TOSHIBA MOS MEMORY PRODUCTS

65,536 WORD \times 1 BIT DYNAMIC RAM N-CHANNEL SILICON GATE MOS

TMM4164AP-12, TMM4164AP-15 TMM4164AP-20

DESCRIPTION

The TMM4164AP is the high speed, low power dynamic RAM organized 65,536 words by 1 bit, it is successor to the industry standard TMM4164P.

The TMM4164AP utilizes TOSHIBA's double poly N-channel Silicon gate process technology as well as advanced circuit techniques to provide wide operating margins, both internally and to the system user.

FEATURES

PIN CONNECTION

- 65,536 words by 1 bit organization
- Fast access time and cycle time

DEVICE	^t RAC	^t CAC	t _{RC}
✓TMM4164AP-12	120 ns	60 ns	220 ns
TMM4164AP-15	150 ns	75 ns	260 ns
✓TMM4164AP-20	200 ns	100 ns	330 ns

(TOP VIEW)

- Single power supply of 5V \pm 10% with a built-in V_{BB} generator
- Low power; 275mW operating (MAX.) 22mW standby (MAX.)

	-	
NC <u>D_{IN}</u> WRITE RAS A ₀ A ₂ A ₁ V _{CC}	15 14 13 12 11	V_{SS} D_{OUT} A_{6} A_{4} A_{7} A_{7}

PIN NAMES

$A_0 \sim A_7$	Address Inputs
CAS	Column Address Strobe
DIN	Data In
NC	No – Connection
DOUT	Data Out
RAS	Row Address Strobe
WRITE	Read/Write Input
Vcc	Power (+5V)
V _{SS}	Ground

Multiplexed address inputs permit the TMM4164AP to be packaged in a standard 16 pin plastic DIP. This package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment.

System oriented features include single power supply of 5V \pm 10% tolerance, direct interfacing capability with high performance logic families such ϵ Schottky TTL.

- Industry standard 16 pin plastic DIP
- Output unlatched at cycle end allows two-dimensional chip selection
- Common I/O capability using "EARLY WRITE" operation
- Read-Modify-Write, RAS-only refresh and Page Mode capability
- All inputs and output TTL compatible
- 128 refresh cycles/2ms

BLOCK DIAGRAM

- 45 -

ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	RATING	UNITS	NOTES
Input and Output Voltage	VIN, VOUT	-1~7	V	1
Power Supply Voltage	V _{CC}	-1~7	V	1
Operating Temperature	TOPR	0~70	°C	1
Storage Temperature	T _{STG}	-55 ~ 150	°C	1
Soldering Temperature - Time	TSOLDER	260 · 10	°C ⋅ sec	1
Power Dissipation	PD	600	mW	1
Short Circuit Output Current	lout	50	mA	1

RECOMMENDED DC OPERATING CONDITIONS (Ta = 0 \sim 70°C) γ

SYMBOL	PARAMETER	MIŃ.	TYP.	MAX.	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	2
VIH	Input High Voltage	2.4		6.5	V	2
VIL	Input Low Voltage	-1.0		0.8	V	2

DC ELECTRICAL CHARACTERISTICS (V_{cc} = 5V \pm 10%, Ta = 0 ~ 70°C) /

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	NOTES
I _{CC 1}	OPERATING CURRENT Average Power Supply Operating Current (RAS, CAS Cycling: t _{RC} = t _{RC} MIN.)	-		50	mA	3,4
ICC2	STANDBY CURRENT Power Supply Standby Current (RAS = V _{IH} , D _{OUT} = High Impedance)			4	mA	
ICC 3	REFRESH CURRENT Average Power Supply Current , Refresh Mode (RAS Cycling, CAS = V _{IH :} t _{RC} = t _{RC} MIN.)			40	mA	3
ICC4	PAGE MODE CURRENT Average Power Supply Current, Page Mode (RAS = V _{IL} , CAS Cycling: t _{PC} = t _{PC} MIN.)			40	mA	3,4
۱ (۵)	INPUT LEAKAGE CURRENT Input Leakage Current, any Input ($0V \le V_{IN} \le 6.5V$, All Other Pins Not Under Test = $0V$)	-10	_	10	μΑ	
ю (L)	OUTPUT LEAKAGE CURRENT (D_{OUT} is disabled, $0V \leq V_{OUT} \leq +5.5V$)	-10	_	10	μA	
Voн	OUTPUT LEVEL Output "H" Level Voltage (I _{OUT} = -5mA)	2.4			v	
VOL	OUTPUT LEVEL Output "L" Level Voltage (I _{OUT} = 4.2mA)	-	_	0.4	v	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(V_{CC} = 5V \pm 10\%, Ta = 0 \sim 70^{\circ}C)$ (Notes 5, 6, 7)

	· · · · · · · · · · · · · · · · · · ·								
SYMBOL	PARAMETER	TMM4164AP-12		TMM4164AP-15		TMM4164AP-20			
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS	NOTES
tRC	Random Read or Write Cycle Time	220		260		330		ns	1
tRWC	Read-Write Cycle Time	240		285	_	350		ns	1
t _{RMW}	Read-Modify-Write Cycle Time	260		310		390		ns	<u> </u>
t _{PC}	Page Mode Cycle Time	120		145		190		ns	-
t _{RAC}	Access Time from RAS		120		150		200	ns	8,10
^t CAC	Access Time from CAS		60	T	75		100	ns	9,10
tOFF	Output Buffer Turn-Off Delay	0	35	0	40	0	50	ns	11
t _T	Transition Time (Rise and Fall)	3	35	3	35	3	50	ns	6
t _{RP}	RAS Precharge Time	90		100		120		ns	
tRAS	RAS Pulse Width	120	10,000	150	10.000	200	10,000	ns	
t _{RSH}	RAS Hold Time	60		75		100		ns	
tCSH	CAS Hold Time	120		150		200		ns	
tCAS	CAS Pulse Width	60	10,000	75	10,000	100	10,000	ns	
tRCD	RAS to CAS Delay Time	25	60	25	75	30	10,000	ns	12
tCRP	CAS to RAS Precharge Time	0		0		0		ns	12
tASR	Row Address Set-Up Time	0		0		0		ns	
tRAH	Row Address Hold Time	15		15		20			
tASC	Column Address Set-Up Time	0		0		0		ns	+ —-
^t CAH	Column Address Hold Time	35	<u> </u>	45	·····-	55		ns	
t _{AR}	Column Address Hold Time Referenced to RAS	95		120		155		ns	
t _{RCS}	Read Command Set-Up Time	0		0		0		ns	
TRCH	Read Command Hold Time	0		0		0		ns	
twch	Write Command Hold Time	35		45		55		ns	
^t WCR	Write Command Hold Time Referenced to RAS	95		120		155		ns	
t _{WP}	Write Command Pulse Width	35		45		55		ns	
t _{RWL}	Write Command to RAS Lead Time	35		45		55		ns	·
tCWL	Write Command to CAS Lead Time	35		45		55		ns	
t _{DS}	Data-In Set-Up Time	0		0	1	0	— <u> </u>	ns	13
t _{DH}	Data-In Hold Time	35		45		55		ns	13
TDHR	Data-In Hold Time Referenced to RAS	95		120		155		ns	
t _{CP}	CAS Precharge Time (for Page Mode Cycle Only)	50		60		80		ns	
TREF	Refresh Period		2		2	_	2	ms	
twcs	Write Command Set-Up Time	-10		-10		-10		ns	14
tcwd	CAS to WRITE Delay	40		50		60		ns	14
tRWD	RAS to WRITE Delay	100		125		160		ns	14

TIMING WAVEFORMS

READ-WRITE/READ-MODIFY-WRITE CYCLE

- 49 -

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

CAPACITANCE

$(V_{CC} = 5V \pm 10\%, f = 1MHz, Ta = 0 \sim 70^{\circ}C)$

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS
C11	Input Capacitance (A ₀ ~ A ₇ , D _{IN})		4	5	pF
C12	Input Capacitance (RAS, CAS, WRITE)		8	10	pF
Co	Output Capacitance (D _{OUT})		5	7	pF

NOTES:

- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
- 2. All voltages are referenced to V_{SS} .
- 3. ICC1, ICC3, ICC4 depend on cycle rate.
- 4. ICC1, ICC4 depend on output loading. Specified values are obtained with the output open.
- 5. An initial pause of 200µs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
- 6. AC measurements assume $t_T = 5$ ns.
- 7. V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL} .
- 8. Assumes that $t_{RCD} \leq t_{RCD}$ (max.). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- 9. Assumes that $t_{RCD} \ge t_{RCD}$ (max.).
- 10. Measured with a load equivalent to 2 TTL loads and 100pF.
- 11. toff (max.) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 12. Operation within the t_{RCD} (max.) limit insures that t_{RAC} (max.) can be met. t_{RCD} (max.) is specified as a reference point only: If t_{RCD} is greater than the specified t_{RCD} (max.) limit, then access time is controlled exclusively by t_{CAC} .
- 13. These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in read-write or readmodify-write cycles.
- 14. twcs, t_{CWD} and t_{RWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs ≥ twcs (min.), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle:

If $t_{CWD} \ge t_{CWD}$ (min.) and $t_{RWD} \ge t_{RWD}$ (min.), the cycle is a read-write cycle and the data out will contain data read from the selected cell: If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

APPLICATION INFORMATION

ADDRESSING

The 16 address bits required to decode 1 of the 65,536 cell locations within the TMM4164AP are multiplexed onto the 8 address inputs and latched into the on-chip address latches by externally applying two negative going TTL-level clocks.

The first clock, the Row Address Strobe (\overline{RAS}), latches the 8 row address bits into the chip. The second clock, the Column Address Strobe (\overline{CAS}), subsequently latches the 8 column address bits into the chip. Each of these signals, \overline{RAS} and \overline{CAS} , triggers a sequence of events which are controlled by different delayed internal clocks.

The two clock chains are linked together logically in such a way that the address multiplexing operation is done outside of the critical path timing sequence for read data access. The later events in the CAS clock sequence are inhibited until the occurence of a delayed signal derived from the RAS clock chain. This "gated CAS" feature allows the CAS clock to be externally activated as soon as the Row Address Hold Time specification (t_{RAH}) has been satisfied and the address inputs have been changed from Row address to Column address information.

DATA INPUT/OUTPUT

Data to be written into a selected cell is latched into an on-chip register by a combination of WRITE and \overline{CAS} while \overline{RAS} is active. The later of the signals (WRITE or CAS) to make its negative transition is the strobe for the Data In (D_{IN}) register. This permits several options in the write cycle timing. In a write cycle, if the WRITE input is brought low (active) prior to \overline{CAS} , the D_{IN} is strobed by \overline{CAS} and the setup and hold times are referenced to CAS. If the input data is not available at CAS time or if it is desired that the cycle be a read-write cycle, the WRITE signal will be delayed until after CAS has made its negative transition. In this "delayed write cycle" the data input set-up and hold times are referenced to the negative edge of WRITE rather than CAS. (To illustrate this feature, DIN is referenced to WRITE in the timing diagrams depicting the read-write and page mode write cycles while the "early write" cycle diagram shows D_{IN} referenced to \overline{CAS}).

Data is retrieved from the memory in a read cycle by maintaining \overline{WRITE} in the inactive or high state throughout the portion of the memory cycle in which \overline{CAS} is active (low). Data read from the selected cell will be available at the output within the specified access time.

DATA OUTPUT CONTROL

The normal condition of the Data Output (D_{OUT}) of the TMM4164AP is the high impedance (open cir-

OUTLINE DRAWINGS

cuit) state. That is to say, anytime \overline{CAS} is at a high level, the D_{OUT} pin will be floating. The only time the output will turn on and contain either a logic 0 or logic 1 is at access time during a read cycle. D_{OUT} will remain valid from access time until \overline{CAS} is taken back to the inactive (high level) condition.

PAGE MODE

The "Page-Mode" feature of the TMM4164AP allows for successive memory operations at multiple column locations of the same row address with increased speed without an increase in power. This is done by strobing the row address into the chip and maintaining the RAS signal at a logic 0 throughout all successive memory cycles in which the row address is common. This "Page-Mode" of operation will not dissipate the power associated with the negative going edge of RAS. Also, the time required for strobing in a new row address is eliminated, thereby decreasing the access and cycle times.

REFRESH

Refresh of the dynamic cell matrix is accomplished by performing a memory cycle at each of the 128 row address ($A_0 \sim A_6$) within each 2 millisecond time interval. Although any normal memory cycle will perform the refresh operation, this function is most easily accomplished with " \overline{RAS} -only" cycles, \overline{RAS} only refresh results in a substantial reduction in operating power. This reduction in power is reflected in the l_{CC 3} specification.

Note: Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 16 leads. All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Aug., 1985 Toshiba Corporation

— 52 —