

µPD4164 65,536 x 1-BIT DYNAMIC NMOS RAM

Revision 4

Description

The NEC μ PD4164 is a 65,536-word by 1-bit dynamic N-channel MOS Random-access Memory (RAM) designed to operate from a single +5V power supply. The negativevoltage substrate bias is internally generated providing both automatic and transparent operation.

The μ PD4164 utilizes a three-poly, N-channel, silicon-gate process which provides high storage cell density, high performance, and high reliability.

The μ PD4164 uses a single transistor dynamic storage cell and advanced dynamic circuitry throughout, including the 512 sense amplifiers, which assure that power dissipation is minimized. Refresh characteristics have been chosen to maximize yield at a low cost to the user while maintaining compatibility between dynamic RAM generations.

The μ PD4164 three-state output is controlled by CAS, independent of RAS. After a valid read or read-modify-write cycle, data is held on the output by holding CAS low. The data-out pin is returned to the high impedance state by returning CAS to a high state. The μ PD4164 hidden refresh feature allows CAS to be held low to maintain output data while RAS is used to execute RAS-only refresh cycles.

Refresh is accomplished by performing \overline{RAS} -only refresh cycles, hidden refresh cycles, or normal read or write cycles on the 128-address combinations of A_0 through A_6 during a 2ms period.

Multiplexed address inputs permit the μ PD4164 to be packaged in the standard 16-pin dual-in-line package. The 16-pin package provides the highest system bit densities and is compatible with widely available automated handling equipment.

Features

- 65,536 x 1-bit organization
- High memory density
- Multiplexed address inputs
- □ Single +5V power supply
- On-chip substrate bias generator
- Low power dissipation: 27.5mW max (standby) (μPD4164-10); 330mW.(active); 27.5mW (standby)
- Three-state, TTL-compatible, nonlatched output
- □ Read, write, read-write, read-modify-write, RAS-only refresh, and page mode capability
- □ All inputs TTL-compatible, and low input capacitance
- $128 refresh cycles (A_0 A_6 pins for refresh address)$
- CAS-controlled output allows hidden refresh
- Available in a plastic 16-pin package
- 4 performance ranges:

Device	Access Time	R/W Cycle	RMW Cycle		
μ PD4164-10	100ns	200ns	230ns		
μPD4164-12	120ns	230ns	245ns		
μPD4164-15	150ns	260ns	280ns		
µPD4164-20	200ns	330ns	345ns		

Pin Configuration

Pin Identification

Pi	n	
No.	Symbol	Function
1	NC	No connection
2	Din	Data input
3	WE	Write enable
4	RAS	Row address strobe
5-7, 9-13	A ₀ -A ₇	Address inputs
8	V _{cc}	+ 5V power supply
14	DOUT	Data output
15	CAS	Column address strobe
16	GND	Ground

Absolute Maximum Ratings*

Operating Temperature, TOPR	0°C to + 70°C
Storage Temperature, TSTG (Plast	c Package) - 55°C to + 125°C
Supply Voltages On Any Pin except	/cc -1V to +7V 1
Supply Voltage, V _{CC}	-0.5V to +7V①
Short-circuit Output Current	50mA
Power Dissipation, Pp	1W
Natas (1) Polative to GND	

Note: 1 Relative to GND

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_A = 0^{\circ}C$ to +70°C (1); $V_{CC} = +5V \pm 10\%$; GND = 0V

				Limit	8	_	Test		
Parameter	Symbol		Min Typ Mex			Unit	Conditions		
0	Vcc		4.5	5.0	5.5	v			
Supply Voltage	GND)	0	0	0	v			
High-level Input Volt- age, (RAS, CAS, WE)	VIHC		2.4	2.4 5.5		v	All voltages referenced to GN		
High-level Input Voltage <u>, All Inputs</u> except RAS, CAS, WE	VIH		2.4		5.5	v			
Low-level Input Voltage, All Inputs	VIL		- 1.0		0.8	v			
Operating Current		μPD4164-20			45				
Average Power Supply Operating		µPD4164-15			50	-	2		
Current RAS,	ICC1	µPD4164-12			55	-	٢		
CAS Cycling; t _{RC} = t _{RC} (min)		μ PD4164-10			60	-			
Standby Current Power Supply Standby Current (RAS = V _{HC} , D _{OUT} = High-Impedance)	I _{CC2}				5.0	mA			
Refresh Current	I _{CC3}	μ PD4164-20			35				
Average Power Supply Current,		μPD4164-15			40	-	A		
Refresh Mode;		µ.PD4164-12			45	~ mA	٢		
RAS Cycling, CAS = V _{IHC} , t _{RC} = t _{RC} (min)		μ PD4164-10			45	-			
Page Mode Current Average Power Supply Current, Page Mode	I	μ PD4164-20 μ PD4164-15			35 40	- 	2		
Operation RAS = V _{II} ;	ICC4	μ PD4164-12			45	_			
CAS Cycling t _{PC} = t _{PC} (min)		μ ΡD4164-10			45				
Input Leakage Current (any input); V _{IN} = 0V to + 5.5V; All Other Pins Not Under Test = 0V	I _{I(L)}		~ 10		10	μ A			
Output Leakage Current D _{OUT} is Disabled, V _{OUT} = OV to + 5.5V	I _{O(L)}		- 10		10	μA			
Output Levels High- level Output Voltage			2.4						
(I _{OUT} = 5mA) Low-level Output	VOH		2.4	_	0.4	v			
Voltage (i _{OUT} = 4.2mA)	Vol		U		0.4	v			

Hotes: ① T_A is specified here for operation at frequencies to t_{RC} ≥ t_{RC} (min). Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, however, provided AC operating parameters are met.
② I_{CC}: I_{CC}: and I_{CC}: degrade to compute loading and cycle rates. Specified rates are obtained with the output open.

Capacitance

 $T_A = 0^{\circ}C \text{ to } + 70^{\circ}C; V_{CC} = +5V \pm 10\%; \text{ GND} = 0V$

Parameter			Limit	\$		Test		
	Symbol	Min	Тур	Max	Unit	Conditions		
Input Capacitance (A ₀ -A ₇), D _{IN}	C ₁₁			5	pF			
Input Capacitance RAS, CAS, WE	C ₁₂			8	pF			
Output Capacitance D(OUT)	¢,			7	pF			

AC Characteristics

 $\mathbf{T_A} = 0^\circ\!\mathbf{C} \text{ to } + 70^\circ\!\mathbf{C} \ \textcircled{0}; \ \mathbf{V_{CC}} = +5\mathbf{V} \pm 10\%; \ \mathbf{GND} = 0\mathbf{V} \ \textcircled{2} \ \textcircled{3} \ \textcircled{3}$

					Lim	its					
		4164-20		4164-15		4164-12		4164-10			
Parameter	Symbol	Min	Max	Min	Мах	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	t _{AC}	330		260		230		200		ns	\$
Read-write Cycle Time	t _{RWC}	345		280		245		230		ns	\$
Page Mode Cycle Time	1 _{PC}	190		145		130		110		ns	6
Access Time from RAS	t _{rac}		200		150		120		100	ns	6 7
Access Time from CAS	t _{CAC}		100		75		60		50	กร	7 B
Output Buffer Turn-off Delay	t _{OFF}	0	50	0	40	0	35	D	30	ns	9
Transition Times (rise and fall)	t _T	3	50	3	50	3	35	3	35	ns	۹
RAS Pre- charge Time	t _{RP}	120		100		90		90		ns	
RAS Pulse Width	t _{RAS}	.2	10	.15	10	.12	10	.1	10	μ\$	
RAS Hold Time	t _{RSH}	100		75		60		50		ns	
CAS Pulse Width	tCAS	.1	10	.075	10	.06	10	.05	10	μ \$	
CAS Hold Time	t _{CSH}	200		150		120		100		ns	
RAS to CAS Delay Time	t _{RCD}	30	100	25	75	25	60	20	50	ns	10
CAS to RAS Precharge Time	t _{CRP}	0		0		0		0		ns	
CAS Pre- charge Time	t _{CPN}	30		25		25		20		ns	
CAS Precharge Time (for page mode cycle only)	tcp	80		60		60		50		ns	
RAS Precharge CAS Hold Time	t _{RPC}	0		0		0		0		ns	
Row Address Set-up Time	t _{ASR}	0		0		0		0		ns	
Row Address Hold Time	t _{RAH}	20		15		15		10		ns	
Column Address Set-up Time	tASC	0		0		0		0		ns	
Column Address Hold Time	t _{CAH}	30		25		20		15		ns	
Column Address Hold Time Re <u>feren</u> ced to RAS	t _{AR}	130		100		80		65		ns	
Read Command Set-up Time	t _{RCS}	0		0	_	0		0	_	ns	
Read Command Hold Time Referenced to RAS	t _{RRH}	25		20		20		20		ns	1

AC Characteristics (Cont.)

 $T_A = 0^{\circ}C \text{ to } + 70^{\circ}C \text{ (i)}; V_{CC} = +5V \pm 10\%; \text{ GND} = 0V \text{ (i)} \text{ (i)}$

		Limits									
Parameter		4164-20		4164-15		416	4-12	4164-10			
	Symbol	Min	Mex	Min	Max	Min	Max	Min	Max	Unit	Notes
Read Command Hold Time	tRCH	0		0		0		0		ns	1
Write Command Hold Time	twch	55		45		35		30		ns	
Write Command Hold Time Referenced to RAS	t _{wCR}	155		120		95		60		ns	
Write Command Pulae Width	t _{wp}	55		45		35	_	30		ne	
Write Command to RAS Lead Time	1 _{RWL}	55		45		40		35		N 5	
Write Co <u>mm</u> and to CAS Lead Time	t _{cw⊾}	55		45		40		35		ns	
Data-In Set-up Time	t _{DS}	0		0		0		0		ns	12
Data-in Hold Time	t _{DH}	55		45		35		30		ns	12
Data-In Hold Time Ref <u>er-</u> enced to RAS	t _{OHR}	155		120		95		80		ns	
Refresh Period	tREF		:	2	:	2		2	2	me	
Write Command Set-up Time	twcs	- 10		- 10		- 10		D		ns	13
CAS to WE Delay	tcwp	55		45		40		40		ns	13
RAS to WE Delay	1 _{RWD}	130		120		100		90		ns	13

Notes: ① T_A is specified here for operation at frequencies to 1_{RO} ≥ t_{RO} (min). Operation at higher oyde rates with reduced ambient temperatures and higher power dissipation is permissible, however, provided AC operating parameters are met.
 ② An initial pause of 100 µs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
 ③ AC mean impact as sum to 1 = 5 ns

proper device operation is achieved. (5) AC measurements assume $t_{1} = 5\pi s$. (5) AC measurements assume $t_{2} = 5\pi s$. (5) AC measurements as a measured between $V_{H_{1C}}$ or $V_{H_{1}}$ and $V_{L_{1}}$. (6) The specifications for t_{0C} (min) and t_{wwo} (min) are used only to indicate cycle times at which proper operation over the full temperature range (T_A = 0^{-1}C to + 2^{-1}C) is assured. (6) Assumes that $t_{0C} \leq t_{0C}$ (max). If t_{0C} is greater than the maximum recommended value shown in this table, t_{0C} will increase by the amount that t_{0C} exceeds the values shown. (6) Assumes that $t_{0C} \geq t_{0C}$ (max).

7 8 9

1

Measured with a load equivalent to 2 TTL loads and 1000F^{ET} Assumes that logo = th_{1CO} (max) (b_{2F} (max) defines the time at which the output achieves the open-circuit condition and is not released to output ovalge levels. Operation within the t_{1CO} (max) imite assures that t_{1PAC} (max) can be met. t_{1CO} (max) imit, access time is outholled exclusively by t_{2AC}. Either t_{1PAP} or t_{1CO} must be assisted for a read cycle These parameters are relevenced to CAS leading edge in early write cycles and to WAITE leading edge in delayed write or read-modify-write cycles. These parameters are relevenced to CAS leading edge in early write cycles and to add a dupot write cycles only. If t_{2ACC} aread-write and the cycle in a early write cycles and to add a output write cycles is a read-write and the cycle. If t_{2AOC} = to cycle and the data output will remain oper circuit throughout the entire cycle. If t_{2AOC} = cycle and the data output (min), the cycle is a read-write and the condition of the data-out (at access time and until CAS goes back to V_{1A}) is indeterminate. 13

Timing Waveforms

Read-Write/Read-Modify-Write Cycles

Timing Waveforms (Cont.)

