NEC Microcomputers, Inc.

16384 x 1 BIT DYNAMIC MOS RANDOM ACCESS MEMORY

DESCRIPTION

The NEC μ PD416 is a 16384 words by 1 bit Dynamic MOS RAM. It is designed for memory applications where very low cost and large bit storage are important design objectives.

The μ PD416 is fabricated using a double-poly-layer N channel silicon gate process which affords high storage cell density and high performance. The use of dynamic circuitry throughout, including the sense amplifiers, assures minimal power dissipation.

Multiplexed address inputs permit the μ PD416 to be packaged in the standard 16 pin dual-in-line package. The 16 pin package provides the highest system bit densities and is available in either ceramic or plastic. Noncritical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

FEATURES

- 16384 Words x 1 Bit Organization
- High Memory Density 16 Pin Ceramic and Plastic Packages
- Multiplexed Address Inputs
- Standard Power Supplies +12V, -5V, +5V
- Low Power Dissipation; 462 mW Active (MAX), 40 mW Standby (MAX)
- Output Data Controlled by CAS and Unlatched at End of Cycle
- Read-Modify-Write, RAS-only Refresh, and Page Mode Capability
- All Inputs TTL Compatible, and Low Capacitance
- 128 Refresh Cycles
- 5 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE
μPD416	300 ns	510 ns	575 ns
μPD416-1	250 nš 👾	410 ns	465 ns
 μPD416-2	200 ns	375 ns	375 ns
μPD416-3	150 ns	375 ns	375 ns
µPD416-5	120 ns	320 ns	320 ns

PIN CONFIGURATION

VBB	ď		16	b ∨ss
DIN	d :	2	15	CAS
WRITE	d	3	14	
RAS	d'	⁴ μ₽D	13	□ ^6
A ₀	d	5 416	12	A 3
A ₂	d.	3	11	
A1		7	10	A 5
VDD	ď	3	9	□ vcc

Address Inputs
Column Address Strobe
Data In
Data Out
Row Address Strobe
Read/Write
Power (-5V)
Power (+5V)
Power (+12V)
Ground

BLOCK DIAGRAM

(2) Relative to VSS

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $T_{a} = 25^{\circ}C$

 $T_a = 0^{\circ}C$ to $70^{\circ}C$, $V_{DD} = +12V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{CC} = +5V \pm 10\%$, $V_{SS} = 0V$

PARAMETER	SYMBOL		LIMITS		UNIT	TEST
TANAMETEN	OTINDOL	MIN	TYP	MAX	UNIT	CONDITIONS
Input Capacitance (A ₀ -A ₆), D _{IN}	CI1		4	5	рF	
Input Capacitance RAS, CAS, WRITE	CI2		8	10	рF	
Output Capacitance (DOUT)	C ₀		5	7	pF	

CAPACITANCE

μPD416

DC CHARACTERISTICS

٠

 $T_{-} = 0^{\circ}C t_{0} + 70^{\circ}C(1)$ Vpp = +12V + 10% Vcc = +5V + 10% Vpp = -5V + 10% Vcc = 0V

la-0C	to +/0 C(), VD	$D = +12V \pm$	10%, V _{CC}	= +5V ±	10%, VB	B = -5V	± 10%, V _{SS} = 0V
				LIMITS			TEST
	RAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Supply \		VDD	10.8	12.0	13.2	V	2
Supply \		Vcc	4.5	5.0	5.5	V	23
Supply \	-	VSS	0	0	0	v	2
Supply \		VBB	- 4.5	-5.0	-5.5	V	2
	gh (Logic 1) RAS, CAS,	VIHC	2.7		7.0	v	2
Voltage,	gh (Logic 1) all inputs IAS, CAS	VIH	2.4		7.0	v	0
	ow (Logic O) all inputs	VIL	- 1.0		0.8	v	2
Operatin	g V _{DD} Current	IDD1			35	mA	RAS, CAS cycling; tRC = tRC Min. (4)
	V _{DD} Current	1002	ļ		1.5	mA	RAS = VIHC, DOUT = High Impedance
VDD	All Speeds except µPD416-5	IDD3			25	mA	RAS cycling, CAS = VIHC; tRC = 375 ns ④
Current	μPD416-5	1DD3			27	mA	
Page Mor Current	de V _{DD}	¹ DD4			27	mA	RAS = V _{IL} , CAS cycling; tpc = 225 ns ④
Operatin Current	a ∧ ^{CC}	^I CC1				μA	RAS, CAS cycling, t _{RC} = 375 ns (5)
Standby	V _{CC} Current	ICC2	- 10		10	μA	RAS = V _{IHC} , DOUT = High Impedance
Refresh	V _{CC} Current	'ссз	10		10	μA	RAS cycling, CAS - VIHC, tRC - 375 ns
Page Mor Current	de VCC	ICC4				μΑ	RAS - VIL, CAS cycling, tPC 225 ns (5)
Operatin Current	g ∨ _{BB}	I _{BB1}			200	μA	RAS, CAS cycling, tRC 375 ns
Standby Current	∨ _{BB}	^I BB2			100	μA	RAS = V _{IHC} , DOUT High Impedance
Refresh Current	V _{BB}	ввз			200	μA	RAS cycling, CAS = VIHC, tRC = 375 ns
Page Mod Current	de V _{BB}	I _{BB4}			200	μΑ	RAS = V _{IL} , CAS cycling; tp _C = 225 ns
Input Le (any inpi		Ч(L)	-10		10	μA	$V_{BB} = -5V, 0V \le V_{1N} \le +7V,$ all other pins not under test = 0V
Output L	_eakage	¹ 0(L)	-10		10	μA	D _{OUT} is disabled, 0V ≤ V _{OUT} ≤ +5.5V
Output H (Logic 1)	High Voltage)	v _{oн}	2.4			v	1 _{OUT} = -5 mA ③
Output L (Logic 0)	∟ow Voltage)	VOL			0.4	v	I _{OUT} = 4.2 mA

Notes: ① T_a is specified here for operation at frequencies to t_{EC} > t_{EC} (min). Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, however, provided AC operating parameters are met. See Figure 1 for derating curve.
② All voltages referenced to VSS.
③ Ourput voltage will swing from VSS to V_{CC} when activated with no current loading. For purposes of maintaining data in standby mode, V_{CC} may be reduced to V_{SS} without affecting refersh operations or data retention. However, the V_{OH} (min) specification is not guaranteed in this mode.

(b) [DD1, IDD3, and IDD4 depend on cycle rate. See Figures 2, 3 and 4 for IDD limits at other cycle rates.
 (c) Ind ICC4 depend upon output loading. During readout of high level data VCC is connected through a low impedance (135Ω typ) to data out. At all other times ICC consists of leakage currents only.

μPD416

AC CHARACTERISTICS

							MITS						
			D416	_	9416-1		416-2		0416-3		416-5		TEST
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
Random read or write cycle time	^t RC	510		410		375		320		320		ns	3
Read-write cycle time	IRWC	575		465		375		375		320		ns	3
Page mode cycle time	1PC	330		275		225		170		160		ns	
Access time from RAS	^t RAC		300		250		200		150		120	ns	46
Access time from CAS	1CAC		200		165		135		100		80	ns	56
Output buffer turn-off delay	^t OFF	0	80	0	60	0	50	0	40	0	35	ns	0
Transition time (rise and fall)	۲T	3	50	3	50	3	50	3	35	3	35	ns	0
RAS precharge time	^t RP	200		150		120		100		100		ns	
RAS pulse width	^t RAS	300	10,000	250	10,000	200	32,000	150	32,000	120	10,000	ns	
RAS hold time	^t RSH	200		165		135		100		80		ns	
CAS pulse width	1CAS	200	10,000	165	10,000	135	10,000	100	10,000	80	10,000	ns	
RAS to CAS delay time	¹ RCD	40	100	35	85	25	65	20	50	15	40	ns	8
CAS to RAS precharge time	¹ CRP	- 20		-20		- 20		-20		0		ns	
Row address set-up time	tASR	0		0		0		0		0		ns	
Row address hold time	^t RAH	40		35		25		20		15		ns	
Column address set-up time	*ASC	-10		-10		-10		-10		-10		ns	
Column address hold time	^t CAH	90		75		55		45		40		ns	
Column address hold time referenced to RAS	^t AR	190		160		120		95		80		ns	
Read command set-up time	^t RCS	0		0		0		o		0		ns	
Read command hold time	^t RCH	0		0		0		0		0		ns	
Write command hold time	twcн	90		75		55		45		40		ns	
Write command hold time referenced to RAS	^t WCR	190		160		120		95		80		ns	
Write command pulse width	twp	90		75		55		45		40		ns	
Write command to RAS lead time	^t RWL	120		85		70		50		50		ns	
Write command to CAS lead time	⁺CWL	120		85		70		50		50		ns	
Data-in set-up time	tDS	0		0		0		0		0		ns	9
Data-in hold time	₹рн	90		75		55		45		40		ns	9
Data-in hold time referenced to RAS	^t DHR	190		160		120		95		80		ns	
CAS precharge time (for page mode cycle only)	ţĊħ	120		100		80		60		60		ns	
Refresh period	TREF		2		2		2		2		2	ms	
WRITE command set-up time	twcs	-20		- 20		· 20		- 20		0		ns	10
CAS to WRITE delay	tCWD	140		125		95		70		80		ns	10
RAS to WRITE delay	^t RWD	240		200		160		120		120		ns	10

 $T_a = 0^{\circ}C$ to +70°C, $V_{DD} = +12V \pm 10\%$, $V_{CC} = +5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$

1 AC measurements assume t_T = 5 ns. Notes:

(3) VIHC (min) or VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Also, transition times are measured between VIHC or VIH and VIL (3) The specifications for tRC (min) and tRWC (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C < T_a < 70°C) is assured.

 r_{a} assume that $r_{RCD} \leq r_{RCD}$ (max). If r_{RCD} is greater than the maximum recommended value shown in this table, r_{RAC} will increase by the amount that r_{RCD} = exceeds the values shown.

6 Assumes that tRCD > tRCD (max).
 6 Measured with a load equivalent to 2 TTL loads and 100 pF.

(6) Measured with a load equivalent to 2 TTL loads and 100 pF.
 (7) tope (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
 (8) Operation within the tRCD (max) limit ensures that tRAC (max) can be met, tRCD (max) is specified as a reference point only, if tRCD is greater than the specified tract tract metal tract metal exclusively by togc.
 (9) These parameters are referenced to CASE leading edge in adlayed write or read-modify-write cycles.
 (9) These parameters are referenced to CASE leading edge in delayed write or read-modify-write cycles.
 (9) These parameters are referenced to CASE leading edge in delayed by the cycle sis and the data out the data solution of the data solution write cycle as a reference to the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.

μ PD416

DERATING CURVES

FIGURE 1

Maximum ambient temperature versus cycle rate for extended frequency operation. T_a (max) for operation at cycling rates greater than 2.66 MHz (t_{CYC} < 375 ns) is determined by T_a (max) [°C] = 70 - 9.0 x (cycle rate [MHz] -2.66). For μ PD416-5, it is T_a (max) [°C] = 70 - 9.0 (cycle rate [MHz] - 3.125).

Maximum I_{DD1} versus cycle rate for device operation at extended frequencies.

Maximum I_{DD3} versus cycle rate for device operation at extended frequencies.

μ PD416

32

"RAS-ONLY" REFRESH CYCLE

TIMING WAVEFORMS (CONT.)

Note CAS · VIHC, WRITE = Don't Care

3

PAGE MODE WRITE CYCLE

μPD416

The 14 address bits required to decode 1 of 16,384 bit locations are multiplexed onto the 7 address pins and then latched on the chip with the use of the Row Address Strobe (\overline{RAS}), and the Column Address Strobe (\overline{CAS}). The 7 bit row address is first applied and \overline{RAS} is then brought low. After the \overline{RAS} hold time has elapsed, the 7 bit column address is applied and \overline{CAS} is brought low. Since the column address is not needed internally until a time of t_{CRD} MAX after the row address, this multiplexing operation imposes no penalty on access time as long as \overline{CAS} is applied no later than t_{CRD} MAX. If this time is exceeded, access time will be defined from \overline{CAS} instead of \overline{RAS} .

For a write operation, the input data is latched on the chip by the negative going edge of \overrightarrow{WRITE} or \overrightarrow{CAS} , whichever occurs later. If \overrightarrow{WRITE} is active before \overrightarrow{CAS} , this is an "early WRITE" cycle and data out will remain in the high impedance state throughout the cycle. For a READ, WRITE, OR READ-MODIFY-WRITE cycle, the data output will contain the data in the selected cell after the access time. Data out will assume the high impedance state anytime that \overrightarrow{CAS} goes high.

The page mode feature allows the μ PD416 to be read or written at multiple column addresses for the same row address. This is accomplished by maintaining a low on \overline{RAS} and strobing the new column addresses with \overline{CAS} . This eliminates the setup and hold times for the row address resulting in faster operation.

Refresh of the memory matrix is accomplished by performing a memory cycle at each of the 128 row addresses every 2 milliseconds or less. Because data out is not latched, "RAS only" cycles can be used for simple refreshing operation.

Either \overrightarrow{RAS} and/or \overrightarrow{CAS} can be decoded for chip select function. Unselected chip outputs will remain in the high impedance state.

In order to assure long term reliability, V_{BB} should be applied first during power up and removed last during power down.

ADDRESSING

DATA I/O

PAGE MODE

REFRESH

CHIP SELECTION

POWER SEQUENCING

μ PD416

(Plastic)

ITEM	MILLIMETERS	INCHES
Α	19.4 MAX.	0.76 MAX.
в	0.81	0.03
С	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	2.54 MIN.	0.10 MIN.
н	0.5 MIN.	0.02 MIN.
I	4.05 MAX.	0.16 MAX.
J	4.55 MAX.	0.18 MAX.
к	7.62	0.30
L	6.4	0.25
м	0.25 ^{+0.10} -0.05	0.01

μPD416D

C			

ITEM	MILLIMETERS	INCHES
A	20.5 MAX.	0.81 MAX
8	1.36	0.05
с	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	3.5 MIN.	0.14 MIN.
н	0.5 MIN.	0.02 MIN.
I	4.6 MAX.	0.18 MAX.
J.	5.1 MAX.	0.20 MAX.
к	7.6	0.30
L	7.3	0.29
м	0.27	0.01