
of either operand may be signed or unsigned numbers.

Flag register bits affected: AF, CF, OF, PF, SF, ZF.

Syntax:
SUB reg,mem/req
SUB mem/rey,regq

SUB mem/reg,numb

Example 1:

MOV CX,9

MOV BX,3

SUB CX,BX ;subtract BX from CX and return the
;jdifference to CX

INT 7

After execution, the CX will contain @6.

Example 2:

MOV AL,10

SUB AL,A ;jsubtract 10 from AL and rekturn the
;difference to AL

INT 7

After execution, the AL will contain @6.

DEC

Descripition: NEI = decrement

Subtract one from the destination operand. The operand must be an
unsigned binary number, which can be a byte anc a word,

Flag register bits affected: AV, OF, PF, SF, ZF.

Syntax:
DEC reg/mem
Example 1:
DEC AX ;jsubtract one from AX and return the
;jresult to AX
Example 2:

DEC BYTE[123] ;subtract one from the contents of
;jmemory location 123

NEG

Description: NEG = negate

Produce two's complement of the destination operand, that
reverse the sign of the number.

Flag register bits affected: AF, CF, OF, PF, SF, ZF.

Syntax:
NEG reg/mem

Example 1:

MOV AX,0

MOV AL,01 ;move value 1 into AL

NEG AX ;change AX to FFFF

NEG AL ;jchange AL to its original value @1
INT 7

After execution, the AX will contain FF@1.

is,

CMP

Description: CMPI='compare

Compare two operands by subtracting the source from the
destination. Both operands are unchanged since the difference is
not placed in the operand. CMP can be followed by any cocnditional

jump instruction, If the destination is greater than the source
jump is taken.

Flag register bits affected: AF, CF, OF, PF, SF, EZF.

Syntax:
CMP reg,mem/reg
CMP mem/reg,reg

CMP mem/reg,numb

Example 1:
CMP BX,CX ;jcompare BX with CX
Example 2:
CMP BL,@2 ;jcompare BL with @2H
Example 3:
CMP WORD[7F2],16 ;jSubtract value 16H from memory
;location addressed by 7F2 (low byte)
;and 7F3 (high byte), and use the
;jresult to set the flags. The result
;of this operation is not stored back
jinto the specified locations.
Suppose memory location 7F2 contains @lH and 7F3 contains FFH,

the contents of thess two memory locations are not changed after
execution.

A-15

MUL

Description: MUL = multiply

Multiply source operand by AX or AL. If the source operand is a
word, multiply it by AX and return the product in DX and AX. 1If
the source operand is a byte, multiply ik by AL and return the
product in AH and AL. The operand is unsigned binary numbers.

Flag register bits affected: CF, OF.

AF, PF, SF, ZF undefined.

Syntax:

MUL mem/reg

Example 1:

MOV AX,3
MOV CX,2

MUL CX ;multiply AX by the contents of CX
INT 7

AX will contain @6H after execution and DX contains #@.

DIV

Description: DIV = divide

Divide the dividend by the source operand. 1I1f the source operand
is a byte, it divides the dividend in AH and AL and then returns
the remainder in AH and the quotient in AL. If the source operand
is a word, it divides the dividend in DX and AX and then returns

the remainder in DX an the quotient in AX.

Flag register bits affected: afr, CF, OF, PF, SF, ZF
undefined.

Syntax:

DIV mem/reg

Example 1:
DIV CL ;CL divides what in AH and AL
Example 2:

MOV DX,23

MOV AX,4

MOV CX,3ES8

DIV CX ;Divide 0@23@004H by 3EBH
; (divide DX:AX by CX)

INT 7

After execution, the AX will contain @8ES5H and the DX
contain @2FCH.

are

will

3. Logical Instructions

The leogical instructions include NOT, AND, OR, XOR, TEST, SHL,
SHR, RCL, ROL, RCR, and ROR.

Unlike the arithmetic instructions which always regards their
operands as numbers, the logical instructions regards their
operands as strings of bits. In addition, the logical
instructions can operate on a byte or a word operand.

The flags are not affected by the logical NOT. However, AND, OR,
XOR and TREST affects the status of the flag register as follows:

CF: cleared,

OF: cleared.

AF: undefined.

PF: set for even number of l-bits, clear Eor odd number of 1-
bits.

depends on the status of the high-bit of the operand.

ZF: depends on the numeric value of the operand.

17}
3

NOT

Description:

Form the one's complement of the
destination may be a byte or a word,

Flag register bits affected: none.

Syntax:
NOT reg/mem
Example 1:

NOT BYTE[106]

destination operand.

Suppose memory location 1@@6H contains 8@H, after execution,

contents will be changed to 7FH.

The

its

AND
Description:

Perform the logical "and" bit by bhit b2tween the source operand
and the destination operand.. The result 1is stored 1in the
destination.

AND
AND
AND
AND

HHS S
S-S
nmuwn
HFaaa

Flag register bits affected: CF, OF, PF, SF, ZF.

AF undefined.

Syntax:
AND reg,mem/reg
AND mem/reg,reg

AND mem/req,numb

Example 1:
AND CX,0FF
Example 2:

AND AX,BX

OR
Description: OR = inclusive OR

Perform logical "inclusive or" bit by bit between
the source operand and the destination operand. The result is
stored in the destination operand.

OR
OR
OR
OR

FHe S
He S
oo
S

Flag register bits affected: CF, OF, PF, SF, ZF.

AF undefined.

Syntax:
OR reg,mem/reg
OR mem/reg,reg

OR mem/reg,numb

Example 1:
OR AX,BX
Example 2:

OR CL,41

XOR
Description: XOR = exclusive OR

Perform the logical "exclusive or" bit by bit between the source
operand and the destination operand. The result is stored in the
destination operand.

X0R
XOR
XOR
XOR

=)

e
1

[SESI)

Flag register bit affected: CF, OF, PF, SF, ZF.

AF undefined.

Syntax:
XOR reg,mem/reg
XOR mem/reg,reg

X0OR mem/reg,numb

Example 1l:
XOH O 81
Example 2:

XOR RAX,01

TEST

Description:

perform the logical "and" of the source operand and the
destination operand. The result is not returned to the
destination operand, which leaves both operands unchanged,
However, it affects flags. When TEST is followed by JINZ (jump if
not zero), the jump will be taken if there are "1" bits of the
result.

Flag register bits affected: CF, OF, PF, SF, ZF.

AF undefined.

Syntax: -
TEST reg,mem/reg
TEST mem/req,reg

TEST mem/reg,numb

Example 1:
TEST BL,34
Example 2:

TEST AX,0FF4

RCL, ROL

1]

Description: RCL rotate through carry left

ROL roktate left

Rotate the bits in the operand. ROL moves the bits
out of the MSB (most significant bit) of the operand and then
shift them back to the LSB (least significant bit) of the
operand. RCL moves a bit out of the MSB of the operand into the
CF. And then shift the CF bit into the empty LSB of the operand.
The number of rotation is determined by the count register. 1If

count = 1, source operand is 1l; 1if count > 1, the number of
rotation is stored in the CL.

Flag register bits affected: CF, OF.

Syntax:
ROL mem/reg,l
ROL mem/req,CL
RCL mem/reg,l

RCL mem/reg,CL

Example 1:

ROL AX,1
ROL BYTE[100],1

Example 2:

ROL AX,CL
ROL BYTE[100],CL

Example 3

RCL BX,1
RCL WORD[1@d@],1

Example 4

RCL: B, CL
RCL WORD[100] ,CL

RCR, ROR

Description: RCR rotate through carry right

ROR

rotate right
ROR moves the bits out of the LSB of the operand and then shift
them back to the MSB of the operand. RCR moves a bit out of the

LSB of the operand into the CF and then shift the CF bit into the
empty MSB of the operand.

Flag register bits affected: CF, OF.

Syntax:
ROR mem/reg,l
ROR mem/req,CL
RCR mem/reg,l

RCR mem/req,CL

Example 1:
ROR AX,1
Example 2:

ROR AX,CL
ROR BYTE[126] ,CL

Example 3:
RCR BX,1
Example 4:

RCR BYTE([127] ,CL

SHL

Description: SHL = shift logical left

This instruction shift the bits in the destination operand to the
left. Empty bit positions are filled with zeroes. The number of
bits to be shiftad is determined by the count register. If couant
= 1, the source operand is 1; 1if count > 1, the number of shift
is stored in the CL.

Flag register bits affected: CF, OF, PF, SF, ZF.

AF undefined.

Syntax:
SHL mem/reg,l

SHL mem/reg,CL

Example 1:
SHL BX,1
Example 2:

SHL BYTE[126] ,CL

SAR,SHR

-

Description: SAR shift arithmetic right

SHR

shift logic right

SAR shifts the bits in the destination operand to the right. The
number of shift is determined by the count register. Empty bit
positions are filled with the number that equals to the original
high-order bit (sign bit) in order that sign of the original
operand 1is retained. SHR shifts the bits in the destination
operand to the right. The number of shift is determined by the
count register. Empty bit positions are filled with zeroes.

Flag register bits affected: CF, OF, PF, SF, ZF.

AF undefined.

Syntax:
SAR mem/reqg,l
SAR mem/reg,CL
SHL mem/regqg,l
SHL mem/reg,CL
Example 1:

SAR SI,1l
Example 2:

SAR SI,CL
Example 3:

SHR BYTE[123],1
Example 4:

SHR BYTE[123],CL

4. String-Manipulation Instructions

The 8088 assembly language string-manipulation instructions
provide powerful control over strings (bytes or words) of data
that are stored in memory.

There are five basic string instructions - MOVS, CMPS, SCAS, LODS
and STOS. These instructions are appended with a B or a W (B for
a byte, W for a Word, as the case may be) to the mnemonic , so as
to indicate whether a byte or a word is to be processed.

The operands for these instructions are implied. The source
operand is addressed by the SI (Source Index) register, while the
destination operand is addressed by the DI (Destination 1Index)
register. So, when coding these string-manipulation instructions,
there is no need to specify the operands.

The source string is always assumed to be in the data segment
while the destination string is in the extra segment. The source
and destination pointers are updated automatically to point to
the next element in the string and this makes it possible for the
processor to handle long data strings simply by just repeating
the basic string operation a number of times. This process of
repeating the operation can be done by prefixing the basic string
operation with a repeat code such as REP, REPZ, REPNZ, etc.

When a basic string instruction is prefixed with a repeat code,
the processor will repeat the operation of this instruction a
number of times equal to the value of the CX register, at the
same time subtracting one from the CX register each time the
instruction is executed.

For detailed description of these string-manipulation
instructions, turn to the following pages.

MOVS

Description: MOVS = Move string byte or word

MOVS instruction moves or transfers a byte or word from the
source string to the destination string addressed by the Source
Index (SI) and Destination Index (DI) respectively. The source
and destination operands can either be registers or memories.
When used together with the prefix REP, MOVS performs memory-to-
memory block transfer.

Flag register bits affected: none

Syntax:
1. MOVSB

2. MOVSW

Example :

MOV CX,20 ;Set counter to 28
REP MOVSW ;Repeat move string word 20 times

CMPS

Description: CMPS = Compare string byte or word

Compares the value of the source string (addressed by SI) with
the destination string (addressed by DI). When this instruction
is executed, a subtraction is performed between the source string
and the destination string without actually affecting the
contents of either strings. This instruction is used to determine
whether the source or the destination string is bigger. But, the
statuses of the flag registers are affected after this operation.

The CMPS instruction can be prefixed with JG,JN%Z, JZ, REPE, REPZ,
REPNE or REPNZ.

Flag register bits affected: AF, CF, OF, PF, SF, ZF

Syntax:
1. CMPSB

2. CMPSW

Examples :

MOV CX,10 ; Set counter to 10

REP CMPSW ;i Repeat until C¥X = @

MOV CX 5 ; Set Counter to 5

REPNZ CMPSB ; Repeat compare operation if CX not = ¢

;and ZF not = 1

SCAS

Description: SCAS = Scan string byte or word

Updates the contents of the flag reyisters by subtracting the
contents of the destination operand (addrazssed by DI) from the
contents of the accumulator (AL if string is a byte or AX it
string 1is a word) register. This operation does not actually
alter the contents of the destination operand or the accumulator
itself, but merely scans over their contents., The DI Iis
automatically updated after the execution of this instruction.

The SCAS instruction can be prefixed with REPE, REPNE, REPZ OR
REPZE.

Flag Register bits affected: AF, CF, OF, PF, SF, ZF

Syntax:
1. SCAsB
2. SCASW

Examples:

MOV CX,12 ;Set value of counter.

SCASB ;Scan string of OUTPUTL.

MOV CX,22 :Set value of counter.

REPNZ SCASW ; Repeat scanning operation if
;CX not = § and ZF not = 1.

LODS

Description: LODS = Load string byte or word

LODS 1instruction tranfers the contents of the source string
operand (addressed by SI) to the accumulator (AL or AX register
depending on whether a byte or word is being moved), at the same
time updates SI to point to the next element in the string. When

prefixed with REP, this instruction will cause the accumulator to
be overwritten after each repetition.

Flag register bits affected: none

Syntax:
1. LODSB

2, LODSW

Examples :

MOV CcX,1l1 ;Set value of counter

LODSW ;Pexform word loading operation

MOV CX,10 ;:Set value of counter

REP LODSB ;Repeat Loading operation® if CX = @
INT 7 ;Else, stop execution.

STOS

Description: STOS = Store string byte or word

Stores the contents of the register AX (8 bits, for a byte) or AL
(16 bits, for a word) into the memory location addressed by the
DI (Destination Index) register and then increments the DI to
point to the next location in the string. The STOS . instruction
can be prefixed with REP.

Flag register bits affected: none

Syntax:
l., STOSB
2, STOSW
Example 1:
MOV CX,18 :Set value of counter

REP STOSW :Repeat store operation until CX = 0.

Example 2:

Address Mnemonics Operands Comment
boB8O:0040- MOV CX,WORD[45] ;Set value of counter equal
j to contents of memory
;location addressed by 45H.
0P80G:0044 STOSB ;perform store operation
@080:0045 DW 12

5. Transfer-of-Control Instructions

The transfer-of-control instructions allow the user to transfer
control from one point to another in the program. These
instructions allow us to alter the sequence of an otherwise
straight-line program. The transfer can either be intersegment
(from one segment to another) or intrasegment (within one
segment) .

The transfer-of-control instructions include CALL, RET, JMP, the
conditional jump instructions (i.e., JZ, JNZ, etc.), LOOP, the
conditional loop instructions (I.e., LOOPE, LOOPNE,etc.), INT and
IRET.

CALL

Description: CALL = Call a procedure

The CALL instruction is used to perform a subroutine before
returning to the main program that calls the subroutine, When a
CALL instruction is encountered, the processor adjusts the IP to
point to the next instruction to be executed following the CALL,
then saves it on the stack (to allow the RET instruction in the
subroutine to return control to the main program), performs the

subroutine and finally returns to the main program to continue
executing the rest of the instructions.

Flag register bits affected: none

Syntax:
1. CALL procedure
2. CALL dword ptr [addr]
3. CALL reg:off

4, CALL reg

Example :

Address Mnemonics Operands Comment

@080:0000 MOV AX,WORD[102]

¢80 :0063 CALL gB ;Call the routine addressed by
;jvalue 0@B.

pr8A: 0006 POP AX

@e80:Qd@B7 MOV CX,DX

0680 :0009 JMP gla ;Jumps to the instruction

- ;addressed by value 1A.

0080:000B PUSH AX

@e8@:0066C MOV AX,WORD [FE]

P@80P:0GPOBF INC WORD[100]

9@80G:8013 ADD AX,WORD[10@)

pe8@:0017 MOV DX ,AX

P@80:0019 RET

0@8@:0@1A CMP AX,CX

RET
Description: RET = Return from Procedure

RET returns control from a procedure or subroutine back to the
instruction following CALL in the main program. The word at the
top of the stack' is popped by the RET instruction, then stored in
the 1instruction pointer. The SP (stack pointer) |is then
incremented by two. If there is an optional pop value, this value
is added to the SP. The IP then contains the address of the next
instruction following the original CALL instruction 1in the
program.

Flag register bits affected: none

Syntax:
RET
RET pop-value
RETF pop-word
Example :
Address Mnemonics Operands Comments
GUB0:00068 CALL 5 ;Invoke routine addressed by memory
:location 5
g@80:008083 JMP 4]
@880:0005 MOV SI1,200 ;Move address 200 to SI
@oB@:0@08 CLD
@@B0G:0¥0@9 LODSB ;Move a byte of data addressed by the SI
jregister into the Al register
APBB:0@6A CMP AL,1 ;Check if the end of the predefined data
;is encountered
@980:000C JINE 18 ;1f data ends, jump to the instruction
;contained in memory location 18H.
¢@8@:000E LODSW ;jMove a word of data addressed by the
;SI register into AX
P@BO:POGF MOV CX,AX ;Move frequency into CX
@@80:90011 LODSW
@@B@:@012 MOV BX,AX jMove music pitch into BX
Q@BGE: Q@14 INT 18
@8R : Q016 JMP 9
PBBG:86B18 RET
@080:02¢8@ DB 1
@0BB:0201 DW 1D5,88
0980:9205 DB 1
098@:0206 DW 1B3,86
@pBP:920A DB 1
BO8UE:Q20B DW 196,80

A-36

deB8@:020F DB
0088:0216 OW
ARBY:0214 DB
JuRd:@2Ls DW
dpBB:P219 DB
P@e80:021an DW
GYBB:P21E DB
BEBB:E2LF DW
@ePBB:0223 DB
6P8V:0224 DW
fUs@:8228 DB
QeBB:022% DW
geg@:p220 DB
@u8@:022E OW
op8e:08232 DB
PéE8@E:P233 DW
3G8G:0237 DB
9@80:0238 DW
op8@:823C DB
BEBE: 23D DW
pe8@:0241 DB
0080:0242 DW
op8B:6246 DB
P@BO:06247 DW
Fasgd:0242 DB
@E8@:024C DW
ouU8@:0256¢ DB

This program
continuously.

I
184,88
1
1613, 8O
i
155,88
1
148,80

1
136,80
1
114,89
1

F8,80
1
E6, B0
1
B8, 80
1
A2,80
1
9A, 80
1
88,80
1
78,89
o

when executed,

will produce the basic music

notes

JMP

Description: JMP = Jump

The JMP 1is an unconditional jump instruction wused within a
program to transfer control to the target location. The JMP
instruction can either be a direct or indirect jump. A jump is
direct when the target address is the address contained in the IP
(Instruction Pointer), whereas in an indirect jump, the target
address is contained in a register or memory address specified in
the operand of the JMP instruction.

The JMP instruction can access 65,635 bytes of memory by jumping
forward (up to 32,767 bytes) or backward (up to 32,768 bytes). By
using the JMP instruction, the user can create a 1loop for
instructions that are repeated a number of times, thereby saving
time spent in coding the program and the memory space used to
store the program.

Flag register bits affected: none

Syntax:
1. JMP off (near jump)
2, JMP reg:o0ff (far jump)

Example 1:

Address Mnemonics Operands Comments

peB@:0080 MOV DX,1Aal jMove 1/0 port 1Al to DX

0e80:0€63 MOV AX,0 ;Set initial value of AX

6880:0086 MOV CX,0 ;Set initial value of CX

@080:9869 ADD AX,CX ;Add CX to AX

f@80:00@B ADD AX,3@ ;0Obtain ASCII codes from 36H

P@BY:@E@BE OUT DX, AX ;Ooutput a character on the
;screen

@080:888F INC CX

@ge8G: 8018 MOV AX, B

9E8BE:0013 JMP @9 ;Jump to the instruction
;addressed by location 9

Example 2:

Address Mnemonics Operands Comments

go80:0000 MOV DX, 16 ;Move target address to Dx

BUBU:R063 MOV AX,@ ;Clear accumulator

@a8@: 0006 MOV CXx,5 ;Set initial value of CX

9@8@:0809 ADD AX,CX ;Add contents of CX to
jaccumulator

0@80:000B JMP DX ;Get target address from DX

A-38

Conditional Jump

The conditional Jjump instructions are used for decision making
regarding the program flow if certain conditions are met. To
determine whether certain conditions are met or not, the
microprocessor tests the contents of some specific flag
registers.
Below is a list of the B@88 conditional jumps:

Conditional Condition: JUMP is performed
Jump instructions JUMP if if:

JA Above CF or ZF = @

JNBE Not below or equal CF or ZF = 0

JNB Not below CF = ¢

JAE Above or equal CF =0

JB Below CF =1

JNAE Not above or equal CF =1

JcC Carry CF =1

JBE Below ov erjual CF or ZF = 1

JNA Not above CF ot ZF = 1

JE Equal ZF = 1

JZ Zero ZF 1

JNLE Not less or equal ZF = @

JG Greater ZF 7]

JLE Less or Equal ZF = 1

JING Not greater ZF = 1

JNL Not less SF XOR OF = {

JGE Greater or equal SF XOR OF = @

JL Lower than SF XOR OF = 1

JNGE Note > nor = SF XOR OF =1

JNC Not carry CF = @

INE Not equal ZF = 0@

JNZ Not zero ZF = 0

JNO Not overflow OF = @

JNP Not parity PF = @

JPO Parity odd PF @

JNS Positive SF = 0

JO Overflow OF = 1

Jp Parity PP = i1

JPE Parity even PF =1

JS Sign 5F 1

Flag register bits affected: CF,ZF,SF,PF,OF

Syntax:

J{condition)

Example 1:

Address Mnemonics
gos@:pP000 MOV
peB8@:06003 MOV
gu8@:0ae066 ADD
p@B@:0P008 ADD
@0B0: 06008 INT

g@8@:08006D INC
B080:000F CMP
gp8@:ppl2 JNE

po8d:e014 INT

After the execution of this program,

Operands
cx,8
AX,0
AX,CX
AX, 30

B

CX
CX,80@
il

7

Comment

;Set initial value of CX

;Clear accumulator
;Add CX to AX

;Obtain ASCII codes from 30H to 8@H
;Output a character to the LCD

;jsuccessively
;jIncrease CX by 1
iCheck if CX reaches

;the value 3.

128 (decimal)
;Jump to the instruction addressed by

;Return to the monitor

characters corresponding to

the ASCII codes 30H to 86H will be displayed on the LCD screen.

Example 2:

address Mnemonics
g@8@:0000 MOV
g@8@:09@83 CMP
ges@:eoe6 Ja

gp8@:0¥6E8 INT
¢eB8Q:000A MOV
g@8@:800C INT
@080:0006E DEC
G082:0018 INT
@@86:8012 MOV
G08@:8014 INT
g@80:8016 MOV
G@BE:@@LB INT
Ge80:061A MOV
@@8@:801C INT
FEBA:BOLE INT

After executing this

of the instruction JA.

Operands
BX, 18
BX,F

A

7
AL,31
9

AL

9
AL,3E
9
AL,46
9

AL, 20
9

2

program,

Comments

;Set BX to 10H (decimal 16)

;Check if BX is greater than F

;If BX is greater than
;jinstruction addressed
;If BX is less than F,
;jOutputs character "1"
;joutputs character "g"
;Outputs character ">"

;O0utputs character "F"

F, jump to the

by the
return

to the
to the
to the

to the

;Outputs a blank to the TLCD

jReturn to the monitor

value of a
to monitor

LCD
Lcp
LCD

LCD

a message "1@>F" will be shown on
the screen. The purpose of this program is to produce the result

LOOP

Unconditional Loop
Description:

LOOP is an unconditional instruction that transfers control to
the instruction indicated by the label operand, no matter what
the condition of the Flag register. However, the number of times
the LOOP instruction is executed depends on the contents of the
CX register which serves as a counter for the LOOP. Each time the
LOOP instruction is executed, the CX register is decremented by 1
and tested if it is zero. When CX = @, the processor stops
executing the LOOP instruction and goes on to process the next
instruction.

The LOOP instruction sometimes uses a jump instruction called
JCXZ (Jump if CX register is Zero) to make its decision on when
to start looping and when to get out of the loop. By placing the
JCXZ instruction after the instruction that loads the CX register
and before the instruction that starts the program 1loop, the
processor tests the content of the CX reyister first. If,
initially it is zero, the LOOP instrucktion is bypassed, program
execution jumps to the next instruction following LOOP. Whereas,
in the absence of the JCXZ instruction, upon encountering a LOOP
instruction, the first thing the processor does is to subtract
the value of CX by 1. At this point, if the initial value of CX
is zero, subtracting 1 from CX will give a difference of @FFFFFH,
since @FFFFFH is now the value of the CX register, the program
will have to loop this number of times before it can exit from
the loop. To have a better idea on what this is all about, refer
to Example 2 below.

Flag register bits affected: none

Syntax:

LOOP address

Example 1:

address Mnemonics Operands Comments

p080G:0600 MOV AX,8 ;Set AX to zero

9@80:0003 MOV CX,l1@2] ;Move the contents of memory location
;102 to CX

2080:0007 CMP cX,90 ;iCheck if CX equals ¢

gesQ:000n J2Z 15 ;1f CX = @, jump to memory address 15

Pp8@:000C ADD AX,[100] :Else add the contents of memory
;location 160 to AX

0080: 0019 LOOP & ;Perform the instruction addressed by the

;jvalue of C a number of times equal to

Au8@:0612
0e8@B:0015
0080:0100

Busd:0182

VEB@d:M104

Example 2:

Address

PuBU:VOBG
po8v:0003
Fe8R:0007
GuBU:0OB9
évBa:emaD
0@BU: 000F
Pusd:0012
BOBU: U100
P@BO:0182
0eBY:9104

MOV
INT
DW

DW

DW

Mnemonics
MOV
MOV
JCX2Z
ADD
LOOGP
MOV
INT
DW
DW
oW

[1@4],AX
-

1

A

]
Operands
AK,D
CX,[1l@82]
12

AX, [104]
9

[1e4] ,AX
7

L

A

a

;the contents of CX

;Store the result into memory address 164
;Return to the monitor

;Initialize location 168 (low byte) to 1

;and 181 (high byte) to @.

;Initialize location 182 (low byte) to A

;and 103 (high byte) to @

;Clear memory locations 104 and 105 which

;will be used to store the result of the
;operation in addition

Comments

;Jump 1f CX = @

; Repeat Addition

A-42

Conditional Loop

Description:

The conditional loop instructions are executed when certain
conditions are met. These conditions are reflected by the
status of Zero ¥lag. Keep in mind that the number of times a loop
is executed depends on the value of the CX register (this holds
true for both conditional and unconditional LOOP), while ‘the Zero
Flag only determine whether a loop is to be performed or not.

The conditional loop instructions are as follows:

LOOPE - Loop while equal
LOOPZ - Loop while zerc
LOOPNE - Loop while not equal
LOOPNZ - Loop while not zero

If ZF = 1 and CX register not equal to zero, both LOOPE and LOOPZ
will cause the program to loop. In the same manner, if 7ZF = 3 and
CX register not equal to zero, both LOOPNE and LOOPNZ will cause
the program to loop.

Flag register bits affected: ZF

Syntax:
1. LOOPE address
2. LOOPEZ address
3. LOOPNE address
4, LOOPNZ address
Example 1:
Address Mnemonics Operands Comments
UGBQ: 6880 ADD AX,CX
puBB:BER2 CMP AX,[1l6B] ;Check if AX equals to the contents of
;memory location 16B
0G8P: 0086 LOOPE @ ;1f equal, repeat addition
GUBsE:A048 MOV [18B] ,AX ;5ave contents of AX in L18B
Example 2
Address Mnemonics Operands Comments
gUB8@: 90680 ADD AX,CX
30B80:90682 DEC cX
PPBG: 0063 LOOPZ @
@080@:0005 INT 2

A-43

INT
Description: INT = Software Interrupt

The INT instruction is used to initiate a software interrupt,
thereby causing a temporary break in the normal execution of a
program, Interrupt vectors corresponding to I/0 routines were set
up in the low memory addresses during initialization. The
interrupt vector contains the address of an interrupt service
routine.

When an INT instruction is executed, the processor stops whatever
it is doing at the moment to service the interrupt, then returns
to what it was doing before being interrupted. However, keep in
mind that before servicing the interrupt, the processor pushes
the contents of the current C5 (Code Segment) register into the
stack and the high word of the doubleword interrupt pointer is
in turn pushed into the CS. Then, the current contents of the IP
is pushed into the stack and the contents of the low word of the
interrupt pointer is pushed into the IP.

There 1is a total of 256 interrupt-signal sources. In order to
identify the interrupt-signal sources, a interrupt pointer should
be specified in the operand field of the INT instruction.

Flag register bits affected: IF,TF

Syntax:
INT interrupt pointer
Example 1:
Addrazss Mnemonics Operands Comments
VUBG: 0000 MOV CX,20 ;Set value of counter
BOHA:BPU3 REPNZ MOVSB ; Repeat move operation if CX not = @
dURG: @65 INT B ;Else INT B

IRET

Description: IRET = Return from Interrupt

After servicing an interrupt routine, the processor returns to
the program at the point where it was interrupted, through the
IRET instruction, which is the final instruction in any interrupt
routine. When an IRET instruction is executed, the IP value, CS
value and the flag values are popped from the stack .. stored in
their respective registers. Program execution then continues from
the point of interruption.

Flag register bits affected: all ;

Syntax:

IRET

6. Processor-Control Instructions

The processor-control instructions allow the user to set or clear
the carry, direction and interrupt flags , 1invert the current
state of the carry flay and even stop instruction executions.

The processor-control instructions consist of the following: CLC,
cLp, CLI, CMC, STC, STD and STI.

CLC

Description: Clear Carry Flag
The CLC instruction affects only the carry flay. When a -CLC
instruction is executed, the carry flag is zeroed out regardless

of the state of the carry flag prior to the execution of &his
instruction,

L3

Flag register bits affected: CF

Syntax:

CLC

CLD

Description: CLD = Clear Direction Flag

The CLD instruction only affects the Direction Flag. CLD zeroes
out the DF, thereby causing the string instructions to increment
the SI and/or DI index registers automatically.

Flag register bits affected: DF

Syntax:

CLD

CL1

Description: CLI = Clear Interrupt-Enable Flag

The CLI instruction zerces out the IF (Interrupt-Enable Flag).
when the IF is cleared, maskable interrupts are disabled, that
means an external interrupt request thai Appears on the INTR line
will be ignored. However, a non-maskable or a software interrupt
is still honored.

-
Flay register bits affected: IF
Syntax:
CLI
CMC
Description: CMC = Complement Carry Flag
The CMC instruction allows us to iavert the current state of the

carry flag. If the carry flag equals @, executing the CMC
instruction will set it to 1. The CMC instruction only affects
the carry flag.

Flag register bits affected: CF

Syntax:

cMC

STC

Description: STC = Set Carry

The STC instruction sets the carry flag to 1, regardless of the

state of the carry flag prior to the execution of
instruction. Only the carry flag is affected. °

Flag register bits affected: CF

Syntax:

STC

STD

Description: STD = Set Direction Flag

this

The STD instruction sets the DF (Direction Flag) to 1 regardless
of the state of the Direction Flag prior to the execution of this

instruction, STD only affects the DF.
Flag register bits affected: DF

Syntax:

STD

STI

Description: STI = Set Interrupt-Enable Flag
STI sets the IF to 1, thereby letting the processor

maskable interrupt requests on the JINTR line
instruction following.STI has been executed.

Flag register bits affected: IF

Syntax:

STI

acknowledge

after

the

BE Schematic
mE Diagrams
CIEEE

€2 PIN EXPANSION BUS
A-SIDE SIGNAL B-SIDE SIGMAL
FRORT 97 5 iLsETs
' 1D 1@ 24 {7
74LS04 ::: :' 8p sa|lS :: :2 +sufp3
1 2 aD4 12 20 26 Jo
AD3 70 7alfl6 27 “;
ua AD214 30 sefe 28 jas)
NN vc ! c39 AD1fiS :: 64: 829 2 12upp? |
“‘ﬂ'—“% T-sepF Apolie 3lep safl2 a3l e
14.318 Mz —LdoE +120
kit =~ L__un
/21810 17215107 FTETYT] onp
= T e b = 181 1v1]1e
£ L L1y a13p L7 {204 2v4)
¥ B« a12a 4]1a2 1v2[16
TR N g at1 §12a3 2va
a ate 1a3 1vs[1%
e e A 312a2 2v2
a8 1a4 1vafl2
ras | Lo n il o
4LS74 um
24L532 “hefz o |o 22READY L 115] 75
u2
2T0RZH | 137 € 24]TN
12) us 21 D 23[TEST
I_L/ —1 ape a2 |p?
L a3 ve
— aslps
N AE jp4
- 1ok A6 jps
a7 p2
- ‘“‘ 741504 c a1 p2
8 3S1HOLD A3 pe
100K - hEn
i g L7ZHAL yrpa]
741504 s ~nend
11N 18 18JINTR ggp A1l [FAEN
- T +ALE
ua 26f10s% "I7F 7415139 7415244 ou 13 2
29| ate 1478 v)2 1A1 1v1 ock [B2e
32 Aa1? kiy = 1A2 1¥2] 5c 330
IRESET A16 7z 1A3 1v3
1 uiae b 1a4 1y4] 12
2a1 2v1
202 2v2
2a3 2v3
2R4 2v4
b1
M4 ws
oo Al T 741508 F4L8873
2 1 4 _12p 30|
Fi.u 5 e U8 18] us 1 Z 28 “_:
& €D 70
su 4 7UF s 7
3lsp sefl2
1D 10
8lep gaold
4 Ra|3
11,
L1 g3E
u1
INEOX3
—RESET 3
L cr2
o] CR3
Sy

m

— NNa N

+BU l
L R18
r16s r1s LML R T ok
? : Y€V 5 cRs CRE i RZU 4 o
4 7 |1k Q,/ LA
sTB 2 Jv2 3 * - Tms 1:35
€~ £51) 1 - e . 22UF
e [R14 4 7K JHCK
c- EAR
o 4.7 R17 L caunio
KC-4 SRAL RA1RAS <i: o INPUT>
(3 7K
e iek Jiek |1eex +BUSY
KC=7 KR-5
1 ?4LS14 SU
?4LS273 _J 74LS273 74HC244 us 180K XS RA3
= ‘:{Tuﬂ. Zi i 10 |2} 2601 ;) -/\}-5— ?
3 2 £ 4 |2 2 < 2 3
Bs > _| 4D 4 4D 40 zR4llT ! <
D3 EBF3 3 131sp sa 1AL
gf _: 6D f ; 6D 6Q lnz;
' ?D p21 1742p 2afl® 1A3
] 8lep j0@ 18lgp g [YE KR=
TIR TIR
P-160 1] i tH4140
u22 u21 14 +5Y
-RESET RS 74LS74
P-180 R24 _ | 4 Jer als
P-ice 100K C48 LdcL
8. 1UF 2 1p
KC-— £ 3 T ke nmr
c-18
C-11 Us
)
+5U
MIC CAUDIO OUTPUT) +6U 3
L 28 RrRe Rie Fae 1r—~————————]
[i R21
9.01u 8 RA1L
1 80K ? 4
3 18K
R22 556 i
1
5 2| vz |
o7 e : cas
Te.1UF =" a1uF
2
v
-
8410822
MULTI TECH

TITLE: KevBOARD /& TAPE
UNIT OR pnpr-1,ss |[SHEET3 OFS
ASSEMBLY

[IDRAWING NO. | _PCB_HC
898.02403 .00 l PB3403110-|
DSHN CKD APPD

B-2

RON-0E

58
s N 127 <&
22[VcC UPP {
A 26 3 -HENM 1Tt
[a 2[f13 18 57 | Z8]z6, Tz7 2826 27 J2e | 26 =
- 55R12 12 1 [pTe = RA2 10KX8
) 2111 11 i 4 jas
o £ Saa1e 10 5las $ ¢ S
As 25E9 28, g : a7
o slew 27128 2o 27128 2 27128 I
AT lae uze 5 u19 3 u1s '
A 3 34 2 A T _|n3 =] =
A3 7|s] e 7[R 2 e416 6116 6116
A2 gh? gh3 83 a1 e ,
Al gjh2 sjh2 9jf2 W afee 7 c7ca
A olf! oP! olf! 6264 14 6264 13 14
D7 T19/® s SR T uz4 uz3
D6 eP? s|R7? 807 3
D8] 7[pé il i 5
4 34 &[0S 6|PS b4
3 sP4 S|p4 [und D3
2] 3P 3p3 3PS n2
ﬂ 2) f 2 ';’ 2| f D1 HE
1 1 1 De /
L 2o ‘Eo [] TE L) TE BE TEaLl
' 20 2 0 2{22/20 2] 22]20 [23] 222 |20 lzs <
RAN-1 T I
Ran-¢ 741504 AEN
8
RAN-2
74L5139
1676 UB pi2
als 12w pag s 7415138
s o i ks 1[5z g pis
ui4 P —= o B2F 71 E_‘-
81 VZpld
stz il 1 SN
i lrm=
741532 vey |, (ALS1se A VB E-18e &
aL4 t {BZA VB plS e
LYE] 10) us 8 % B35 VT :; v s
o 61 VI
Als c g’:'%
2Lz —0-06 o s wmhe 1
A1l 5 ::la e L3 .
T ? 77 b g 1ALSes 7415138
k52 = ais alus)& 4 (378 TSRS
~MENW re) U7 pis MULTI TECH
P4 JP3 Bz 3 - i
“HENR [b % Piz TITLE: nenory & DECODER
1 NIT OR npr-1/88
l ' 3 Ybe SSEMBLY
& . V5 ps PCH 1O
| e :
©98.92482.00 | PB84@3110-
v u? o DSN KD APPD
1 -10u : ;
1 TTor

B-3

v-d

AAVAANALWARTAR
V:ZAXVANZAN ZAND)
MDD A D
NPANPANDANVANF,

AN B
HZANDANDANEANEAN HLHIE
CAVAAVAAVAAWALNER mb
EEANEANCANIACEANLS
DAY N N T
C AR PVANTANPTANE,
WAV ALY
REANDANDACDACD
\ 1.,,__" _J iR \ B 1
A‘/.‘.v.\, hNy \ [Q //k //.k
D AN AN Y T
NS 1\ 4 LB
DAY AN AN AN

ZANEAX VAN DAND,
AN AN Y T
IZZANDANDASPANP
AANAAN AV WaN
B ,./& K& /MT\.\ f\e\

AT

o)

- ~t %f\m Ay

+D?
+D6
+DS
+D4
+D3
+D2
+D1
+Do

P-1R8

+Al

LCD DISPLAY —
JAck
u-1IN
DHC - 28215
- B
14 (14 1312 11 ¢« & 7 &5 4 0 |
N +5U
.
74LS04 RS
'1§[>-J? 690
U4
~
Js 62 FIN EXFANZ10M EUS
KEYBOARD 1/0
o> KC- -HOLD 6ND
o—2 7 L RESET DRU
3 3 2 +5U
o3
o1 5 3 1GR2
3 4 4 ~1INTA
s DRG2
S = 12V
(o2
o 4 +INTR
o De 2 +12V
3 +1/0 CH RDY As GND
S AEN 1e —~HENW
A o “HERR
] 1]
o114 a 13 SR
Q 14
A N ~DACKS
g [15 DRE3
<o 16 — ek
e Al4 -DACK1
3 GND A 17 SRai
S RESERUED A 18 ~DACK®
KR-0 A 19 CLOCK
< A 20 o
A 21 o
A8 —[r22 [
A7 _ 2 a4
RE p24 FE]
: S 1 ~DACKZ
a26 ——77c i
ALE
r=0)
e +05C
B G
* GND

NOTE

1S €4 FIN CARD EDGE ONLY

1N4001
. 39 css |
34 IN 7806/1A OUT T 1
<'330F . SHD * = L......1 @ 1UF X 28
25y 2 T crr)
3 sus2su 4 PUF/ZEU J7
J1
SHITCHING POWER CONNECTOR
6 +12U 6 -12U +5U +5U
+5U
RA1
18K PRINTER-OUT
-STB
?4L5273 J3
+D@ 4 l2p 20 m
+D1 —{3p 30 o o—&
+D2 4D 4Q L O
+D3 3lsp sa O O
+D4 4lep 60 S o—fie
+08 2120 76 1 o—i2
+06 8lep se gﬁ o—i2
+07 1D 1@ ve) Cj_.
-RESET TIR
P-1E® 1
u1?
841022
MULTITECH
TITLE: rcp . PRINTER
URIT OF SHEETS OFS
lassengLy MPF-1/88
DRAWING NO .] _PCB NO.

BUSY

998 92485 oo | PBS483118-1

BTN DA AT

a.! !J Iliu.U.hJL!
BEmE@ o amor

. Date Sheet of LCD

CONTENTS

I TP i b TN R S R R SRS RS P DS e O .
2., FeaturesS......c.ececscesccanscnes e e R e e A e
3. Logical Structure and FUNCLIOM. e sessnnsseasossrsorsossassnnannnnansnn
3.1 Symbol Diagram.....eeessvscecscnnns RO S T L R, . 4
3.2 Pin Assignment and Dimention OULLiNeevevvennenennnnrannas -
3.3 Terminal Function.............. PO S P PR ST SR P

Jih Block: DIggramuiie iy sainiisiavmei i aannmsi s vsaanms e e

0 1 o B A W R e

3.5 TFunction of Bach Block:iies i s essissisieesssasssasss s s
3.6 Interfacing to MPU....vivevanan S T S)
3.7 Reset Functiof..e.civvevuan- sessarrisesrsssssessssnesssesassasssues 2]
4. Instruction......... B Y
§i1 BUETIRE .y swwwsmasvwaswin P e ey
4,2 Degscription of Detallsciinsvninilesnmoines s se v s e vus DG
5. Electrical Characteristics....esssvesssscsessssrssscsccsossasssssanss 3]
5.1 Absolute Maximum RatingS......... S T T T T R P S 31
5.2 Electrical CharacteristicCs,sesssvrsesssessnsssaseseesssvaes I 7
5.3 Timing Characteristics........... sessssssrssstssssssnssasassssccns 36
5.4 Power Supply Conditions Using Internal Reset Circuit 39

1. Outline

The LCD-II (type HD44780) is a dot matrix liquid crystal display
controller & driver LSI for displaying alphanumerics, kana characters and
symbols. It memorizes character codes (8 bits/character) sent from
microcomputers or microprocessors (MPU) into display data RAM (DD RAM,

80 bytes=640 bits, 80 character size), converts them to either 5 x 7 or

5 x 10 dot matrix character patterns, which are then sent to the intermnal
liquid crystal display driver. Since the HD44780 has an internal 16-common
signal driver and 40-segment signal driver, one HD44780 can display up to
16 characters (1 character being 5 x 7 dots, 1/16 duty). If a driver LSI
HD44100H is externally connected to the HD44780, up to 80 characters can

be displayed.

The HD44780 is internally equipped with character generator ROM (CG
ROM) that will generate 2 character fonts; 1 font containing 160 5 x 7
dot characters and the other containing 32 5 x 7 dot characters. It is
further equipped with character gemerator RAM (CG RAM, 64 bytes=512 bits)
in 8 character size if the character font is 5 x 7 dot, or 4 character
size if 5 x 10 dots. CG RAM can be programmed for each application.

A feature offering great convenience in actual use. The user can specify
any pattern for character-generator ROM. For details, see "The LCD-II
(HD44780) Breadboard User's Manual"

To designate character display position, write an instruction into
the instruction register from the MPU via data bus and then write a
character code into the data register via data bus. Since the HD44780
has a function for automatically shifting the position into which
characters are written after character codes by writing only the character
code, character displays at serial positions from the next operation are
possible. Since the HD44780 also has the function shift the entire
display, you can display input from either left or right.

Since both the display data RAM and character generator RAM can be
read from the MPU, whatever part not used for display can be used for the
general data RAM.

The HD44780 is an 80-pin plastic flat package CMOS LSI. It can
transfer data in 4-bit-2-operation or 8-bit-l-operation, allowing either
a 4 or 8 bit interface to the MPU. When combined with a CMOS MPU, the
user can develop portable battery drive equipment utilizing the liquid

crystal display's low power consumption.

HITACHI

1

2, Features
«5 x 7 and 5 x 10 dot matrix liquid crystal display controller driver
.Capable of interfacing to 4-bit or 8-bit MPU.
.Display data RAM80 x 8 bits (80 characters, max.)
. Character generator ROM....
Character font 5 x 7 dots: 160 characters
Character font 5 x 10 dots: 32 characters
.Character generator RAM....
Prograﬁmable; 8 types of 5 x 7 dot character font, or
4 types of 5 x 10 dot character font
.Both display data and character generator RAMs can be read from the MPU.
« Internal liquid crystal display driver....l6 common signal drivers
40 segment signal drivers
*Duty factor selection (selected by program)....
1/8 duty: 1 line of 5 x 7 dots + cursor
1/11 duty: 1 line of 5 x 10 dots + cursor
1/16 duty: 2 lines of 5 x 7 dots + cursor
» Maximum number of display characters

No. of Duty [!
Display LinedFacto tensio#ﬂbﬁ4780 HD44100H No.of Display Characte;;
Not
1-line ‘;'l'ﬁl fovided | 1 pe. — 8 characters x 1 line
display | 4,y [provided | 1 pc.| 9 pecs.(8 characters/pc.)80 charactersx 1 line
Not =
2-line 1/16 [provided | 1 pc. ——— 8 characters x 2 lines
display | duty 4 pes. (8 characters
provided | 1 pc| x 2 lines/pc) (40 characters x 2 lines

« Wide range of instruction functions
Display clear, Cursor home, Display ON/OFF, Cursor ON/OFF,
Display character blink, Cursor shift, Display shift
. Internal automatic reset circuit at power ON. (Internal reset circuit)
- Internal oscillation circuit (with external resistor or ceramic filter)
(External clock operation possible)
- CMOS process
. Logic power supply; A single+5V (excluding power for liquid crystal display drive)

« Operation temperature range: -20--475°C
(Device for —40-.+85°C available upon request)

- 80-pin plastic flat package (FP-80)

2 HITACHI

3. Logical Structure and Function

3.1 Symbol Diagram

Power Supply
For Logic

Clock Terminals [

=

P[]

MPU Connecting
Terminals

ce
GND

0S¢,
0S¢,

RS
RAW

DBy ~DB;
DBy ~DBy

COM,
~COM;4

SEG,
~SEGyo

CLI ' CIQ
M. D

Vi
Va
Vi
V4
Vs

18
———] Connected to

Iiquid Crystal
40 i i
Display Terminal
4 Connected to
——— | External Driver LSI

HD44100

Power Supply for
Liquid Crystal
Display Drive

HITACHI

3

3.2 Pin Assignment and Dimension Outline

(1) Pin Assignment

HITACHI

4

(2) Package Dimension Outline (80 Pin Plastic Flat Package)

256404

20

1e6toe

| S
I S S N LR SRR T R EAE S BT It R A R

08+0.15

| |
|

14
IS IV T O OO

289 max

1 pin

1.0+ 03

Lead section Lead section

(Unit :mm)

HITACHI 5

3.3 Terminal Function

“Table 3.1 TFunctional Description of Terminals
Signal |No.of [Input/ [Connected
name | lines| Output to Function
RS 1 Input MPU Signal to select registers
"0": Instruction register (for write)
Busy flag; address counter (for read)
"1": Data register (for read and write)
R/W 1 Input MPU Signal to select read (R) and write (W)
"0": Write
"1": Read
E 1| Input MPU Operation start signal for data read / write
DBy 4 | Input/ MPU Higher order 4 lines data bus with bidirectional
E; Output] tri-state. Used for data transfer between the MPU and
¥ the HD44780. DB7 can be used as a BUSY flag.
DBy 4 | Input/ MPU Lower order 4 lines data bus with bidirectional
e Outrput tri-state. Used for data transfer between the MPU and
DB3 the HD44780. These four are not used during 4-bit
operation.
CLy 1 | Output| HD44100H|Clock to latch serial data D sent to the driver LSI
HD44100.
CLy 1 | Output| up44100u| Clock to shift serial data D.
M Output] HD44100H Switch signal to convert liquid crystal drive waveform
to AC
D 1 | Output| HD44100H | Character pattern data corresponding to each common
signal is serially sent.
"0": Non selection
"1": Selection
CcoMy 16 | Output| Liquid |Common signals that are not used are charged to non-
e crystal |selection waveforms. That is, COMg~COM16 are in non-
COM16 display |selection waveform at 1/8 duty factor, and COMjzvCOMjg
are in non-selection waveform at 1/11 duty factor.
SEG]A- . Li u%d s R
£ t 1
SEG4n 40 | Output Efgg g% egment signa
Vi~V5 5 ogﬁsply Power supply for liquid crystal display drive
Vee»GND PogeEply |Vees +5V, GND; OV
0sCy, 2 Terminals connected to resistor or ceramic filter for
0sC internal clock oscillation.
2 For external clock operation, the clock is
input to 0SCj.

6 HITACHI

IHOVLAIH

L

Vee
GND
0SsSC,
0sC,

RS
R/W

DB‘“‘"DBT

DBQ"“'DB;

Power Supply
for Liquid Va
Crystal Vy
Display Drive Vi

= COM|"‘"’COM]°

. SEG; ~SEG,,

Address Timing Generation 3/ CL,
. Counter (AC) Circuit Cﬁ”
el
ol B 7 4
0o 0 T
;‘: =] 7oA e
ot |8 o .
o 0 e ® = 7 il
H ot o rf I £ £y
~5 |88 Dsgkiy Dats| | 7 :
=5 P 3 isplay Data { o B
— e Z RAM e |08 1
Py (DD RAM) | “Egi > E_m
: s
w 2 80%8 bits . © m 09
Fh oQ " e)
4 Y QF o rr b
= s Lo |
e i =y D g 8 L o
H o H O
Mot 8 oR
4 v l(-;-m 4 =
—_— rt 8L L7 gt C-JE.
1] [Ry (/5]
H = o o o
nA (=] o3
=) Character] Character E el 8
= iy
& Generatoxy Generator g Tl a2 e
| RAM ROM [= i 3
| (CG RAM) (CG ROM) j e < b
H -
i ! i n w
L_ usy 512 bits 7200 bits 40 g g
Fla :
g ls 5 | =
= &
<
——_— A j
Parallel/Serial Data
40-bit Saift Register D

Conversion Circuit
(Parallel Data~— Serial Data)

) weideTq {ooTd H'€

(10TI93IUT 0L YHAH:

3.5 Function of Each Block

(1) Register
The HD44780 has two 8-bit registers, an instruction register (IR) and a data
register (DR).
The IR stores instruction codes such as display clear and cursor shift, and
address information for display data RAM (DD RAM) and character generator RAM
(CG RAM). The IR can be written from the MPU but not read by the MPU.
The DR temporarily stores data to be written into the DD RAM or the CG RAM
and data to be read out from DD RAM or CG RAM. Data written into the DR from
the MPU is automatically written into the DD RAM or the CG RAM by internal
operation. The DR is also used for data storage when reading data from
the DD RAM or the CG RAM. When address information is written into the IR,
data is resd into the DR from the DD RAM or the CG RAM by internal operation.
Data transfer to the MPU is then completed by the MPU reading DR. After
the MPU reads the DR, data in the DD RAM or CG RAM at the next address is
sent to the DR for the next read from the MPU. Register selector (RS) signals

make their selection from these two registers.
Table 3.2 Register selection

RS |R/W + Operation
0| 0| IR write as internal operation (Display clear, etc.)
0 9 Read busy flag (DB?) and address counter (DBgy-DBg)
i § 0 DR write as internal operation (DR to DD or CG RAM)
1 & DR read as internal operation (DD or CG RAM to DR)

(2) Busy flag (BF)
When the busy flag is "1", the HD44780 is in the internal operation mode, and
the next instruction will not be accepted. As Table 3.2 shows, the busy flag
is output to DB7 when RS=0 and R/W=1. The next instruction must be written
after ensuring that the busy flag is "0".

(3) Address counter (AC)
The address counter (AC) assigns addresses to DD and CG RAMs. When an instructio
for address is written in IR, the address information is sent from IR to AC.
Selection of either DD or CG RAM is also determined concurrently by the
instruction.
After writing into (or reading from) DD or CG RAM display data, AC is
automatically incremented by +1 (or decremented by -1). AC contents are output
to DBo~ DBy when RS=0 and R/W=1, as shown in Table 3.2.

(4) Display data RAM (DD RAM)
The display data RAM (DD RAM) stores display data represented in 8-bit character
codes. Its capacity is 80%8 bits, or 80 characters. The display data
RAM (DD RAM) that is mnot used for display can be used as a general data RAM.
Relations between DD RAM addresses and positions on the liquid crystal display

HITACHI

are shown below.
The DD RAM address (App) is set in the Address Counter (AC) and is represented

in hexadecimal.

Upper Order Lower Order
“ Bits Bits

—

AC |ACB|ACS5|AC4|AC3|AC2|AC1|ACO

\ \ "
Hexadecimal
(Example) DD RAM address "4E"
1 0 0 1 1 1 0

| SR T E —
*l1-line Display (N=0) h_Display
(lagaty,— ¢ B 4 & 78 80 Position

DD RAM
—14 00 01 02 03 D 4 [reersomsimmiiaeenes| 4 E| 4 F 4=

1-1ine Address

(a) When the display characters are less than 80, the display begins at the head

For example, 8 characters using 1 HD44780 are displayed as :

position.
Display
(digit) 1 2 3 4 5 6 7 8 -—Position
._DD RAM

) 0 o1 |oz2|o0o3|o4|0os]|oe|on
1-line . Address

When the display shift operation is performed, the DD RAM address moves as:

(Left

Shift [01 |02 |03 |04 |05 |06 |07)08
Display)

(Right

Shift {_if oo | 01|02 | 03| 04|05 08
Display)

(b) lé-character display using an HD44780 and an HD44100H is as shown below:
1 2 8 4 5 6 7 B 8 10 11 12 18 14 15 16 - Display
Position
Do|01{02/ 03|04/ 05 06/07|]08|{09({0A|0B|O0OC|O0D|0E|O0F|=-DD RAM

1-line
HD44780 Display " fp4s1008 Display — Address
When the display shift operation is performed, the DD RAM address moves as:

(digit)

(Left Shift

; 01{02/03|04 6l 0 0
Display) 1 2103 05]0 7/08lo9|o0A|l0B|OC|(O0D|O0E|[OF|10

‘Right Shift
Display)

¢4FlooJor1|{oz/o3/o4/0s5({06jo7|0s|oe|0AloBlOC|OD|OE

HITACHI ¢

(c¢) The relation between display position and DD RAM address when the number of
display digits is increased through the use of one HD44780 and two or more
HD44100H's can be considered an extension of (b).

Since the increase can be 8 digits for each additional HD44100H, up to 80
digits can be displayed by externally coﬁnecting 9 HD44100H's.

1 digit 2 3 ¢ 5 6 7 & 9 10111213 14 15 16 17 18 19 20 73 74 75 76 77 78 79 80 « Display
position
1-1ine |0o0|01|02|03 0405|086 {07|08|09|0A|0B|0C|0D|OE(OF(10|11]12{13| —-—~]48|49 4A 4B 4C 4D4E 4F] — DD RAM
WD44100H | address
\L__HDéa?BO ____J/_ﬂﬂnaalooH(l)__J/\ (2)~(8) J ___HD44100H(9)_/ (Hexadecimal)
Display Display Display Display

*2-line Display (N=1)

Display
i 1 2 3 4 5 39 40 +—
(aLgte) Position
1-line | 00 01 02 03 D 4 Peorerrerrrsiiiiiiensnie. | 2§ 9 7 4 DD RAM
Address
2-line | s 0| 41 | a2 | aa | a4 b 88 | 8 1

(a) When the number of display characters is less than 40 x 2 lines,
the 2 lines from the head are displayed. Note that the first line end
address and the second line start address are not consecutive., For example

when an HD44780 is used, 8 characters X 2 lines are displayed as;
. Display
Position

(digit) 1 2 3 4 5 6 7 3

1-line 00 01 02 03 04 05 08 [] — DD RaM
Address

2-line 40 41 4 2 43 44 45 46 47

When display shift is performed, the DD RAM address moves as:

(LeftShift o1 02 03 04 05 08 0" 08

Display)

41 4 2 4 3 44 4 5 4 6 47 4 8

(Right Shift| 27|00 |01 |02 |03 04 |05} 06

Display) 617 40 41 #2 | 43 | 44 45| 48

10 HITACHI

(b) 16 characters X 2 lines are displayed when an HD44780 and an HD44100H are used:

- Display

(digit) 1 2 I | 5 i} ¥ 8 9 10 11 12 13 14 15 16 Position

l1-line |00j0L|02f03|0%|03]08| 0703 ow(oAaloBloCc|oD(oE(0F |« DD RAM
Address

2-line | 40| s1|42|48|lss|lss5|s6[s7]e8|e0|4A|sB|sC|4D|4E|4F

\ HD44780 /\ HD44100H /

Display Display

When display shift is performed, the DD RAM address moves as follows:

(Left Shift
Display)

01/{0.2|0a3|04|05|08|07|08l0O|0A|0OB|{OC|OD|OE|OF|10

41| 42|43|44|/45/ 46|47/ 48|40|4A|4B|4C|4D|4E[4F|50

|(Right Shift
Display)

27/00/o1/02|/03/os|0os{oe]jo7|08|l0o9|0A|OB|OC|OD|OE

(c) The relation between display position and DD RAM address when the number of
display digits is increased by using one HD44780 and two or more HD44100H's,

can be considered an extension of (b).
Since the increase can be 8 ditits x 2 lines for each additional HD44100H, up to

40 digits x 2 lines can be displayed by connecting 4 HD44780's externallv.

1 digit 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 33 34 35 36 37 38 39 40 « Display
position
1-1ine|oofo1| 02|03 0¢ osluelm 08| 00| 0A{0B|0CIOD|OE|OF| 10f11[12{18| -~ =~ ~ 20| 21|22] 23| 24 zs!aﬁlw «— DD RAM
i
- — address
2-1ine |40|41]42| 43| 44|45|46|47|48| 49|4A|4B|<C|4D|4E{4F] 50| 51|52 |33 |-— —— — 60|61 sz' salu 6566/ 67) (Hexadecimal)

__npas780 —/_mpssroon(ny /NP N\ wpasroonca)/

Display Display Display Display

HITACHI 11

(5) Character Generator ROM (CG ROM)
The character generator ROM generates 5 x 7 dot or 5 x 10 dot character patterns
from 8-bit character codes. It can generate 160 types of 5 x 7 dot character
p;tterns and 32 types of 5 x 10 dot character patterns. Table 3.3 and 3.4
show the relation between character codes and character patterns in the
Hitachi standard HD44780A00. User defined character patterns are also
available by mask-programming ROM. For details, see "The LCD-II(HD44780)
Breadboard User's Manual.

(6) Character Generator RAM (CG RAM)
The character generator RAM is the RAM with which the user can rewrite
character patterns by program, With 5 x 7 dots, 8 types of character
patterns can be written and with 5 x 10 dots 4 types can be written. Write
the character codes in the left columns of Tables 3.3 and 3.4 to display
character patterns stored in CG RAM.
Table 3.5 shows the relation between CG RAM addresses and data and display
patterns.
As Table 3.5 shows, an area that is not used for display can be used as a

general data RAM.

12 HITACHI

Table 3.3 Correspondence between Character Codes and Character Pattern
(Hitachi standard HD44780A00)

igher 0j1011[1100f1100)2000 2111
Lowe&“bn 0000 0.010 0011/0100|0101 (011G (0111101 1
G -
?{j‘M LTTTT] .=:i ::: I.l-= =-“=
Xxx%x0000 (n ..=. w-_— ot | B
:
®
:
®xxxx0001 i]
3
®xxxx0010 (3)
xxxx001] | ‘&) | sfeks
5 | e
xxxx0]100 mmnn
= o. i &
i8) . HE
xxxx0101 il ..-_.=.=.. - e
e g oo (]
(M | a"s= = = HIH
xxxx0110 1 *an"s " o | a" a" | suuns
:= S T
|8.' .—-= = L] E ..= e ...
xxxx0111 o . _-l___ ..
. ! : oz nen | meEns
:l] =. =III= (TT] " ™ -I-l- .=. .' = -l:
xxxx1000 .n- ‘--_-= =' ': E """ - ol I i
e wee [® 8§ L ¥
2 --= =Ill= E =l I= - HI alun ...I. I H ! e E H H
i ! L L] = - - - " EE] -
Xxxx1001 o . H H H H H " H s
A -- .I- I=I = l=| (L1} - L] L] I ‘l__ :
we"
L1 L] L] L] -
2| &= u H nnn " ']
OIS A B plee| F |
xxxx1010] an = B ans | "an = foaler E H
- -
- | " aluis | & geens | =8
I .. H -~ SO - CETT - azuam
ST Il o I N O R O B L g
. "an | " - anuns | sEnen u
® | o | ==l I L s
XXxx1100 -= "a wuss H IEI Hil T T s " "
N u_m . s wnann | w - .E. =
asen — =- -‘- -. ane » s -
xxxx1101 (6) . i E/:E -= L) .'.' : ---: .E:-- -:.-
(113
? .--. -- .- -- =--. .- - =.--
xxxx1110 | @ w | 2 . i 1
.. ...-I =..-= LLL} :E :-:
xxxx1111 8) - :- E_“E . E_“E _“E

HITACHI 13

Table 3.4 Correspondence between Character Codes and Characte

(Hi tac_h:l. standard HD44780A00)

Loweigl:eb::t 0000 | 0010 | 0011 | 0100| 0101 | 0110 | 0111 | 1010 1011 | 1100 | 1101 | 1110 1111

4bit)
fide gl | P | N p = | = 2.l al

XXXx0000 [{D)
xo0x0001 |2 Pl v Al Qf a] al, 7| #| &| 7| q
xxxx0010 |®) # B 8 . ' r__ 1 / 4 B]
XXXX0011 4} # 8 c 8 c s 4 7 7 E e o
XXXX0100 (5) $ 4 D T d t . L2 b ¥ o Q

xxxx0101 © | 5| E| Ul e|]uw]|] || F|=2]o]|q
XXXX0110 @ & 8 F v f v 2 # = 5 0 5
xoxx0111 |® i ? G| W g w 7 * = 5| ¢ =z
xxxx1000 | (8 (Hf X | h x 1 2 * 7| %
xxxx1001 |2) 9 I Y i y o |l # | 2] | 7Y] ¢
xxxx1010 | % J Z i z B o ~ L j =+
xxx%1011) + ; K C k { * it E o |x y:]
XXxx1100) v < L L I | - P4 7 7 ¢ =]
xxxx1101 | - = M| 2| m|)] 2| R]| ~|]| &| =+
XXXX1110 @ : > N i n . . + __:h . =
socex1111 1P 7 ? @l . o — | » v = |e 5 .

14 HITACHI

Table 3.5 Relation between CG RAM Addresses and Character Codes (DD RAM)
and Character Patterns (CG RAM Data)

(a) For 5x7 dot character patterns

Character Codes CG RAM Character Patterns
(DD RAM Data) Address " (CG RAM Data)
7 6 5 4 3 2 1 0 5 & 3 2 1 0 7 6 5 4 8 2 1 0
¢Higher Order Bits < Higher Order Bits e¢Higher Order Bits
Lower Order Bits— Lower Order Bits Lower Order Bits—
L -
10 00
:001
:“ 10 {;J Character
0000 %o0 00 00 ot 1! {.'“- Pattern
1 0 o i Example (1)
110 11
i
:1 10 Fl“ Cursor
1111 * %k Xk 0 + Position
— L SR
1 T
10 00 % ¥ *'13
lo 01 o f
o 1 0 - Character
‘ :u 11 Pattern
0 0 0 0 = 0 0 1 0 0 1:1 P Example (2)
:1 01 00
L1 0 io o0
I
12 S0 T ¢ * %k *:o 0 0 0 0
T 1
I jo 0 o0 * kx|
lo 01 :
= g
|
0o 00 0 %k 1 11 i i Lis o & |
I I *
11 0 1 i No effect
f1 10 :
:1 11 * x Xk

(Note) 1: Character code bits 0" 2 correspond to CG RAM address bits 3v5
(3 bits:8 types).
2: CG RAM address bits 0~ 2 designate character pattern line positiom.
The 8th line is the cursor position and display is performed in logical

OR by the cursor.

Maintain the 8th line data, corresponding to the cursor display positlon,

in the "0" state for cursor display. When the 8th line data is "1",
bit 1 lights up regardless of cursor existence.

3: Character pattern row positions correspond to CG RAM data bits 0 4,
as shown in the figure (bit 4 being at the left end). Since CG RAM

data bits 57 are not used for display, they can be used for the general
data RAM.

HITACHI 15

16

4: As shown in Table 3.3 and 3.4, CG RAM character patterns are selected
when character code bits 477 are all "0". However, since character
code bit 3 is a ineffective bit, the "R" display in the character
pattern example, is selected by character code "00" (hexadecimal) or
"08" (hexadecimal).

5: "1" for CG RAM data corresponds to selection for display and "0" for

non-selection.

(b) For 5x10 dot character patterns

Character Codes CG RAM Character Patterns
(DD RAM Data) Address (CG RAM Data)
7 6 5 4 3 2 1 0 5 4 3 2 1 0 7 6.5 4 3 2 1 0
¢Higher Order Bits +Higher Order Bits ¢Higher Order Bits
Lower Order Bits—# Lower Order Bits-| Lower Order Bits—
io 6o 0 0 00 0 0
10 0 01 00 0 0
[0 0 1 0 oy 140
jo'o 11 10 oj1} Character
(0100 4o o of1]| Pattern
00 00 % 0 0 % 0 010 1 0 1 1o o ofa| Example
011 0 11 1o
}0 11 1 1o o o o
11 0 0 0 0 0 0 0
:1 00 1 0o 0 0 0
'y 0 1 0 00 0 0 hCursor
| ——— . | SR | J——. 5 T (- T A Position
:1 o 11 * Ak ok ok
y11 0 0
:1 1 0 1
5 Es S V|
:1 A * ok ok ok kK
in 0 0 0
ﬁL 100 0 1
\ ,/I_,_J/
000 03k 11 *[‘ﬁu—j“:T:ﬁ7f“F“T;::::::%#“ﬁ“*’F’/ﬂr
______________ | ivo aof %ok ok
o v [k l'a_k:-_*_?(i'a?}"
)11 0 0 |
fl 10 1 !
It 1 1 0 : *
by 1 i@ 2 % k kik % % x x| No Effect

HITACHI

(Note} 1l: Character code bits 1, 2 correspond to CG RAM address bits 4,5
(2 bits:4 types).

2: CG RAM address bits 0—3 designate character pattern line position.

The 1lth line is the cursor position and display is performed in

logical OR with cursor.

Maintain the 1lth line data corresponding to the cursor display position

in the "0'" state for cursor display. When the 11th line data is "1",

bit 1 lights up regardless of cursor existence. Since the 12th"™ 16th

lines are not used for display, they can be used for the general data

RAM.

3: Character pattern row positions are the same as 5 x 7 dot character

pattern positions.

[1

4: CG RAM character patterns are selected when character code bits 4~.7

are all "0". However, since character code bit O and 3 are ineffective

bits, "P'" display in the character pattern example is selected by e

character code "00", "01", "08" and "09" (hexadecimal).

5: "1" for CG RAM data corresponds to selection for display and "0" for

non-selection.

HITACHI 17

(7) Timing Generation Circuit
The timing generation circuit generates timing signals to operate internal
circuits such as DD RAM, CG ROM and CG RAM. RAM read timing needed
for display and internal operation timing by MPU access are separately
generated so they do not interfere with each other. Therefore, when
writing data to the DD RAM,for example, there will be no undesirable
influence, such as flickering, in areas other than the display area.
This circuit also generates timing signals to operate the externally

connected driver LSI HD44100H.

(8) Liquid Crystal Display Driver Circuit
The liquid crystal display driver circuit consists of 16 common singal
drivers and 40 segment signal drivers. When character font and number
of lines are selected by a program, the required common signal drivers
automatically output drive waveforms, the other common signal drivers
continue to output non-selection waveforms.
The segment signal driver has essentially the same configuration as the
driver LSI HD44100H (see Fig. 6.12). Character pattern data is sent
serially through a 40-bit shift register and latched when all needed
data has arrived. The latched data controls the driver for generating
drive waveform outputs.
The serial data is sent to the HD44100H, externally connected in cascade,
used for display digit number extension.
Send of serial data always starts at the display data character pattern
corresponding to the last address of the display data RAM (DD RAM).
Since serial data is latched when the display data character pattern,
corresponding to the starting address, enters the internal shift register,
the HD44780 drives the head display. The rest displays, corresponding
to latter addresses, are added with each additional HD44100H.

18 HITACHI

(9) Cursor / Blink Control Circuit
This is the circuit that generates the cursor or blink. The cursor or the
blink appear in the digit residing at the display data RAM (DD RAM) address
set in the address counter (AC).

When the address counter is (08) 16, a cursor position is :

ACH ACs AC+ AC3 AC2 AC1 ACO

AC 0 0 0 1 0 0 0

ldigitz 3 4+ 5 6 7 8 & 10 1 < Display position

00 fo01fo02 |03 |04 |05 0607108 |09 0A

]

the cursor position

address

S *= DD RAM
J

(Hexadecimal)

In a 1-line display

1 digitz 3 ¢+« 5 & 7 8 @9 10 1 — Display position
{ -
1st line [00 01|02 03 |0« 05|06 |07 |08)09 [0a — DD RaM
_ / address
2nd line {40 [41 |42 {43 |44 {45 |48 +T/ 48 |49 [sa /) (Hexadecimal)
1

the cursor position
In a 2-1line display

(Note) The cursor or blink appears when the address counter (AC) selects
the character generator RAM (CG RAM). But the cursor and blink are

meaningless.

The cursor or blink is displayed in the meaningless position when

AC is the CG RAM address.

HITACHI

3.6 Interfacing to MPU

In the HD44780, data can be sent in either 4-bit 2-operation or 8-bit 1-

operation so it can interface to both 4 and 8 bit MPU's.

(1) When interface data is 4-bits long, data is transferred using only 4
buses : DB, DBjy. DBgVDB3 are not used. Data transfer between the
HD44780 and the MPU completes when 4-~bit data is transferred twice,
Data of the higher order 4 bits (contents of DB, ‘v DBy when interface data
is 8 bits long) is transferred first, then the lower order 4 bits (content
of DBp v DB3 when interface data is 8 bits long) is transferred.
Check the busy flag after 4-bit data has been transferred twice (one inst-
ruction). A 4-bit 2-operation will then transfer the busy flag and

address counter data.

RS /

R/W /

s NSNS N S N T N

DB- X re X ars X Xacs X
By X_1Re X 1Rz X Xaoz X
DBs X _1Rs X IR1 D, ACL OrsX XDR1)

pB, X 1re X 1m0 X XAGo X XorX R X

Instruction (IR) Busy Flag (BF) and Data register (DR)
Write Address Counter (AC) Read
Read

Fig. 3.1 4-bit Data Transfer Example

(2) When interface data is 8 bits long, data is transferred using the 8 data buses
of DBO ~, DB7.

20 HITACHI

3.7 Reset Function

3.7.1 Initializing by Internal Reset Circuit

The HD44780 automatically initializes (resets) when power is turned on
using the internal reset circuit. The following instructions are executed
in initialization. The busy flag (BF) is kept in busy state until initiali-

zation ends. (BF=1) The busy state is 10 ms after Vcec rises to 4.5V.

(1) Display clear
(2) FONCEION HaT vwwwanwsemmme ssssssssss DL=1 : 8 bit long interface data
N =0 : l-line display
F =0 : 5 x 7 dot character font
(3) Display ON/OFF control D =0 : Display OFF
C =0 : Cursor OFF
B =0 : Blink OFF
(4) Entry mode set VN I/D=1 : 41 (increment)
S =0 : No shift ’

(Note) When conditions in "5.4 Power Supply Conditions Using Internal Reset
Circuit" are not met, the internal reset circuit with not operate
normally and initialization will not be performed. In this case

initialize by MPU according to "3.7.2 Initializing by Instruction".
3.7.2 1Initializing by Instruction

If the power supply conditions for correctly operating the internal reset
circuit are not met, initialization by instruction is required.

Use the following procedure for initialization.

HITACHI 2]

(1) When interface is 8 bits long ;

Wait mor than 15 ms
after Voo rises to 4.5V.

. : y
RS B, DBr [Hy [B; DBy [Bs [B, DB TBo [[BF cannot be checked before this instruction.l

o T ARSI X TS Function set (Interface is 8 bits long.)

Wait more than 4.1 ms.

RS By 18 Dy DBe DBl [Bs (B (B To [IBF cannot be checked before this instruction.|

00 0 01 1 X% % % Function set (Interface is 8 bits long.)

Wait for more than 100us.

0 0 0 0 1 1 * * *x *

RS me,m[&mm,nazmm |ﬁ' cannot be checked before this instruction.[
Function set (Interface is 8 bits long.)

BF can be checked after the following instruc-
tions. When BF is not checked, the waiting time
between instructions is longer than the execution
instruction time. (See Table 4-1)

Function Set (Interface is 8 bits long. Specify

RS DB B DB DR DR DR DB I | que ponl OF G020 11060 Bnd character font
0 0 0 0 1 1 N F % % cannot be changed afterwards.

o0 0 0 0 0 1 0 Display OFF

000 0000001 Display ON

oo 0o o000 0 1Llys jEntry Mode Set

Initialization ends.

22 HITACHI

(2) When interface is 4 bits long ;

Wait mor than 15 ms
after Vgo rises to 4.5V.

RS Bg 18, 11, 1B, 1B,
0O 0 0 0 1 1

Wait more than 4.1 ms.

RS Bg, 08, DRy DRy DB
0 0 0 0 1 1

Wait for more than 100us.

RS B, DB, LB, DBy DBy
0o 0 0 0 1 1
RS B, DBy DBy Diks DB4
0 0 0 0 1 0
o0 0 0 1 0
0 0 N F % x
0 0 0 0 0 0
0o 01 0 0 0
O 0 0o 0 0 0
00 0 0 0 1
0o 0 0 0 0 0
0o 0o 0 1 Lys

Initialization ends.

[BF cannot be checked before this ins:ructionJ

Function set (Interface is 8 bits long.)

[FF cannot be checked before this instruction.]

Function set (Interface is 8 bits long.)

BF cannot be checked before this instruction.]
Function set (Interface is 8 bits length.)

BF can be checked after the following instruc-
tions. When BF is not checked, the waiting time
between instructions is longer than the execution
instruction time. (See Table 4-1)

Function Set (Set interface to be 4 bits long.)
Interface is 8 bits length.

Function Set (Interface is 4 bits long. Specify the .
number of display lines and character font.)

The number of display lines and character font cannot
be changed afterwards.

Display OFF
Display ON

Entry Mode Set

HITACHI 23

4. Instruction

4.1 Outline
Only two HD44780 registers, the Instruction Register (IR) and the Data
Register (DR) can be directly controlled by the MPU. Prior to internal
operation start, control information is temporarily stored in these
registers, to allow interface from HD44780 internal operation to various
types of MPUs which operate in different speeds or to allow interface to
peripheral control ICs. HD44780 internal operation is determined by
signals sent from the MPU. These signals include register selection
signals (RS), read/write signals (R/W) and data bus signals (DBg“DB7),
and are called instructions, here. Table 4.1 shows the instructions
and their execution time. Details are explained in subsequent sections.
Instructions are of 4 types, those that,
(1) Designate HD44780 functions such as display format, data length, etc.
(2) Give internal RAM addresses.
(3) Perform data transfer with internal RAM
(4) Others
In normal use, category (3) instructions are used most frequently.
However, automatic incrementing by +1 (or decrementing by -1) of HD44780
internal RAM addresses after each data write lessens the MPU program
load. The display shift is especially able to perform concurrently
with display data write, enabling the user to develop systems in minimum
time with mayximum programing efficiency. For an explanation of the shift
function in its relation to display, see Item 6.6.
When an instruction is executing during internal operation, no instruction
other than the busy flag/address read instruction will be executed.
Because the busy flag is set to "1" while an instruction is being executed,
check to make sure it is on "1" before sending an instruction from the MPU.
(Note) Make sure the HD44780 is not in the busy state (BF=0) before sending
the instruction from the MPU to the HD44780. If the instruction
is sent without checking the busy flag, the time between first and
next instructions is much longer than the instruction time. See

Table 4-1 for a list of each instruction execution time.

24 HITACHI

Table 4.1 Instructions
Code Execution Time (max)
Instruction : Description (when fcp or
RSR/WDB7DB6DB5PBADB 3DB DB DB ; fosc is 250 KHz)
Clears entire display and sets
Clear olololololololalol1 DD RAM address U in 1.64ms
Display address counter.
Sets DD RAM address 0
in address counter. Also
reFurns displ?y'bEIng i Bk
olojo|o|o|o|o]|ofa]|x |shifted to original
Return position. DD RAM contents
Home remain unchanged.
Sets cursor move direction
and specifies shift of
display. These operations
Entry . are performed during data
ojo|o|oO i
Mode Set 016 (91 s write and read. 40us
Display Sets ON/OFF of entire dispaly (D),
ON/OFF olololololilnlc|g [curser ON/OFF (C), and blink of
Control cursor position character (B). 40us
Cursor or Moves cursor and shifts
Display olololo lo % | » |display without changing
Shift 1 6 WL ’ DD RAM contents. 40us
Sets interface data length (DL
Function number of display lines (L).
000 |0 |1 L F|#® | =%
Set N and character font (F). 40us
Sets CG RAM address. CG
Set CG RaM olo |1 A RAM data is sent and
Address G received after this setting. 40us
Sets DD RAM address. DD
Set DD RAM 0 l1 i RAM data is sent and
Address bR received after this setting. 40Us
Reads Busy flag (BF) indicating
Read internal operation is being
Busy Flag|y |1 |gF AC performed and reads address
& Address counter contents. Ous
WriEg E%ta_ Writes data into DD RAM or
Lo BXum 110 Write Data CG RAM. 40us
Read Data Reads data from DD RAM or
from CG or|l |1 Read Data
DD RAM CG RAM. 40115
I/D=1:Increment DD RAM:Display data RAM fxecution time
1/D=0:Decrement CG RAM:Character generator RAMchanges when
S =l:Accompanies display Acc:CG RAM address ifrequency
shift. App:DD RAM address. changes.
S/C=1:Display shift Corresponds to cursor (Example)
S/c=0:Cursor move address. When fcp or
R/L=1:Shift to the right. AC: Address counter used for | fosc is 270KHz:
R/L=0:Shifts to the left. both DD and CG RAM 250
DL=1: 8 bits, DL=0: 4 bits address. 40us % 570 =37us
N=1l: 2 lines, N=0: 1 line
F=1:5%10 dots, F=0:5%7 dots
BF=1:Internally operating
BF=0:Can accept instruction
* No Effect

HITACHI 25

4.2 Description of Details

(1) Clear Display
RS RLRWDB} ————— DB

Code :
o|loe]Jo]lo|loe|aojo]lo]o 1

Writes space code "20" (hexadecimal) (character pattern for character
code "20" must be blank pattern) into all DD RAM addresses. Sets DD
RAM address 0 in address counter. Returns display to its original
status if it was shifted. In other words, the display disappears and
the cursor or blink go to the left edge of the display (the first
line if 2 lines are displayed). Set I/D=1 (Increment Mode) of Entry
Mode. S of Entry Mode doesn't change.

(2) Return Home RS RRWDBy —————— _ — DB,

Code '
ololoflolo|lo]o|o]|a|x]| 3AHDon't care

Sets the DD RAM address 0 in address counter. Returns display to its
original status if it was shifted. DD RAM contents do not change.
The cursor or blink go to the left edge of the display (the first
line if 2 lines are displayed).

(3) Entry Mode Set
RS RAV DB, ———— ———— DB,

0 0 0 o]0 0 0 1 |LD| S

Code

1/D: Increments (I/D=1) or decrements (I/D=0) the DD RAM address by 1
when a character code is written into or read from the DD RAM.
The cursor or blink moves to the right when incremented by 1 and
to the left when decremented by 1. The same applies to writing and
reading of CG RAM.

S : Shifts the entire display either to the right or to the left
when S is 1; to the left when I/D=1 and to the right when I/D=0.
Thus it looks as if the cursor stands still and thé display moves.
The display does not shift when reading from the DD RAM nor when
writing into or reading out from the CG RAM does it shift when
5=0.

(4) Display ON/OFF Control
RS R/W DB, DB,

Code
o | o] o0 0| o o1 D|jC| B

D: The display is ON when D=1 and OFF when D=0. When off due to
D=0, display data remains in the DD RAM. It can be displayed
immediately by setting D=1.

C: The cursor displays when C=1 and does not display when C=0. Even
if the cursor disappears, the function of I/D, etc. does not change

during display data write. The cursor is displayed using 5 dots

26 HITACHI

Code

in the Bth line when the 5 x 7 dot character font is selected and

5 dots in the 1llth line when the 5 % 10 dot character font is

selected.

: The character indicated by the cursor blinks when B=1. The blink

is displayed by switching between all blank dots and display

characters at 409.6ms interval when fcp or fosc=250kHz. The cursor

and the blink can be set to display simultaneously.

(The blink frequency changes according to the reciprocal of fep or

250

fosc. 409.6 x 370 =379.2ms when fcp=270kHz.)
IIIII
_\.. (=== —
Cursor e

5% 7 dot character

font

5X 10 dot character Alternating display
font

.(a) Cursor Display Example (b) Blink Display Example
(5) Cursor or Display Shift

RS R DB7

DBo

0 0 0 0

L
o | 1 |ssc|ra x| x | KDon't care

Shifts cursor position or display to the right or left without writing

or reading display data.

for the display.

This function is used to correct or search

In a 2-line display, the cursor moves to the 2nd

line when it passes the 40th digit of the lst line. Notice that the

1st and 2nd line displays
displayed data is shifted
The 2nd line display does

s/C R/L
0 0
0 1
1 o0
3 L |

shifts the cursor
Shifts the cursor
Shifts the entire
display shift.

Shifts the entire

display shift.

will shift at the same time. When the
repeatedly each line only moves horizontally.
not shift into the 1lst line position.

position to the left. (AC is decremented by one.)
position to the right.(AC is incremented by one.)

display to the left. The cursor follows the

display to the right. The cursor follows the

Address counter (AC) contents do not change if the only action performed

is shift display.

HITACHI

27

(6) Function Set

RS RWDBf —————— ——— Db

Code, 0 0 0 0 1| DL| N F| k] %k | * (Don’t Care)

DL : Sets interface data length. Data is sent or received in 8 bit lengths
(DB7%DBg) when DL=1 and in 4 bit lengths (DB7\DB4) when DL=0.

When the 4 bit length is selected, data must be sent or received twice.

N : Sets number of display lines.
F : Sets character font.

(Note) Perform the function at the head of the program before
executing all instructions (except "Busy flag/address
read"). From this point, the function set instruction
cannot be executed unless the interface data length is
changed.

No. of

N F | Display Lines | Character Font|{Duty Factor Remarks
0 0 1 5x7 dots 1/8
01 1 5x10 dots 1/11
1 * 2 5x7 dots 1/16 |Cannot display 2 lines with
5x10 dot character font.
*

(Don't Care)

(7) Set CG RAM Address

RS RWDBy ———————— — DB

Code | 0o]o |y |alalalfa]a]a

+Higher Order Lower Order—
Bits Bits
Sets the CG RAM address into the address counter in binary AAAAAA.
Data is thenwritten or read from the MPU for the CG RAM.

(8) Set DD RAM Address

RS RW DB —— ——————— DBy

0 A A A A A A A
Code 0 !

Highgitgrder Lowggtgrdeg
Sets the DD RAM address into the address counter in binary AAAAAAA.
Data is then written or read from the MPU for the DD RAM.
However, when N=0 (l-line display), AAAAAAA is "00"'4F" (hexadecimal).
When N=1 (2-line display), AAAAAAA is "00"~''27" (hexadecimal) for

the first line, and "40"\"'67" (hexadecimal) for the second line,

28 HITACHI

(9)

(10)

(11)

Read Busy Flag and Address

HS RWDH — ————— Db,
Code 0 1 BF A A A A A A A
Migher Order - Lower Order _,
Bits Bits

Reads the busy flag (BF) that indicates the system is now internally
operating by a previously received instruction. BF=1 indicates that
internal operation is in progress, The next instruction will not be
accepted until BF is set to "0". Check the BF status before the

next write operation.

At the same time, the value of the address counter expressed in binary
AAAAAA is read out. The address counter is used by both CG and DD RAM
addresses, and its value is determined by the previous inmstruction.
Address contents are the same as in Items (7) and (8).

Write Data to CG or DD RAM

RS R DBy ——— — ——— __ . — DHy
Code 1] 0 bl D D 8} D D D 5]
 Higher Order Lower Order
Bits Bits

Writes binary 8 bit data DDDDDDDD to the CG or the DD RAM.

Whether the CG or DD RAM is to be written into is determined by the
previous specification of CG RAM or DD RAM address setting. After
write, the address is automatically incremented or decremented by 1
according to entry mode. The entry mode also determines display shift.

Read Data from CG or DD RAM

RS ®BW DBy ———— ——— _ — DBy
Code 1 1 D D D D D D D D
. Higher Order Lower UTder |
Bits Bits

Reads binary 8 bit data DDDDDDDD from the CG or DD RAM.
The previous designation determines whether the CG or DD RAM is to be

read. Before entering the read instruction, you must execute either

the CG RAM or DD RAM address set instruction. If you don't, the first

read data will be invalidated. When serially executing the "read"

instruction, the next address data is normally read from the second

read. The "address set" instruction need not be executed just before
the "read" instruction when shifting the cursor by cursor shift
instruction (when reading out DD RAM). The cursor shift instruction

operation is the same as that of the DD RAM's address set instruction.

HITACHI

29

After a read, the entry mode automatically increases or decreases the

address by 1. However, display shift is not executed no matter what

~the entry mode is.

(Note) The address counter (AC) is automatiecally incremented or

30 HITACHI

decremented by 1 after "write" instructions to either CG RAM
or DD RAM. RAM data selected by the AC cannot then be read out

n

even if "read" instructions are executed. The conditions for

correct data read out are: execute either the address set
instruction or cursor shift instruction (only with DD RAM),
just before reading out execute the "read" instruction from

the second time the "read" instruction is serial.

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Item Symbol Limit Unit | Note
Power Supply Voltage (1) Voo -0.3 to +7.0 v
Power Supply Voltage (2) V1l to V5 VCC—13.5 to VCC+0.3 v 3
Input Voltage Vg -0.3 to Vcc+0.3 v
Operating Temperature Topr =20 to +75 °c
Storage Temperature Tstg =55 to +125 °C

Note 1: If LSI's are used above absolute maximum ratings, they may be

permanently destroyed.

limits is strongly recommended for normal operation.

Using them within electrical characteristic

Use beyond

these conditions will cause malfunction and poor reliability.

Note 2: All voltage values are referenced to GND=0V.

Note 3: Applies to V1 to V5.

Must maintain VoeaV12V22v3zvaays,

(high «— —1low)

HITACHI 31

5.2 Electrical Characteristics

Vee=5V+10%, Ta=-20 to +75°C

Vee y @=Vee-Vs The conditionsof.Vy, V5 voltages are for proper
®=Vce-V1 operation of the LSI and not forthe LCD output
Vi R ®2L.5V level. The LCD drive voltage condition for the
| ®£0.25x@ LCD output level is specified in "LCD voltage
Vs Vicp'-
Item Symbol Cmg:i:on == Lt‘y“i‘: —— Unig Notg
Input "High" Voltage (1) Vil 2.2 = Vee v (2)
Input "Low" Voltage (1) ViLl -0.3 - 0.6 v (2)
Output "High" Voltage (1)(TTL) | Vpy1 | ~Iong=0.205mA 2.4 = = v (3
OQutput "Low" Voltage (1) (TTL)| Vpri IoL=1.2mA = = 0.4 v (3)
Output "High" Voltage (2)(CMOSY Vou2 | —Ipu=0.04mA 0.9V¢e | - - v (4)
Output "Low" Voltage (2) (CMOS) VgL2 Ig1,=0.04mA - - 0.1Ved v (4)
Driver Voltage Descending (COM) VeoM 1d=0.05mA - - 2.9 v (10)
Driver Voltage Descending (SEG)Y Vggg I1d=0.05mA - = 3.8 vV | (10}
Input Leakage Current I, Vin=0 to Vgg¢ - - 1 pA (5)
Pull up MOS Current -Ip Vee=5V 50 125 250 | pA
Power Supply Current (1) Ceramic filte
Iccl | oscillation - | 0.55] 0.8 | ma (6)
Vee=5V, foge=
250kHz
Power Supply Current (2) Rf oscillatiod
Icc2 | External clocH - 0.35| 0.6 | mA (6)
operation
Vee=3Y, fosc= (11)
f op=270kilz
[Extermal Clock Operation _ _ _ _ _ _ __ _ _ _ _ _ _ o R e o e e
External Clock Frequency r fcp 125 250 350 | kHz (7)
External Clock Duty Duty 45 50 55 % (7}
External Clock Rise Time trep = = 0.2 | us (7)
External Clock Fall Time tfep = = 0.2 | us (7)
Input "High" Voltage (2) Vinz Vee—1.(= Vee v (12}
Input "Low"” Voltage (2) ViLz -0.3 - 1.0 v | (12)
| Internal Clock Operation (Rf oscillation) _ _ _ _ _ =
Clock Oscillation Frequency fosc | REOLkat2% | 190] 270 | 350 [wz] (8)

32

Clock Oscillation Frequency | fose | Ceramic filted 245 | 250 | 255 | kHz| (9)
LCD Voltage VLepi Vee-V 1/5biagd 4.6 e 11 v [(13)
VLeD2 1/4biad 3.0 - 1| v | a3

HITACHI

Note 1:

The following are I/0 terminal configurations ecxept for

liquid crystal display output,

* Input Terminal .

i : E : 2
bpplicable Terminale Applicable Terminals: RS, R/W
(No pull.up MOS) (With pull up MOS)
Vee
PMOS 3__1 PMOS PMOS
O
o
(Pull Up MOS)
NMOS

NMOS

¢+ Qutput Terminal
Applicable Terminals: CL;, CL2, M, D

PMOS

NMOS

« I/0 Terminal

Applicable Terminals: DBp to DB7

Note 2:

Note 3:
Note 4:

Pull Up) Vee

Vee (
Mos (Input Circuit)
HE’]PMOS PMOSS
Vee Enable

|

(Output Circuit)
(Tristate)

Input terminals and I/0 terminals
Excludes oécl terminals.
1/0 terminals.

Qutput terminals.

nos—|——-(C}F— ..

HITACHI

33

Note 5: Current flowing through pull-up M0S's and output drive M0S's is
excluded.

Note 6: Input/Output current is excluded. When input is at the intermediate
level with CMOS, excessive current flows through the input circuit
to the power supply. To avoid this, input level must be fixed at
high or low.

Note 7: External clock operation,

Open 08C:
2:;:: Duty = ?h'[_‘:—,[.l X100%
08V, —
2l b
teen trep

Note 8: Internal oscillator operation using oscillation resistor Rf,

0sG,
R% Rf : 1kt 2 %
08C

Since oscillation frequency varies depending on 0SC; and 0SCj

terminal capacity, wiring length for these terminals should be
minimized.

Note 9: Internal oscillator operation using a ceramic filter.

is used.
Ci
; l_ 0SCy Ceramic filter: CBS250A (Murata)
S Rt Rf: 1IMQ +10%
C1: 680pF+10%
08C,
c, Rd C2: 680pF+10%
\ Rd: 3.3kQ+5%

Ceramic filter

34 HITACHI

ote 10:
N Applies to both VCOM and VSEG voltage drops.

VeoM: From power supply terminal Vee, V1, V4, V5 to each common
signal terminal (COM] to COM1g)

VsEg: From power supply terminal Vgc, V2, V3, V5 to each segment
signal terminal (SEG] to SEG4p)

Note 11: Relation between operation frequency and current consumption

is shown in this diagrom. (VCC = 5V)

1.8
1.6
1.4
Tcez
(mA)
1.2

1.0 / "

08 | //
e
/

0.6 // / typ
0.4 //
0.2 —]
//
0
100 200 300 400 500

fosc or fcp (kHz)

Note‘12: Applied to 0OSC; terminal,.
Note 13: The condition for COM pin voltage drop (VCOM) and SEG pin voltage

drop (V_...).

SEG

HITACHI 35

36

5.3 Timing Characteristics

Write Operation

Ving
Vina
| tan
{ }/Vu.l
PWen tan
ter
E 2(\’111: VIBA'\ /
7| Vit Viw K A Viu
ter [tosw te |
Vim Vim
Valid Data
DBo“"’DBT yILl Vit
llInB
Fig.5-1 Bus Write Operation Sequence
(Writing data from MPU to HD44780)
Read Operation
RS (V:m Vim
K Vi Vi
tan tan
Y
RW 7 Vim Vim
PWya | | tan
1
B c‘hu: Vim /
Vi 7 Vin r ter Vi
ter—] [toor Lown
Vomy Vom
Valid Data
DBo~DB+ Vous 4 Vout
tovop
Fig. 5-2 Bus Read Operation Sequence
(Reading out data from HD44780 to MPU)
HITACHI

Interface Signal with Driver LSI HD44100H

i—gvn

09V,
CL, /}
tewm tewn

tosu
CLaz 098Vcc
01V

tcan
D 0.9 Vi 0.0V ee
01V 01V
teo t
I
M
0.1 Ve
tou

Fig. 5.3 Sending Data to Driver LSI HD44100H

HITACHI 37

5.3.1 Bus Timing C‘haracl:eristics(

Ta = -20 to + 75°C

Write O@peration (Writing data from MPU to HD44780)

VCC = 5.0V + 10%, GND = ov)

Limit :
Item Symbol Test Conditions s e Unit
Enable Cycle Time teycE Fig. 5.1 1000 - ns
llHighll
Enable Pulse Width fawel WEH Fig. 5.1 450 - ns
Enable Rise/Fall Time tge tEE| Fig. 5.1 - 25 | ns
Address Set-up Time Es_é R/W tas Fig. 5.1 140 - ns
Address Hold Time tAH Fig. 5.1 10 - ns
Data Set-up Time tpsw Fig. 5.1 195 - ns
Data Hold Time ty Fig. 5.1 10 - ns
Read Operation (Reading data from HD44780 to MPU)
Item Symbol | Test Conditions Limix Unit
min max
Enable Cycle Time teycE Fig. 5.2 1000 - ns
“Highll

Enable Pulse Width fociol PWpy Fig. 5.2 450 - ns
Enable Rise/Fall Time tEr, tEf Fig. 5.2 - 25 ns
Address Set-up Time Eé R/ tag Fig. 5.2 140 Lo ns
Address Hold Time tar Fig. 5.2 10 - ns
Data Delay Time thoR Fig. 5.2 - 320 ns
Data Hodd Time tDHR Fig. 5.2 20 - ns

38 HITACHI

5.3.2 Interface Signal with HD44100H Timing Characteristics

(vcc = 5.0V + 10%, GND = OV
Ta = -20 to +75°C

Item Symbol |Test Conditions Toat Unit
min max
2 IIHighll
Clock Pulse Width level towH Fig. 5.3 800 - ns
"Hish"
Clock Pulse Width level towL Fig. 5.3 800 = ns
Clock Set-up Time tesu Fig. 5.3 500 - ns
Data Set-up Time tgy Fig. 5.3 300 = ns
Data Hold Time tDH Fig. 5.3 300 - ns
M Delay Time tDH Fig. 5.3 -1000 | 1000 ns
5.4 Power Supply Conditions Using Internal Reset Circuit
Limit
Item Symbol |Test Conditions =Th R Unit
Power Supply Rise Time trec - 0.1 10 ns
Power Supply OFF Time tDFF - 1 - ns

Since the internal reset circuit will not operate normally unless the
preceding conditions are met, initialize by instruction.
(Refer to 3.7.2 "Initializing by Instruction')

02V 08V

stipulates the time of power OFF for power supply instantaneous

Vee

01lms = trcc = 10ms torr = 1mMs

(Note) tOFF

dip or when power supply repeats ON and OFF.

HITACHI 39

EEEFTEEE

&
References

8986/8088 16-Bit Microprocessor Primer;
Christopher L. Morgan & Mitchell Waite;
Intel Corporation

8086/8087/8088 Macro Assembly Language Reference Manual;
Intel Corporation

8088 Assembler Language Programming: The IBM PC;
David C. Willen & Jeffrey I. Krantz; Computer Applications
Unlimited; Howard W. Sams & Company

THE 8@86 BOOK includes the 8@88;
Russell Rector - George Alexy;
OSBORNE/McGraw-Hill

MS-DOS Operating System Macro Assembler Manual;
Microsoft Corporation

Assembly Language Programming for the IBM Personal Computer;
David J. Bradley;
Prentice-Hall, Inc.

Multitech

INDUSTRIAL CORP

OFFICE

15FL, 135 CHIEN KUO N. RDAD. SEC. 2. TAIPE!
10479, TAIWAN, R.O.C.

TEL: (02)505-56533

TELEX: 19162 MULTIC FAX: [02)505-445]
FACTORY/

1 INDUSTRYE, ROAD, WL

HMSINCHU SCIENCE-BASED INDUSTRIAL PARK
HSINCHU, TAIWAN 300, RO.C

DDC.NO.: MB80218605C
il

	Front page
	Table of Contents
	Preface
	Chapter 1 - How to Use Interrupt Subroutines
	Chapter 2 - MPF-I/88 System Reset
	Chapter 3 - I/O Programming

	Chapter 4 - MPF-I/88 Circuit Description
	Chapter 5 - Description of 1/0 Device Drivers
	Appendix A - Introduction to 8088 Assembly Language
	Appendix B - Schematic Diagrams

	Appendix C - Date Sheet of LCD

	Appendix D - References

