

MT1259

DRAM

256K x 1 DRAM

FEATURES

- Industry standard pinout, timing and functions
- All inputs, outputs, and clocks are fully TTL compatible
- Single +5V±10% power supply
- Low power, 15mW standby; 150mW active, typical
 Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and
- HIDDEN
- 256-cycle refresh in 4ms
- Optional PAGE MODE access cycle

OPTIONS	MARKING
Timing	
100ns access	-10
120ns access	-12
150ns access	-15
 Packages 	
Plastic DIP	None
Ceramic DIP	С
Plastic ZIP	Z
PLCC	EJ

GENERAL DESCRIPTION

The MT1259 is a randomly accessed solid-state memory containing 262,144 bits organized in a x1 configuration. The 18 address bits are entered 9 bits at a time using RAS to latch the first 9 bits and CAS the latter 9 bits. If the WE pin goes LOW prior to CAS going LOW, the output pin remains open until the next CAS cycle. If WE goes LOW after data reaches the output pin, the output pin is activated and retains the selected cell data as long as CAS remains LOW (regardless of WE or RAS). This late WE pulse results in a READ-MODIFY-WRITE cycle. Data-in (D) is latched when WE strobes LOW.

By holding \overline{RAS} LOW, \overline{CAS} may be toggled to execute several faster READ, WRITE, LATE-WRITE or READ-MODIFY-WRITE cycles within the \overline{RAS} address defined page boundary. Returning \overline{RAS} HIGH terminates the memory

*Address not used for RAS-ONLY refresh

cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing a RAS (refresh) cycle so that all 256 combinations of RAS addresses are executed at least every 4ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity.

MT1259 REV. 1/91

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

Function	545	-		Addr	esses	
Function	RAS	CAS	WE	^t R	ťC	
Standby	н	x	x	х	x	High Impedance
READ	L	L	н	ROW	COL	Data Out
WRITE (EARLY-WRITE)	L	L	L	ROW	COL	Data In
READ-WRITE	L	L	H→L→H	ROW	COL	Valid Data Out, Valid Data In
PAGE-MODE READ	L	H→L→H	н	ROW	COL	Valid Data Out, Valid Data Out
PAGE-MODE WRITE	L	H→L→H	L	ROW	COL	Valid Data In, Valid Data In
PAGE-MODE READ-WRITE	L	H→L→H	H→L→H	ROW	COL	Valid Data Out, Valid Data In
RAS-ONLY REFRESH	L	Н	x	ROW	n/a	High Impedance
HIDDEN REFRESH	L→H→L	L	Н	ROW	COL	Valid Data Out
CAS-BEFORE- RAS REFRESH	H→L	L	x	x	х	High Impedance

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to +7.0V
Operating Temperature, TA(Ambient)
Storage Temperature (Ceramic)65°C to +150°C
Storage Temperature (Plastic)
Power Dissipation1W
Short Circuit Output Current

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 2, 3, 4, 6) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 5.0V ±10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	
Input High (Logic 1) Voltage, All Inputs	Viн	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	V	1
INPUT LEAKAGE Input leakage current, any input ($0V \le V \le V \le Cc$), all other pins not under test = $0V$	h	-10	10	μΑ	
OUTPUT LEAKAGE Output leakage current (Q is disabled, 0V ≤ Vout ≤ Vcc)	loz	-10	10	μA	
OUTPUT LEVELS	Vон	2.4		V	
Output High (Logic 1) Voltage (Ιουτ = -5mA) Output Low (Logic 0) Voltage (Ιουτ = 5mA)	Vol		0.4	v	

		MAX]	
PARAMETER/CONDITION	SYMBOL	-10	-12	-15	UNITS	NOTES
STANDBY CURRENT: TTL input levels $(RAS = CAS = V_{H} after 8 RAS cycles)$	ICC1	5	5	5	mA	
$\begin{array}{l} \textbf{OPERATING CURRENT: Random READ/WRITE} \\ \hline (RAS and CAS = Cycling; {}^{t}RC = {}^{t}RC (MIN)) \end{array}$	Icc2	55	55	45	mA	2
OPERATING CURRENT: PAGE MODE (RAS = VIL; CAS = Cycling: ^t PC = ^t PC (MIN))	Іссз	55	55	45	mA	2
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = VIH; ^t RC = ^t RC (MIN))	ICC4	40	40	35	mA	2
REFRESH CURRENT: \overrightarrow{CAS} -BEFORE- \overrightarrow{RAS} (\overrightarrow{RAS} and \overrightarrow{CAS} = Cycling; ${}^{t}RC$ = ${}^{t}RC$ (MIN))	Icc5	55	55	45	mA	2, 20

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8, D	Ci1		5	рF	18
Input Capacitance: RAS, CAS, WE	Cı2		8	pF	18
Output Capacitance: Q	Co		7	pF	18

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 3, 4, 5, 10, 11, 17, 18) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			10	-12		-15			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	190		220		260		ns	6,7
READ-MODIFY-WRITE cycle time	^t RWC	220		255		295	1	ns	<u> </u>
PAGE-MODE cycle time	^t PC	90		100		120		ns	6,7
Access time from RAS	^t RAC		100		120		150	ns	7,8
Access time from CAS	^t CAC		50		60		75	ns	7,9
RAS pulse width	^t RAS	100	10,000	120	10,000	150	10,000	ns	1
RAS hold time	^t RSH	50	1	60		75	1	ns	
RAS precharge time	tRP	80		90		100		ns	
CAS pulse width	^t CAS	50	10,000	60	10,000	75	10,000	ns	
CAS hold time	^t CSH	100		120		150		ns	_
CAS precharge time	^t CPN	25		25		30		ns	19
CAS precharge time (PAGE MODE)	^t CP	30		30		35		ns	
RAS to CAS delay time	tRCD	25	50	25	60	25	75	ns	13
CAS to RAS setup time	^t CRP	15		20		20		ns	<u> </u>
Row address setup time	^t ASR	0	T	0		0	1	ns	
Row address hold time	^t RAH	15		15		15		ns	
Column address setup time	^t ASC	0		0		0		ns	
Column address hold time	^t CAH	20		20		25		ns	
Column address hold time referenced to RAS	tAR	70		80		100		ns	
READ command setup time	^t RCS	0		0		0			
READ command hold time	^t RCH	0		0	+	0		ns	4.4
referenced to CAS	non			U		U		ns	14
READ command hold time	^t RRH	0		0		0			
referenced to RAS		ľ		0		0		ns	
Output buffer turn-off delay	^t OFF	+ ₀ .	30	0	30	0	35		
WE command setup time	twcs	0	- 30 -	0	- 30	0	35	ns	12
WRITE command hold time		35		40	┼─── ┤	45		ns	1
WRITE command hold time		85		100	<u>}</u>	120		ns	
referenced to RAS	won .	- 55		100		120		ns	
WRITE command pulse width	tWP	35	+ +	40	<u> </u>	45			
WRITE command to RAS lead time	tRWL	35		40		45		ns	
WRITE command to CAS lead time	¹ CWL	35		40		45	ł ł	_ns ns	
Data-in setup time		0		0		-43		_	15
Data-in hold time		35	-	40		45		ns	
Data-in hold time		85		100		120		ns	15
referenced to RAS		0.0		100		120		ns	
CAS to WE delay	tCWD	40		50	<u>├</u>	60			16
RAS to WE delay	tRWD	90		110	┼╴──┦	135	łł	ns	16
Transition time (rise or fall)	tT	3	100	3	100	3	100	ns	
Refresh period (256 cycles)	^t REF		4	3	4	3	100	ns	5, 17
CAS hold time	^t CHR	20		25	4	30	4	ms	21
(CAS-BEFORE-RAS refresh)				25		30		ns	20
CAS setup time (CAS-BEFORE-RAS) refresh	^t CSR	15		20		20	I	ns	20
RAS to CAS precharge time	^t RPC	0		0		0	t +	ns	20

NOTES

- 1. All voltages referenced to Vss.
- 2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of $100\mu s$ is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 4ms refresh requirement is exceeded.
- 4. AC characteristics assume $^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T , ≤ 70°C) is assured.
- temperature range (0°C ≤ T_A ≤ 70°C) is assured.
 7. Measured with a load equivalent to 2 TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If \overrightarrow{CAS} = VIL, data output may contain data from the last valid READ cycle.
- 12. ¹OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the

specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.

- 14. ^tRCH is referenced to the first rising edge of \overline{RAS} or \overline{CAS} .
- These parameters are referenced to CAS leading edge in early WRITE cycles and to the WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 16. ^tWCS, ^tCWD and ^tRWD are restrictive operating parameters in READ-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tCWD ≥ ^tCWD (MIN) and ^tRWD ≥ ^tRWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of Q (at access time and until CAS goes back to VIH) is indeterminate.
- 17. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 18. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/d_v$ with dv = 3V and $V_{CC} = 5V$.
- 19. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 20. On-chip refresh and address counters are enabled.
- 21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$.

READ CYCLE

EARLY-WRITE CYCLE

1-14

.....

PAGE-MODE READ CYCLE

MT1259

PAGE-MODE EARLY-WRITE CYCLE

DON'T CARE

DRAM

DRAN

This Material Copyrighted By Its Respective Manufacturer