OKI semiconductor 02/197 MSM37S64ARS/37S64RS

131,072-BIT DYNAMIC RANDOM ACCESS MEMORY 124K (Harden)

GENERAL DESCRIPTION

The Oki MSM37S64 is a fully decoded dynamic (NMOS) random access memory organized as 131,072 one-bit words using 65,536 bit stacked. The design is optimized for high-speed, high performance applications such as main-frame memory, buffer memory, peripheral storage and environments where low power dissipation and compact layout is required.

Multiplexed row and column address inputs permit the MSM37S64 to be housed in a standard 16 pin DIP.

The MSM37S64 is fabricated using silicon gate NMOS and Oki's advanced Double-Layer Polysilicon process. This process, coupled with single-transistor memory storage cells, permits maximum circuit density and minimum chip size. Dynamic circuitry is employed in the design, including the sense amplifiers.

Clock timing requirements are noncritical, and power supply tolerance is very wide. All inputs and output are TTL compatible.

FEATURES

- 131,072 × 1 RAM, 16 pin package
- Silicon-gate, Double Poly NMOS, single transistor cell
- Row access time: 150 ns max (MSM37S64-15) 200 ns max (MSM37S64-20)
- Cycle time: 270 ns min (MSM37S64-15) 330 ns min (MSM37S64-20)
- Low power: 360 mW active, 55 mW max standby
- Single +5V Supply, ±10% tolerance
- All inputs TTL compatible, low capacitive load

- Three-state TTL compatible output
- "Gated" CAS
- 128 refresh cycles/2 ms
- Common I/O capability using "Early Write" operation
- Output unlatched at cycle end allows extended page boundary and two-dimensional chip select
- Read-Modify-Write, RAS-only refresh, and Page-Mode capability
- On-chip latches for Addresses and Data-in
- On-chip substrate bias generator for high performance

DYNAMIC RAM · MSM37S64ARS/37S64RS

FUNCTIONAL BLOCK DIAGRAM (ONE MODULE)

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (See Note)

(TA = 25°C, unless otherwise noted)

Rating	Symbol	Value	Unit
Voltage on any pin relative to V_{SS}	VIN, VOUT	-1 to +7	v
Voltage on V _{CC} supply relative to V _{SS}	Vcc	-1 to +7	v
Operating temperature	T _{opr}	0 to 70	°C
Storage temperature	T _{stg}	-55 to +150	°C
Power dissipation	PD	2	w
Short circuit output current	l _{os}	50	mA

9

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Referenced to V_{SS})

Parameter	Symbol	Min.	Тур.	Max.	Unit	Operating temperature
	Vcc	4.5	5.0	5.5	V	
Supply Voltage VSS	V _{SS}	0	0	0	V	0°C to +70°C
Input High Voltage, all inputs	VIH	2.4		6.5	v	0 0 0 0 +70 0
Input Low Voltage, all inputs	VIL	-1.0		0.8	v	

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min.	Max.	Unit	Note
Operating Current* – One Module Selected Average power supply current (RAS, CAS cycling; t _{RC} = min.)	ICC1		65	mA	1
Standby Current Power supply current (RAS = CAS = V _{IH})	ICC2		10	mA	10,00000
Refresh Current* – One Module Selected Average power supply current (RAS cycling, CAS = VIH; t _{RC} =min.)	ICC3		45	mA	
Page Mode Current* One Module Selected Average power supply current (RAS = V _{IL} , CAS cycling; t _{PC} =min.)	ICC4		65	mA	1
Refresh Current* - Two Module Selected Average power supply current (RAS cycling, CAS = VIH; t _{RC} = min.)	ICC5		80	mA	
Input Leakage Current Input leakage current, any input ($0V \le V_{IN} \le 5.5V$, all other pins not under test = $0V$)	IL1	-10	10	μΑ	
Output Leakage Current (Data out is disabled, $OV \le V_{OUT} \le 5.5V$)	ΊLO	-10	10	μΑ	
Output Levels Output high voltage $(I_{OH} = -5mA)$ Output low voltage $(I_{OL} = 4.2mA)$	V _{OH} V _{OL}	2.4	0.4	v v	

Note*: I_{CC} is dependent on output loading and cycle rates. Specified values are obtained with the output open.

■ DYNAMIC RAM · MSM37S64ARS/37S64RS ■-

CAPACITANCE

 $(Ta = 25^{\circ}C, f = 1 MHz)$

Parameter	Symbol	Max.	Unit
Input Capacitance ($A_0 \sim A_7$, D_{IN})	C _{IN1}	10	pF
Input Capacitance (RAS1, RAS2)	C _{IN2}	10	pF
Input Capacitance (CAS)	C _{IN3}	15	pF
Input Capacitance (WE)	C _{IN4}	12	pF
Output Capacitance (D _{OUT})	Соит	14	pF

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Note 1, 2, 3

Parameter	Symbol	Units		7S64- 5	MSM37S64- 20		Note
	Cymbol	Units	Min.	Max.	Min.	Max.	Note
Refresh period	tREF	ms		2		2	
Random read or write cycle time	^t RC	ns	270		330		
Read-write cycle time	^t RWC	ns	270		330		
Page mode cycle time	t _{PC}	ns	170	ć	225)	
Access time from RAS	^t RAC	ns		150		200	4,6
Access time from \overline{CAS}	^t CAC	ns		100		135	5,6
Output buffer turn-off delay	toff	ns	о	40	0	50	
Transition time	tŢ	ns	3	35	3	50	
RAS precharge time	t _{RP}	ns	100		120		
RAS pulse width	^t RAS	ns	150	10,000	200	10,000	
RAS hold time	tRSH	ns	100		135		
CAS precharge time	tCP	ns	60		80		
CAS pulse width	tCAS	ns	100	10,000	135	10,000	
CAS hold time	^t CSH	ns	150		200		
RAS to CAS delay time	^t RCD	ns	25	50	30	65	7
CAS to RAS precharge time	tCRP	ns	0		0		
Row Address set-up time	tASR	ns	0		0		

224

This Material Copyrighted By Its Respective Manufacturer

AC CHARACTERISTICS (Continued)

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Units		37S64- 5		37S64- 20	Note
			Min.	Max.	Min.	Max.	Note
Row Address hold time	^t RAH	ns	15		20		
Column Address set-up time	tASC	ns	0		0		
Column Address hold time	^t САН	ns	45		55		
Column Address <u>hold</u> time reference to RAS	tar	ns	95		120		
Read command set-up time	^t RCS	ns	0		0		
Read command hold time	^t RCH	ns	0		0		
Write command set-up time	twcs	ns	-10		-10		8
Write command hold time	twcн	ns	45		55		
Write command hold time referenced to RAS	tWCR	ns	95		120		
Write command pulse width	twp	ns	45		55		
Write command to RAS lead time	tRWL	ns	45		55		
Write command to CAS lead time	tCWL	ns	45		55		
Data-in set-up time	tDS	ns	0		0		
Data-in hold time	^t DH	ns	45		55		
Data-in hold time referenced to RAS	^t DHR	ns	95		120		
CAS to WE delay	tCWD	ns	60		80		8
RAS to WE delay	^t RWD	ns	110		145		8
Read command h <u>old</u> time reference to RAS	^t RRH	ns	20		25		

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Note 1, 2, 3

Parameter	Symbol	Units		7S64A- 15		37S64A- 20	Note
			Min.	Max.	Min.	Max.	
Refresh period	^t REF	ms		2		2	
Random read or write cycle time	^t RC	ns	260		330		
Read-write cycle time	^t RWC	ns	280		345		
Page mode cycle time	^t PC	ns	145		190		
Access time from RAS	^t RAC	ns		150		200	4,6
Access time from CAS	^t CAC	ns		75	•	100	5, 6
Output buffer turn-off delay	^t OFF	ns	0	40	0	50	
Transition time	tT	ns	3	35	3	50	
RAS precharge time	tRP	ns	100		120		
RAS pulse width	^t RAS	ns	150	10,000	200	10,000	
RAS hold time	t _{RSH}	ns	75		100		
CAS precharge time (page mode only)	tCP	ns	60		80		
CAS precharge time	^t CPN	ns	35		45		
CAS pulse width	^t CAS	ns	75	10,000	100	10,000	
CAS hold time	^t CSH	ns	150		200		
RAS to CAS delay time	^t RCD	ns	25	75	30	100	7
CAS to RAS precharge time	^t CRP	ns	0		0		
Row Address set-up time	^t ASR	ns	0		0		
Row Address hold time	^t RAH	ns	15		20		
Column Address-set-up time	tASC	ns	0		0		
Column Address hold time	^t CAH	ns	20		25		
Column Address hold time reference to RAS	tar	ns	95		125		
Read command set-up time	^t RCS	ns	0		0		

226

AC CHARACTERISTICS (Continued)

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Units	MSM37S64A- 15		MSM37S64A- 20		Note
			Min.	Max.	Min.	Max.	
Read command hold time	^t RCH	ns	0		0		
Write command set-up time	twcs	ns	-10		-10		8
Write command hold time	^t WCH	ns	45		55		
Write command hold time referenced to RAS	twcR	ns	120		155		
Write command pulse width	twp	ns	45		55		
Write command to RAS lead time	trwl	ns	45		55		
Write command to CAS lead time	tCWL	ns	45		55		
Data-in set-up time	tDS	ns	0		0		
Data-in hold time	^t DH	ns	45		55		
Data-in hold time referenced to RAS	^t DHR	ns	120		155		
CAS to WE delay	tcwD	ns	45		55		8
RAS to WE delay	tRWD	ns	120		155		8
Read command h <u>old</u> time reference to RAS	tRRH	ns	0		0		

Notes: 1 An initial pause of 100 μs is required after power-up followed by any 8 RAS cycles (Example: RAS only) before proper device operation is achieved.

- 2 AC measurements assume at $t_T = 5$ ns
- 3 V_{IH} (Min.) and V_{IL} (Max.) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} and V_{IL} .

4 Assumes that t_{RCD} < t_{RCD} (Max.) If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.

- 5 Assumes that t_{RCD} < t_{RCD} (Max.).
- 6 Measured with a load circuit equivalent to 2TTL loads and 100 pF.
- 7 Operation within the t_{RCD} (Max.) limit insures that t_{RAC} (Max.) can be met. t_{RCD} (Max.) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (Max.) limit, then access time is controlled exclusively by t_{CAC} .
- 8 t_{WCS}, t_{CWD} and t_{RWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if t_{WCS} \geq t_{WCS} (min.), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if t_{CWD} \geq t_{CWD} (min.) and t_{RWD} > t_{RWD} (min.) the cycle is readwrite cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.

READ CYCLE TIMING

9

228

This Material Copyrighted By Its Respective Manufacturer

WRITE CYCLE TIMING

(EARLY WRITE)

READ-WRITE/READ-MODIFY-WRITE CYCLE

229

•

RAS ONLY REFRESH TIMING

(CAS: VIH, WE & DIN: Don't care)

PAGE MODE READ CYCLE

H

This Material Copyrighted By Its Respective Manufacturer

PAGE MODE WRITE CYCLE

PAGE MODE, READ-MODIFY-WRITE CYCLE

HIDDEN REFRESH

FUNCTIONAL DESCRIPTION

Address Inputs:

A total of sixteen binary input address bits are required to decode any 1 of 65536 storage cell locations within the one module. Eight rowaddress bits are established on the input pins $(A_0 \sim A_7)$ and latched with the Row Address Strobe (RAS). The eight column-address bits are established on the input pins and latched with the Column Address Strobe (CAS). All input addresses must be stable on or before the falling edge of RAS, CAS is internally inhibited (or "gated") by RAS to permit triggering of CAS as soon as the Row Address Hold Time (tRAH) specification has been satisfied and the address inputs have been changed from row-addresses to column-addresses. The top module or bottom module is selected with RAS1 input and RAS2 input.

Write Enable:

The read mode or write mode is selected with the \overline{WE} input. A logic high (1) on \overline{WE} dictates read mode; logic low (0) dictates write mode. Data input is disabled when read mode is selected.

Data Input:

232

Data is written into the MSM37S64 during a write or read-write cycle. The last falling edge of $\overline{\text{WE}}$ or $\overline{\text{CAS}}$ is a strobe for the Data In (D_{IN}) register. In a write cycle, if $\overline{\text{WE}}$ is brought low (write mode) before $\overline{\text{CAS}}$, D_{IN} is strobed by $\overline{\text{CAS}}$, and the set-up and hold times are referenced to

 \overline{CAS} . In a read-write cycle, \overline{WE} will be delayed until \overline{CAS} has made its negative transition. Thus D_{IN} is strobed by \overline{WE} , and set-up and hold times are referenced to \overline{WE} .

Data Output:

The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads. Data-out is the same polarity as data-in. The output is in a high impedance state until \overline{CAS} is brought low. In a read cycle, or read-write cycle, the output is valid after t_{RAC} from transition of \overline{RAS} when t_{RCD} (Max.) is satisfied, or after t_{CAC} from transition of \overline{CAS} when the transition occurs after t_{RCD} (Max.). Data remain valid until \overline{CAS} is returned to a high level. In a write cycle the identical sequence occurs, but data is not valid.

Page Mode:

Page-mode operation permits strobing the row-address into the MSM37S64 while maintaining RAS at a logic low (0) throughout all successive memory operations in which the rowaddress doesn't change. Thus the power dissipated by the negative going edge of RAS is saved. Further, access and cycle times are decreased because the time normally required to strobe a new row-address is eliminated.

Refresh:

Refresh of the dynamic memory cells is accomplished by performing a memory cycle at

J

each of the 128 row-addresses $(A_0 \sim A_0)$ at least every two milliseconds. During refresh, either VIL or VIH is permitted for A7. RAS only refresh avoids any output during refresh because the output buffer is in the high impedance state unless CAS is brought low. Strobing each of 128 row-addresses with RAS will cause all bits in each row to be refreshed. Further RAS-only refresh results in a substantial reduction in power dissipation.

Hidden Refresh:

RAS ONLY REFRESH CYCLE may take place while maintaining valid output data. This feature is referred to as Hidden Refresh.

Hidden Refresh is performed by holding \overline{CAS} as V_{IL} from a previous memory read cycle.