51C64L LOW POWER 64K X 1 CHMOS DYNAMIC RAM

	51C64L-10	51C64L-12
Maximum Access Time (ns)	100	120
Maximum CHMOS Standby Current (mA)	0.05	0.05

- Low Power Data Retention
 - Standby current, CHMOS 50μ A (max.)
 - Refresh period, RAS-Only 64 ms (max.)
 - Data retention current $80\mu A$ (max.)
- Low Operating Current 35mA (max.)
- Fully TTL Compatible Inputs and Outputs
- Low Input/Output Capacitance
- High Reliability Plastic 16 Pin DIP

The Intel® 51C64L is a low power 65,536 x 1 dynamic Random Access Memory. Fabricated on Intel's CHMOS III-D technology, the 51C64L offers features not provided by an NMOS dynamic RAM: CHMOS standby current and extended RAS-Only refresh for low data retention power. All inputs and outputs are fully TTL compatible and the input and output capacitances are significantly lowered to allow increased system performance.

The 51C64L offers a maximum standby current of 50 μ A when $\overrightarrow{RAS} \ge V_{DD}$ -0.5V. During standby (i.e. refresh only cycles) the refresh period can be extended to 64 ms to reduce the total current required for data retention to less than 80 μ A (max). The 51C64L combines low power with high density for portable and battery backup applications.

LOGIC SYMBOL PIN CONFIGURATION

PIN NAMES

RAS	ROW ADDRESS STROBE
CAS	COLUMN ADDRESS STROBE
WE	WRITE ENABLE
A ₀ -A ₇	ADDRESS INPUTS
D _{IN}	DATA IN
Dout	DATA OUT
V _{DD}	POWER (+5V)
Vss	GROUND

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Ciruitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied. Sintel Corporation, 1984 June 1984

June 1984 Order Number: 280025-001

ABSOLUTE MAXIMUM RATINGS[†]

Ambient Temperature Under

Bias	10°C to +80°C
Storage Temperature	Plastic -55°C to +125°C
Voltage on Any Pin exce	

Relat	Ive to v_{SS}	<u> </u>
Data O	ut Current	٩.
Power	Dissipation 1.0W	/

†COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS¹

 $T_A = 0$ °C to 70 °C, $V_{DD} = 5V \pm 10$ %, $V_{SS} = 0$ V, unless otherwise noted.

		51C64L			Unit	Test Conditions	Notes	
Symbol	Parameter	Min.	Typ.2	Max.	Unit	Test conditions	Notes	
	Vpp Supply Current,	1	27	37	mA	$t_{RC} = t_{RC}$ (min), for -10 specification	3.4	
I _{DD1}	Operating		23	35	mA	$t_{RC} = t_{RC}$ (min), for -12 specification	5,4	
I _{DD2}	V _{DD} Supply Current, TTL Standby		0.7	2	mA	RAS and CAS at V _{IH} , all other inputs and output ≥ V _{SS}		
	V _{DD} Supply Current,		24	37	mA	$t_{RC} = t_{RC}$ (min), for - 10 specification	4	
I _{DD3}	RAS-Only Refresh		20	35	mA	$t_{RC} = t_{RC}$ (min), for -12 specification		
I _{DD5}	V _{DD} Supply Current, Standby, Output Enabled		3	4	mA	RAS at V _{IH} , CAS at V _{IL} , all other inputs and output ≥V _{SS}	3	
DD6	V _{DD} Supply Current, CHMOS Standby		0.008	0.05	mA	$\overline{RAS} \ge V_{DD} - 0.5V$ and \overline{CAS} at V_{IH} , all other inputs and output $\ge V_{SS}$		
I _{LI}	Input Load Current (any pin)			1	μA	$V_{IN} = V_{SS}$ to V_{DD}		
ILO	Output Leakage Current for High Impedance State			1	μA	\overrightarrow{RAS} and \overrightarrow{CAS} at V_{IH} , $D_{OUT} = V_{SS}$ to V_{DD}		
VIL	Input Low Voltage (all inputs)	- 1.0		0.8	v		5	
VIH	Input High Voltage (all inputs)	2.4		V _{DD} +1	v		5	
Vol	Output Low Voltage			0.4	v	I _{OL} = 4.2 mA	6	
VoH	Output High Voltage	2.4			V	I _{ОН} = – 5 mA	6	

NOTES:

- All voltages referenced to V_{SS}.
- 2. Typical values are at $T_A = 25^{\circ}C$ and $V_{DD} = +5V$.
- I_{DD} is dependent on output loading when the device output is selected. Specified I_{DD} (max) is measured with the output open.
 I_{DD} is dependent upon the number of address transitions while CAS is at V_{IH}. Specified I_{DD} (max) is measured with a max-
- imum of two transitions per address input per random cycle.
- Specified V_{IL} (min) is steady state operation. All A.C. parameters are measured with V_{IL} (min) ≥ V_{SS} and V_{IH} (max) ≤ V_{DD}.
- Test conditions apply only for D.C. Characteristics. All A.C. parameters are measured with a load equivalent to two TTL loads and 50 pF.

Capacitance is measured at worst case voltage lev-

els with a programmable capacitance meter.

CAPACITANCE[†]

 $T_{\text{A}} = 25^{\circ}\text{C}, \ V_{\text{DD}} = 5\text{V} \pm 10\%, \ V_{\text{SS}} = 0\text{V}, \ \text{unless otherwise noted}.$

Symbol	Parameter	Тур.	Max	Unit
C _{IN1}	Address, D _{IN}	3	4	рF
CIN2	RAS, CAS, WE	4	5	ρF
COUT	DOUT	4	6	pF

A.C. CHARACTERISTICS^{1, 2, 3}

 $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted.

Read, Write, Read-Modify-Write and Refresh Cycles

	JEDEC			51C6	54L-10	51C6		Τ	
#	Symbol	Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	Notes
1	t _{RL1AH1}	t _{RAS}	RAS Pulse Width	100	75000	120	75000	ns	
2	t _{RL2RL2}	t _{RC}	Random Read or Write Cycle Time	160		190		ns	
3	t _{RH2RL2}	t _{RP}	RAS Precharge Time	50		60		ns	
4	t _{RL1CH1}	t _{CSH}	CAS Hold Time	100		120		ns	1
5	t _{AVRL2}	t _{ASR}	Row Address Set-up Time	0		0		ns	
6	t _{RL1AX}	t _{RAH}	Row Address Hold Time	15		15		ns	1
7	t _{CH2CL2}	t _{CP}	CAS Precharge Time	10		15		ns	
8	t _{CH2RL2}	t _{CRP}	CAS to RAS Precharge Time	- 20		- 20		ns	
9	t _{RL1CL2}	t _{RCD}	RAS to CAS Delay	30	80	35	95	ns	4
10	tavcl2	t _{ASC}	Column Address Set-up Time	0		0		ns	
11	t _{CL1AX}	t _{CAH}	Column Address Hold Time	10		15		ns	
12	t _{RL1AX}	t _{AR}	Column Address Hold Time From RAS	40		50		ns	
	t _{RVRV}	t _{REF 1}	Time Between Refresh		4		4	ms	5
	t _{RVRV}	t _{REF 2}	Time Between Refresh (RAS-Only)		64		64	ms	5
	t _T	t _T	Transition Time (Rise and Fall)	3	50	3	50	ns	6
13	t _{CL1QX}	t _{ON}	Output Buffer Turn On Delay	0	20	0	25	ns	
14	t _{CH2QZ}	t _{OFF}	Output Buffer Turn Off Delay	0	20	0	25	ns	

NOTES:

1. All voltages referenced to V_{SS}.

 An initial pause of 100 microseconds is required after power up followed by a minimum of eight initialization cycles (any combination of cycles containing a RAS clock such as RAS-Only refresh). Eight initialization cycles are required after extended periods of bias without clocks (greater than 64 ms).

 A.C. Characteristics assume t_T = 5 ns. All A.C. parameters are measured with a load equivalent to two TTL loads and 50 pF, V_{IL} (min) ≥ V_{SS} and V_{IH} (max) ≤ V_{DD}.

4. t_{RCD} (max) is specified for reference only.

5. The 51C64L extends the refresh period to 64 ms during RAS-Only refresh operation.

6. t_T is measured between V_{IH} (min) and V_{IL} (max).

†NOTE:

Read Cycle

	# JEDEC Symbol Parameter			51C6	i4L-10	51C64L-12			
#			Parameter	Min.	Max.	Min.	Max.	Unit	Notes
15	t _{RL1QV}	t _{RAC}	Access Time From RAS		100		120	ns	7
16	t _{CL1QV}	tCAC	Access Time From CAS		20		25	ns	8,9
17	tavov	tcaa	Access Time From Column Address		55		65	ns	9
18	t _{CL1CH1(R)}	t _{CAS(R)}	CAS Pulse Width (Read Cycle)	20	75000	25	75000	ns	
19	tCL1RH1(R)	t _{RSH(R)}	RAS Hold Time (Read Cycle)	10		10		ns	
20	twH2CL2	tRCS	Read Command Set-up Time	0		0		ns	
21	t _{AVRH1}	tCAR	Column Address to RAS Set-up Time	55		65		ns	
22	t _{CH2WX}	tясн	Read Com. Hold Time Ref. to CAS	0		0		ns	10
23	t _{RH2WX}	t _{RRH}	Read Com. Hold Time Ref. to RAS	10		10	1	ns	10

Write Cycle

	JEDEC			51C64L-10		51C64L-12			
#	Symbol	Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	Notes
24	t _{CL1RH1(W)}	tash(w)	RAS Hold Time (Write Cycle)	35		40		ns	
25	CLICHI(W)	tcas(W)	CAS Pulse Width (Write Cycle)	30	75000	35	75000	ns	
26	twL1RH1	t _{RWL}	Write Command to RAS Lead Time	30		35		ns	
27	twL1CH1	towi	Write Command to CAS Lead Time	30		35		ns	
28	twL1WH1	twp	Write Command Pulse Width	20		25		ns	
29	twL1CL2	twcs	Write Command Sei-up Time	0		0		ns	11
30	t _{CL1WH1}	t wcн	Write Command Hold Time	30		35		ns	
31	tDVCL2	t _{DS}	Data-In Set-up Time	0		0		ns	
32	t _{CL1DX}	t _{DH}	Data-In Hold Time	20		25		ns	

NOTES:

7. Assumes that $t_{RCD} \le t_{RCD}$ (max). If $t_{RCD} > t_{RCD}$ (max) then t_{RAC} will increase by the amount that t_{RCD} exceeds t_{RCD} (max).

Assumes t_{RCD} ≥ t_{RCD} (max).

9. If $t_{ASC} < (t_{CAA} (max) - t_{CAC} (max) - t_T)$, then access time is defined by t_{CAA} rather than by t_{CAC} .

10. Either tRCH or tRRH must be satisfied.

11. twcs, t_{RWD}, t_{CWD} and t_{AWD} are specified as reference points only. If t_{WCS} ≥ t_{WCS} (min), the cycle is a CAS controlled write cycle (early write cycle) and the date out pin will remain in high impedance throughout the entire cycle. If t_{CWD} ≥ t_{CWD} (min) and t_{RWD} ≥ t_{RWD} (min) and t_{AWD} ≥ t_{AWD} (min), then the cycle is a read-modify-write cycle and the data out will contain the data read from the selected address. If any of the above conditions are not satisfied, the condition of the data out is indeterminate.

A.C. CHARACTERISTICS (Con't.)

Read-Modify-Write Cycle 12

#	# JEDEC Sumbal		Sumbal Durante	51C	i4L-10	51C64L-12			Ι
"	Symbol	Symbol Symbol Parameter	Min.	Max.	Min.	Max.	Unit	Notes	
33	trl2rl2(RMW)	tawc	Read-Modify-Write (RMW) Cycle Time	195		230	T	ns	
34	tRL1RH1(RMW)	t _{RRW}	RMW Cycle RAS Pulse Width	135	75000	160	75000	ns	
35	CL1CH1(RMW)	t _{CRW}	RMW Cycle CAS Pulse Width	55	75000	65	75000	ns	
36	tRL1WL2	t _{RWD}	RAS to WE Delay	100		120	_	ns	13
37	tCL1WL2	tcwo	CAS to WE Delay	20		25	1	ns	13
38	tavwl2	t _{AWD}	Column Address to WE Delay	55		65	<u> </u>	ns	13

NOTES:

12. The parameters shown in the Read-Modify-Write timing diagrams which are not listed in the table are previously specified.

13. twcs. t_{RWD}, t_{CWD} and t_{AWD} are specified as reference points only. If twcs≥t_{WCS} (min), the cycle is a CAS controlled write cycle (early write cycle) and the data out pin will remain in high impedance throughout the entire cycle. If t_{CWD} ≥ t_{CWD} (min) and t_{RWD} ≥ t_{RWD} (min) and t_{AWD} ≥ t_{AWD} (min), then the cycle is a read-modify-write cycle and the data out will contain the data read from the selected address. If any of the above conditions are not satisfied, the condition of data out is indeterminate.

This Material Copyrighted By Its Respective Manufacturer

intel

PRELIMINARY

This Material Copyrighted By Its Respective Manufacturer

2-28

•

This Material Copyrighted By Its Respective Manufacturer

This Material Copyrighted By Its Respective Manufacturer

2-31

C1492B-V

FUNCTIONAL DESCRIPTIONS

The 51C64L is a CHMOS dynamic RAM optimized for low power applications. The functionality is similar to a traditional dynamic RAM. The 51C64L reads and writes data by multiplexing a 16 bit address into an 8 bit row and an 8 bit column address. The row address is latched in by the Row Address Strobe (RAS). The column address, however, flows through the internal address buffer and is latched by the Column Address Strobe (CAS). Because access time is primarily dependent upon a valid column address, the delay time between RAS and CAS can be long without affecting the access time.

Memory Cycle

The memory cycle is initiated by bringing $\overline{\text{RAS}}$ low. Any memory cycle once initiated must not be ended or aborted prior to fulfilling the minimum t_{RAS} timing specification. This ensures proper device operation and data integrity. Additionally, a new cycle cannot be initiated until the minimum precharge time, t_{RP} and t_{CP} , has elapsed.

Read Cycle

A read cycle is performed by maintaining the Write Enable (WE) signal high during the RAS/CAS operation. The column address must be held for a minimum time specified by t_{AR} . Data out becomes valid only when t_{RAC} , t_{CAA} , and t_{CAC} are all satisfied. Consequently, the access time is dependent upon the timing relationship among t_{RAC} , t_{CAA} and t_{CAC} . For example, the access time is limited by t_{CAA} when t_{RAC} and t_{CAC} are both satisfied.

Write Cycle

A write cycle is performed by taking \overline{WE} and \overline{CAS} low during a \overline{RAS} operation. The column address is latched in by \overline{CAS} . The write cycle can be \overline{WE} controlled or \overline{CAS} controlled depending upon the later of \overline{WE} or \overline{CAS} low transition. Consequently, the input data must be valid at or before the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. In a \overline{CAS} controlled write cycle (the leading edge of \overline{WE} occurs prior to or coincident with the \overline{CAS} low transition) the output (D_{OUT}) pin will be in the high impedance state at the beginning of the write function. Terminating the write action with CAS will maintain the output in the high impedance state; terminating with WE allows the output to go active.

Refresh Cycle

To retain data, a refresh operation is performed by clocking each of the 256 row addresses (A_0 through A_7) with RAS at least every 4 milliseconds. Any Read, Write, Read-Modify-Write, or RAS-Only cycle will perform refresh.

Extended Refresh Cycle

The 51C64L extends the refresh cycle period to 64 milliseconds for RAS-Only refresh cycles. This feature reduces the total current consumption to a maximum of 80 micro Amperes, and typically 15 micro Amperes, for data retention (RAS-Only refresh operation for the 51C64L-12). The low standby current can significantly extend battery life in battery back-up applications. Current consumption is calculated from the following equation:

 $I = \frac{(t_{RC} | A_{CTIVE}) + (t_{RI} - t_{RC}) (I_{STANDBY})}{t_{RI}}$

where t_{RC} = refresh cycle time, and t_{RI} = refresh interval time or $t_{REF}/256$

Before entering or leaving an extended refresh period, the entire array must be refreshed at the normal interval of four milliseconds. This can be accomplished by either a burst or distributed refresh.

Data Out Operation

The 51C64L Data Output (D_{OUT} , which has threestate capability, is controlled by CAS. During CAS high state (CAS at V_{IH}), the output is in the high impedance state. Table 1 summarizes the D_{OUT} state for various types of cycles.

Power On

An initial pause of 100 μ s is required after the application of the V_{DD} supply, followed by a minimum of eight initialization cycles (any combination of cycles

Type of Cycle	Data Out State				
Read Cycle	Data from Addressed Memory Cell				
CAS Controlled Write Cycle (Early Write)	High Impedance				
WE Controlled Write Cycle (Late Write)	Active, Not Valid				
Read-Modify-Write Cycle	Data from Addressed Memory Cell				
RAS-Only Refresh Cycle	High Impedance				
CAS-Only Cycle	High Impedance				

Table 1. Intel 51C64L Data Output Operation for Various Types of Cycles

containing a RAS clock such as RAS-Only refresh). Eight initialization cycles are required after extended periods of bias without clocks (greater than 64 ms).

The V_{DD} current (I_{DD}) requirement of the 51C64L during power on is dependent upon the input levels of RÅS and CAS. If RÅS = V_{ss} during power on, the device would go into an active cycle and I_{DD} would exhibit large current transients. It is recommended that RÅS and CAS track with V_{DD} or be held at a valid V_{IH} during power on.

Soft Error Rate

Soft errors are random, non-recurring changes in memory logic states caused by the impact of an ionizing particle, such as an alpha particle. For example, a logic "0" may change to a logic "1". The average soft error rate (SER) of the 51C64L is less than 10 FITs. This is determined by accelerated testing using an alpha particle source and is subsequently confirmed by system testing. Ther SER is a function of the operating voltage, cycle time, package, and the alpha particle source. Intel measures the SER at $V_{DD} = 4.75V$, and $t_{cycle} = 1\mu s$. A thorium source of $1.6 \times 10^5 \alpha/cm^2/hr$, is used because it best matches the package energy spectra.

References

For further details see Application Note (A.P.) #171, Low Power with CHMOS DRAMS, and A.P. #172, CHMOS DRAMS in Graphics Applications.