HYB 4116-2, HYB 4116-3 16,384-Bit Dynamic Random Access Memory (RAM)

- Fully decoded, 16,384 X1 bit organization
- Separate data input and output
- All inputs including clocks TTL compatible
- Low power dissipation 462 mW active, 20 mW standby 150 ns access time, 320 ns cycle time (HYB 4116-P2) 200 ns access time, 375 ns cycle time (HYB 4116-P3)

- Three-state output, 2 TTL loads
- Compatible with MK 4116
- 128 refresh cycles
- Data output is unlatched

Pin Names					
AØ – A6	AØ – A6 Address inputs				
CAS	Column address strobe				
DI	Data in				
DO	Data out				
RAS	Row address strobe				
WE	Read/write input				
VBB	Power supply (-5V)				
VCC	Power supply (+5V)				
VDD	Power supply (+12 V)				
VSS	Ground (0 V)				

The HYB 4116 manufactured by Siemens is a dynamic random access memory built in N-channel silicon gate technology, using double layer polysilicon.

The dynamic one-transistor cell ensures high packing density and high speed. Moreover, multiplexing of the address signals permits the use of the space-saving 16-pin dual in-line package.

Siemens Aktiengesellschaft

12.83

Functional Description

Addressing (AØ-A6)

For selecting one of the 16,384 memory cells, a total of 14 address bits is required which is consecutively applied via pins AØ to A6 by means of two strobes (address multiplexing). First the seven row addresses are called up and accepted with strobe RAS into the row select buffer. Following this, the seven column addresses are deposited in the column select buffer with CAS. It should be noted that the address signals are available in their steady-state condition at the time of the negative pulse edge of RAS and CAS, respectively. RAS and CAS determine the starting point of the internal clock control.

RAS initiates row decoding and activates the read amplifier. CAS controls column decoding as well as the data input and output amplifiers.

Read write (WE)

Read and write operations are executed when the write enable signal \overline{WE} is at "H" or "L". Data input DI is disabled as long as reading takes place. The shortest write cycle time is obtained when \overline{WE} goes to logic "L" ahead of or simultaneously with CAS ("early write"). The write data is then accepted into the input data memory by means of CAS.

Delayed writing, read-modify-write

If writing or read-modify-write is delayed, \overline{CAS} is already at logic "L" so that the write data is transferred to the input data memory with the subsequent \overline{WE} signal.

Data input (DI)

Data can be input during a write or a read-modifywrite cycle. The strobe for the data input is the last one of signals \overline{WE} or \overline{CAS} to make its negative transition.

Data output (DO)

The data output may assume three states (Tri-state logic) and is rated for driving two TTL loads. As against the output data the input data is not inverted.

In a read cycle the read data is available after access time *t*CAC referred to \overrightarrow{CAS} . At the end of the read cycle, when \overrightarrow{CAS} is again "H", the data output assumes again the high impedance condition. In the case of read-modify-write the data output contains the data read from the selected cell as in the read cycle. For "early write" the output pin assumes a high impedance troughout the entire cycle.

Refresh cycle

To prevent data in the dynamic memory cells from getting lost, each row address must be called up at least every two milliseconds. A total of 128 refresh cycles must be executed for all row addresses during this 2 millisecond period. During writing or reading the data in the 128 memory cells of a row-line is automatically refreshed.

Precharge cycle

After power is applied to the device, the HYB 4116 requires several cycles before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose.

Absolute Maximum Ratings *)

Operating Temperature Range	0 to 70°C
Storage Temperature Range	−65 to 150 °C
Voltage on any pin relative to VBB	−0.5 to 20 V
Voltage on V_{DD} , V_{CC} supplies relative to V_{SS}	−1 to 15V
$V_{\rm BB} - V_{\rm SS} \left(V_{\rm DD} - V_{\rm SS} \ge 0 \mathrm{V} \right)$	0 V
Power Dissipation	1 W

D.C. Characteristics ¹⁾

 $T_{A} = 0$ to 70 °C; $V_{SS} = 0$ V, $V_{DD} = +12$ V ±10%, $V_{BB} = -5$ V ±10%, $V_{CC} = +5$ V ±10%

Symbol	Parameter	Limit Values		14	Test Canadiai	
		Min.	Max.	Units	Test Conditions	
V _{IH}	High level input voltage, (all inputs except RAS, CAS, WRITE) ²⁾	2.4	7.0		-	
V _{IHC}	High level input voltage (RAS, CAS, WRITE) ²⁾	2.4	7.0	v		
V _{iL}	Low level input voltage 2)	- 1.0	0.8	1		
V _{OH}	Output high voltage	2.4	V _{cc}		$I_0 = -5 \text{mA}$	
VoL	Output low voltage	-	0.4		$I_0 = 4.2 \text{ mA}$	
	Average V _{DD} supply current ³⁾	-	35		-	
I _{DD 2}	Standby V _{DD} supply current	-	1.5	mA	RAS at V _{IH} CAS at V _{IH}	
I _{DD 3}	Average V _{DD} current during refresh ³⁾	-	27		RAS cycling CAS at V _{IH}	
I _{I (L)}	Input leakage current (any input) 4)	- 10	10		-	
I _{O (L)}	Output leakage current	- 10	10	μΑ	$\overline{CAS} \text{ at } V_{\rm IH} \\ V_{\rm O} = V_{\rm SS} \text{ to } V_{\rm CC}$	
/ _{cc}	V _{CC} supply current ⁵⁾	- 10	10		CAS at V _{IH} RAS at V _{IH}	
/ _{BB 1}	Average V _{BB} power supply current	-	200]	_	
I _{BB 2}	Standby V _{BB} power supply current	-	100	1		

*) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.	Units	Test conditions
C ₁₁	Input capacitance ⁶⁾ ($A_{\emptyset} - A_{6}$), DI	-	5		_
C ₁₂	Input capacitance ⁶⁾ RAS, CAS, WRITE	-	10	pF	
Co	Output capacitance 6)	-	7		DO disabled

1) The only requirement for the sequence of applying voltage to the device is that V_{DD} , V_{CC} and V_{SS} should never be 0.3 V more negative than V_{BB} .

- Over- and undershooting on input levels of 6.5 V or −2 V for a period of 30 ns will not influence function and reliability of the device.
- 3) $I_{\rm DD}$ depends on frequency of operation. Maximum current is measured at the fastest cycle rate.
- 4) All device pins at 0 V except V_{BB} at $-5\,V$ and pin under test which is at $+7\,V.$
- 5) V_{CC} is connected to output buffer only.
- 6) Effective capacitance calculated from the equation

$$C = \frac{I \cdot \Delta t}{\Delta V}$$
 with $\Delta V = 3 V$

A.C. Characteristics ¹⁾

 $T_{A} = 0 \text{ to } +70 \text{ }^{\circ}\text{C}; V_{SS} = 0\text{V}; V_{DD} = 12 \text{ V} \pm 10\%; V_{BB} = -5 \text{ V} \pm 10\%; V_{CC} = +5 \text{ V} \pm 10\%$

	Parameter		Limit Values				
Symbol		HYB 4	HYB 4116-P2		HYB 4116-P3		
		Min.	Max.	Min.	Max.		
t _{RC}	Random read or write cycle time ²⁾	320	-	375	-		
t _{RWC}	Read/write cycle time ²⁾	320	-	375	_		
t _{RMWC}	Read/modify/write cycle time 2)	320	-	405	-		
t _{RAC}	Access time from RAS ^{3) 4)}	-	150	-	200		
t _{CAC}	Access time from CAS ^{3) 5)}	-	100	-	135		
t _{OFF}	Output buffer turn-off delay ⁶⁾	-	40	0	50		
t _{RP}	RAS precharge time	100	-	120	-]	
t _{RAS}	RAS pulse width	150	1 0⁴	200	10⁴		
t _{RSH}	RAS hold time	100	-	135	-]	
t _{CSH}	CAS hold time	150	-	200	-	ns	
t _{CAS}	CAS pulse width	100	-	135	-	1	
t _{RCD}	RAS to CAS delay time 7)	20	50	25	65]	
t _{ASR}	Row address set-up time	0	-	0	-]	
t _{RAH}	Row address hold time	20	-	25	-]	
tASC	Column address set-up time	-5	-	-10	-		
t _{CAH}	Column address hold time	45	_	55	-		
t _{AR}	Column address hold time referenced to RAS	95	-	120	-]	
t _T	Transition time (rise and fall)	3	35	3	50]	
t _{RCS}	Read command set-up time (RMW)	0	-	0	-]	
t _{RCH}	Read command hold time	0	-	0	-]	
t _{wch}	Write command hold time	45	-	55	-	1	
t _{wcR}	Write command hold time referenced to RAS	95	-	120	-	1	
twcs	Write command set-up time ⁸⁾	-20	-	-20	-	1	

Symbol	Parameter	Limit Values					
		HYB	4116-P2	HYB 4116-P3		Units	
		Min.	Max.	Min.	Max.		
t _{WP}	Write command pulse width	45	-	55	-		
t _{RWL}	Write command to RAS lead time	50	-	70	-		
t _{CWL}	Write command to CAS lead time	50]-	70	-		
t _{DS}	Data in set-up time	0	-	0	_	ns	
t _{DH}	Data in hold time ⁹⁾	45	-	55	-		
t _{DHR}	Data in hold time ⁹⁾ referenced to RAS	95	-	120	-]	
t _{CRP}	CAS to RAS precharge time	-20	-	-20	-		
t _{RF}	Refresh period	-	2.0	_	2.0	ms	
t _{CWD}	CAS to WE delay ⁸⁾	60	-	95	-	ns	
t _{RWD}	RAS to WE delay ⁸⁾	110	-	160	_		

Notes:

- 1) $V_{\text{IHC}(\text{min})}$ or $V_{\text{IH}(\text{min})}$ and $V_{\text{IL}(\text{min})}$ are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IHC} or V_{IH} and V_{IL} .
- The specifications for t_{RC (min)} and t_{RWC (min)} are used only to indicate cycle time at which proper operation over full temperature range (0 °C ≤ T_A ≤ 70 °C) is assured.
- Measured with a load equivalent to two TTL loads and 100 pF.
- Assumes that t_{RCD} ≤ t_{RCD (max)}. If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- 5) Assumes that $t_{RCD} \ge t_{RCD \text{ (max)}}$.
- 6) t_{OFF (max)} defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 7) Operation within the t_{RCD (max)} limit ensures that t_{RAC (max)} can be met. t_{RCD (max)} is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD (max)} limit, then access time is controlled exclusively by t_{CAC}.

- 8) t_{WCS} , t_{CWD} and t_{RWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If $t_{WCS} \ge t_{CWS(min)}$, the cycle is an early write cycle and the data-out pin will remain open circuit (high impedance) throughout the entire cycle: if $t_{CWD} \ge t_{CWD(min)}$ and $t_{RWD} \ge t_{RWD(min)}$ the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.
- 9) t_{DS} and t_{DH} are referenced to the leading edge of CAS in early write cycles, and to the leading edge of WE in delayed write or read-modify-write cycles.

Siemens Aktiengesellschaft

Waveforms

Siemens Aktiengesellschaft

Package Outline

Ordering Information

Туре	Description	Ordering Code
HYB 4116-P 2	RAM (Plastic; 150 ns)	Q 67100 – Q 308
HYB 4116-P 3	RAM (Plastic; 200 ns)	Q 67100 – Q 306