OCTOBER 1977-REVISED NOVEMBER 1985

- 16,384 X 1 Organization
- 10% Tolerance on All Supplies
- All Inputs Including Clocks TTL Compatible
- Unlatched Three-State Fully TTL-Compatible Output
- Performance Ranges:

	ACCESS TIME ROW ADDRESS (MAX)	ACCESS TIME COLUMN ADDRESS (MAX)	READ OR WRITE CYCLE (MIN)	READ- MODIFY- WRITE [†] CYCLE (MIN)
TMS4116-15	150 ns	100 ns	375 ns	375 ns
TMS4116-20	200 ns	135 ns	375 ns	375 ns
TMS4116-25	250 ns	165 ns	410 ns	515 ns

- Page-Mode Operation for Faster Access Time
- Common I/O Capability with Early Write Feature
- Low-Power Dissipation
 - Operating . . . 462 mW (Max)
 - Standby . . . 20 mW (Max)
- 1-T Cell Design, N-Channel Silicon-Gate Technology
- 16-Pin 300-Mil (7,62-mm) Package Configuration

description

The TMS4116 series is composed of monolithic high-speed dynamic 16,384-bit MOS random-access memories organized as 16,384 one-bit words, and employs single-transistor storage cells and N-channel silicon-gate technology.

All inputs and outputs are compatible with Series 74 TTL circuits including clocks: Row-Address Strobe \overline{RAS} (or \overline{R}) and Column-Address Strobe \overline{CAS} (or \overline{C}). All address lines (A0 through A6) and data in (D) are latched on chip to simplify system design. Data out (Q) is unlatched to allow greater system flexibility.

Typical power dissipation is less than 350 milliwatts active and 6 milliwatts during standby (VCC is not required during standby operation). To retain data, only 10 milliwatts average power is required which includes the power consumed to refresh the contents of the memory.

The TMS4116 series is offered in a 16-pin dual-in-line plastic (N suffix) package and is guaranteed for operation from 0°C to 70°C. The package is designed for insertion in mounting-hole rows on 7,62-mm (300-mil) centers.

operation

address (A0-A6)

Fourteen address bits are required to decode 1 of 16,384 storage cell locations. Seven row-address bits are set up on pins A0 through A6 and latched onto the chip by the row-address strobe (RAS). Then the

[†]The term "read-write cycle" is sometimes used as an alternative to "read-modify-write cycle."

	_		
		CKAGE VIEW)	
VBB D W RAS A0 A1 VDD	1 2 3 4 5 6 7 8	16 15 14 13 12 11 10 9	V <u>SS</u> CAS Q A6 A3 A3 A5 VCC

PIN	PIN NOMENCLATURE							
A0-A6	Addresses							
CAS	Column-Address Strobe							
D	Data Input							
a	Data Output							
RAS	Row-Address Strobe							
VBB	- 5-V Power Supply							
Vcc	5-V Power Supply							
VDD	12-V Power Supply							
Vss	Ground							
₩	Write Enable							

4

seven column-address bits are set up on pins A0 through A6 and latched onto the chip by the columnaddress strobe (\overline{CAS}). All addresses must be stable on or before the falling edges of \overline{RAS} and \overline{CAS} . \overline{RAS} is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. \overline{CAS} is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data in (D)

Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of CAS or \overline{W} strobes data into the on-chip data latch. This latch can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overline{W} is brought low prior to CAS and the data is strobed in by CAS with setup and hold times referenced to this signal. In a delayed-write or read-modify-write cycle, CAS will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal.

data out (Q)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle, the output goes active after the enable time interval $t_{a(C)}$ that begins with the negative transition of CAS as long as $t_{a(R)}$ is satisfied. The output becomes valid after the access time has elapsed and remains valid while CAS is low; CAS going high returns it to a high-impedance state. In an early write cycle, the output is always in the high-impedance state. In a delayed-write or read-modify-write cycle, the output will follow the sequence for the read cycle.

refresh

A refresh operation must be performed at least every two milliseconds to retain data. Since the output buffer is in the high-impedance state unless CAS is applied, the RAS-only refresh sequence avoids any output during refresh. Strobing each of the 128 row addresses (A0 through A6) with RAS causes all bits in each row to be refreshed. CAS remains high (inactive) for this refresh sequence, thus conserving power.

page mode

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing successive column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses on the same page is eliminated. To extend beyond the 128 column locations on a single RAM, the row address and RAS is applied to multiple 16K RAMs; CAS is decoded to select the proper RAM.

power up

VBB must be applied to the device either before or at the same time as the other supplies and removed last. Failure to observe this precaution will cause dissipation in excess of the absolute maximum ratings due to internal forward bias conditions. This also applies to system use, where failure of the VBB supply must immediately shut down the other supplies. After power up, eight RAS cycles must be performed to achieve proper device operation.

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Voltage on any pin (see Note 1)	-0.5 V to 20 V
Voltage on VCC, VDD supplies with respect to VSS	1 V to 15 V
Short circuit output current	50 mA
Power dissipation	1 W
Operating free-air temperature range	. 0°C to 70°C
Storage temperature range	-65°C to 150°C

[†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the most-negative supply voltage, VBB (substrate), unless otherwise noted. Throughout the remainder of this data sheet, voltage values are with respect to VSS.

Dynamic RAMs

4

recommended operating conditions

			MiN	NOM	MAX	UNIT
VBB	Supply voltage		~4.5	~5	-5.5	V
Vcc	Supply voltage		4.5	5	5.5	V
Vpp	Supply voltage		10.8	12	13.2	V
Vss	Supply voltage			0		V
VIH	High-level input voltage	All inputs except RAS, CAS, WRITE	2.4	2.4	7	v
•IH	rightever input voltage	RAS, CAS, WRITE	2.7		7	
VIL	Low-level input voltage (see Not	e 2)	-1	0	0.8	V
TA	Operating free-air temperature		0		70	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as maximum, is used in this data sheet for logic voltage only.

	Characteristics over the	TEST CONDITIONS	MIN	TYP	MAX	UNI
	PARAMETER	IOH = -5 mA	2.4			V
<u>∨он</u>	High-level output voltage	IOL = 4.2 mA			0.4	V
VOL	Low-level output voltage	$V_{I} = 0 V $ to 7 V,			10	μΑ
I	Input current (leakage)	All other pins = 0 V except $V_{BB} = -5 V$	_+			
		$V_0 = 0$ to 5.5 V,			± 10	μ
0	Output current (leakage)	CAS high		50	200	μ
BB1	Average operating current				4§	- m
CC1 [‡]	during read or write cycle	Minimum cycle time		27	35	n
DD1				10	100	<i>µ</i>
BB2		After 1 memory cycle	1		±10	•
CC2	Standby current	RAS and CAS high		0.5	1.5	<u>_</u>
DD2		Minimum cycle time		50	200	
BB3		RAS cycling,			±10	
ICC3	Average refresh current			20	27	r
1DD3		CAS high		50	200	
IBB4		Minimum cycle time			4 §	1
ICC4‡	Average page-mode current	RAS low, CAS cycling		20	27	
DD4						

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

[†] All typical values are at $T_A = 25^{\circ}C$ and nominal supply voltages. [‡] V_{CC} is applied only to the output buffer, so I_{CC} depends on output loading.

§ Output loading two standard TTL loads.

citance over recommended supply voltage range and operating free-air temperature range, f = 1 MHz

apacitano	ce over recommended suppry terrage and	TYPT	MAX	UNIT
	PARAMETER	4	5	pF
Ci(A)	Input capacitance, address inputs	4	5	
C _{i(D)}	Input capacitance, data input	8	10	pF
Ci(RC)	Input capacitance, strobe inputs	 8	10	pF
Ci(W)	Input capacitance, write enable input	 5	7	pF
Co	Output capacitance	 		<u> </u>

switching characteristics over recommended supply voltage range and operating free air temperature range

		······	ALT.	TMS4116-15		TMS4116-20 TMS4116-25		15 TMS4116-20		116-25	UNIT
	PARAMETER	TEST CONDITIONS	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX		
t _a (C)	Access time from CAS	C _L = 100 pF, Load = 2 Series 74 TTL gates	^t CAC		100		135		165	ns	
t _{a(R)}	Access time from RAS	$t_{RLCL} = MAX,$ $C_{L} = 100 \text{ pF},$ $Load = 2 \text{ Series},$ 74 TTL gates	¹ RAC		150		200		250	ns	
^t dis(CH)	Output disable time after CAS high	C _L = 100 pF, Load = 2 Series 74 TTL gates	tOFF	0	40	0	50	0	60	ns	

[†] All typical values are at $T_A = 25^{\circ}C$ and nominal supply voltages.

		ALT.	TMS	4116-15	TMS4116-20		TMS4116-25		
		SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _{c(P)}	Page-mode cycle time	tPC	170		225		275		ns
^t c(rd)	Read cycle time	tRC	375		375		410		ns
^t c(W)	Write cycle time	twc	375		375		410		ns
t _{c(rdW)}	Read-modify-write cycle time	^t RWC	375		375		515		ns
tw(CH)	Pulse duration, CAS high (precharge time)	tCP	60		80		100		ns
tw(CL)	Pulse duration, CAS low	^t CAS	100	10,000	135	10,000	165	10,000	ns
tw(RH)	Pulse duration, RAS high (precharge time)	tRP	100		120		150		ns
tw(RL)	Pulse duration, RAS low	tRAS	150	10,000	200	10,000	250	10,000	ns
tw(W)	Write pulse duration	twp	45		55		75		ns
tt	Transition times (rise and fall) for RAS and CAS	tŢ	3	35	3	50	3	50	ns
t _{su(CA)}	Column-address setup time	tASC	-10		-10		-10		ns
t _{su(RA)}	Row-address setup time	^t ASR	0		0		0		ns
t _{su(D)}	Data setup time	tDS	0		0		0	_	ns
tsu(rd)	Read-command setup time	tRCS	0		0		0		ns
t _{su} (WCH)	Write-command setup time before CAS high	^t CWL	60		80		100		ns
t _{su} (WRH)	Write-command setup time before RAS high	tRWL	60		80		100		ns
[†] h(CLCA)	Column-address hold time after CAS low	tCAH	45		55		75		ns
th(RA)	Row-address hold time	tRAH	20		25		35		ns
th(RLCA)	Column-address hold time after RAS low	tar	95		120		160		ns
th(CLD)	Data hold time after CAS low	^t DHC	45		55		75	· · · · ·	ns
th(RLD)	Data hold time after RAS low	^t DHR	95		120		160		ns
th(WLD)	Data hold time after $\overline{\mathbf{W}}$ low	^t DHW	45		55		75		ns
^t h(rd)	Read-command hold time	^t RCH	0		0		0		ns
^t h(CLW)	Write-command hold time after CAS low	twch	45		55	_	75		ns
^t h(RLW)	Write-command hold time after RAS low	tWCR	95		120		160		ns
TRLCH	Delay time, RAS low to CAS high	^t CSH	150		200		250		ns
^t CHRL	Delay time, CAS high to RAS low	^t CRP	-20		-20		-20		ns
tCLRH	Delay time, CAS low to RAS high	tRSH	100		135		165		ns
tCLWL	Delay time, CAS low to W low (read-modify-write-cycle only)	tCWD	70		95		125		ns
^t RLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	^t RCD	20	50	25	65	35	85	ns
^t RLWL	Delay time, RAS low to W low (read-modify-write-cycle only)	tRWD	120		160		200		ns
		1	· · · ·		1		T		

timing requirements over recommended supply voltage range and operating free-air temperature range

twcs

TREF

-20

~20

2

-20

2

ns

2 ms

Dynamic RAMs

tWLCL

trf

Delay time, W low to CAS low

(early write cycle)

Refresh time interval

read cycle timing

early write cycle timing

write cycle timing

[†] The enable time (t_{en}) for a write cycle is equal in duration to the access time from \overline{CAS} (t_{a(C)}) in a read cycle; but the same active levels at the output are invalid.

read-write/read-modify-write cycle timing

page-mode read cycle timing

page-mode write cycle timing

4

Dynamic RAMs

