5-170

PRELIMINARY

FEBRUARY 1986

DESCRIPTION

The HY51C64 is a high speed 65,536 bit CMOS dynamic Random Access Memory. Fabricated in CMOS technology, the HY51C64 offers features not provided by NMOS technology–Ripplemode*, fast usable speed, low power, and an average soft error rate of less than 10 Failures In Time (FITs). The HY51C64 is ideally suited for applications such as graphic display terminals, battery operated systems, and any application where high performance is required.

FEATURING RIPPLEMODE* OPERATION

Ripplemode operation allows access of up to 256 bits at a 50 ns/bit rate with random or sequential addresses within a single row. Thus, a continuous data rate of over 15 million bits per second can be achieved. The HY51C64 offers high performance with relaxed system timing requirements for fast usable speed. In addition, the fast RAS and CAS access times are compatible with high performance microprocessors without using WAIT state operation.

The HY51C64L offers a standby current of 50 μ A when $\overline{RAS} \ge V_{CC} - 0.2V$. During a \overline{RAS} -Only refresh cycle, the HY51C64L extends the refresh cycle period to 64ms to reduce power consumption to typically 130 μ W for data retention. The HY51C64 comes in a

16-pin plastic dual in-line package. All inputs, outputs and control signals are TTL compatible. The input and output capacitance are significantly lowered to reduce system drive requirements.

65,536×1-Bit CMOS Dynamic RAM

FEATURES

- ▲ CMOS Technology
- ▲ Low Power dissipation for the HY51C64-12
 operating current
 standby current, TTL
 1.5 mA (max.)
- ▲ Extended refresh and CMOS standby current for the HY51C64L
 - refresh period,

standby mode	64 ms (max.)
 – standby current, CMOS 	50 μA (max.)
A	10 FITe

- ▲ Average soft error rate less than 10 FITs (0.001%/1000 hours)
- ▲ Ripplemode* operation for a sustained data rate up to 15.3 MHz
- ▲ Low input/output capacitance

	HY51C64/L-10	HY51C64/L-12	HY51C64/L-15
Maximum Access Time (ns)	100	120	150
Minimum Cycle Time (ns)	160	190	245
Maximum Column Address Access Time (ns)	45	55	65

*Ripplemode is a registered trademark of Intel Corporation

This documentation is a general product description and is subject to change without notice. Hyundai Semiconductor does not assume any responsibility for use of circuits described. No circuit patent licenses are implied.

©1986 Hyundai Semiconductor

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature Under Bias	-10° to +80°C
Storage Temperature	Plastic - 55°C to + 125°C
Voltage on Any Pin except V _{CC} Relative to V _{SS}	- 1.0V to 7.0V
Voltage on V _{CC} Relative to V _{SS}	-1.0V to 7.0V
Data Out Current	50mA
Power Dissipation	1.0W

NOTICE:

Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

D.C. AND OPERATING CHARACTERISTICS¹

 $T_A = 0^{\circ}C$ to 70°C, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted.

				HY5	1C64		HY5	1C64L			
SYMBOL	PARAMETER	SPEED	Min.	Typ. ²	1	Min.	Typ. ²	Max.	UNIT	TEST CONDITIONS	NOTES
I _{LI}	Input Leakage Current (any input)				10		· · · · ·	10	μA	$V_{IN} = V_{SS}$ to V_{CC}	· · · · ·
I _{LO}	Output Leakage Current for High Impedance State				10			10	μA	$\label{eq:rescaled_response} \begin{array}{l} \overline{RAS} \text{ at } V_{IH}.\\ \overline{CAS} \text{ at } V_{IH}.\\ D_{OUT} \!=\! V_{SS} \text{ to } V_{CC} \end{array}$	
	V _{CC} Supply Current,	- 10		27	37		27	37			
I _{CC1}	Operating	- 12		23	35		23	35	mA	$t_{RC} = t_{RC}(min)$	3,4
		- 15		20	30		20	30			
I _{CC2}	V _{CC} Supply Current, TTL Standby			0.4	1.5		0.4	0.8	mA	$\overline{\text{CAS}}$ and $\overline{\text{RAS}}$ at V_{IH} , all other inputs $\ge -0.5 \text{V}$	-
	W. G. L. G. L	- 10		24	37		24	37			
I _{CC3}	V _{CC} Supply Current,	-12		20	35		20	35	mA	$t_{RC} = t_{RC}(min)$	4
	RAS-Only Cycle	- 15		18	30		18	30			
		- 10		18	37		18	37			· · · · · · · · · · · · · · · · · · ·
I _{CC4}	V _{CC} Supply Current,	- 12		17	35		17	35	mA	$t_{PC} = t_{PC}(min)$	3,4
	Ripplemode™	-15		16	30		16	30			
I _{CC5}	V _{CC} Supply Current, Standby Output Enabled			1	3		1	2	mA	$ \overline{CAS} \text{ at } V_{IL}, \overline{RAS} \text{ at } V_{IH}, $ all other inputs $ \geq -0.5V $	3
I _{CC6}	V _{CC} Supply Current, CMOS Standby				2		0.008	0.05	mA	$\label{eq:rescaled} \begin{split} \overline{RAS} \geq V_{CC} - 0.2V, \\ \overline{CAS} \text{ at } V_{IH}, \text{ all other} \\ \text{inputs} \geq -0.5V \end{split}$	• • • • • • • • • • • • • • • • • • •
VIL	Input Low Voltage (all inputs)		-1.0		0.8	- 1.0		0.8	V		5
V _{IH}	Input High Voltage (all inputs)		2.4		V _{cc} +1	2.4		V _{cc} +1	V		
V _{OL}	Output Low Voltage				0.4			0.4	v	I _{OL} =4.2 mA	6
V _{OH}	Output High Voltage		2.4			2.4			V	$I_{OH} = -5 \text{ mA}$	6

NOTES:

- 1. All voltages referenced to V_{ss} . 2. Typical values are at $T_A = 25^{\circ}C$ and nominal supply voltages.
- 3. I_{CC} is dependent on outpout loading when the device output is
- selected. Specified I_{cc} (max) is measured with the output open.
- 4. I_{CC} (max) is dependent upon the number of address transitions while CAS is at $V_{\rm IH}$. Specified I_{CC} (max) is measured within a maximum of

two transitions per address input per random cycle, one transition per access cycle for Ripplemode.

- 5. Specified V_{IL} (min) is steady state operation. During transitions, the
- inputs may overshoot to 2.0V for periods not to exceed 20 ns.
 Test conditions apply only for D.C. characteristics. A.C. parameters specified with a load equivalent to two TTL loads and 100 pF.

HYUNDAI SEMICONDUCTOR

CAPACITANCE¹

 $T_A = 25^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted.

SYMBOL	PARAMETER		TYP.	MAX.	UNIT
C _{IN1}	Address, Data In		· · · · ·	4	pF
C _{IN2}	RAS, CAS, WE			5	pF
C _{OUT}	Data Out	n <u>marka</u> sala sa	:	5	pF

NOTES:

1. Capacitance measured with Boonton Meter or effective capacitance calculated from the equation:

> $C = I\Delta t$ ΔV

with ΔV equal to 3 volts and power supplies at nominal levels.

A.C. CHARACTERISTICS^{1,2,3}

 $T_A = 0^{\circ}C$ to 70°C, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted.

READ, WRITE, READ-MODIFY-WRITE AND REFRESH CYCLES

(See Waveforms A to G)

EVADOL	PARAMETER	HY51C	64/L-10	HY51C	64/L-12	HY51C	C64/L-15	UNIT	NOTES
SYMBOL	PARAMEIER	Min.	Max.	Min.	Max.	Min.	Max.	UNII	NOTES
t _{RAC}	Access Time From RAS		100		120		150	ns	4,5
t _{CAC}	Access Time From CAS		20		25		30	ns	5,6,7
t _{CAA}	Access Time From Column Address		45		55		65 ·	ns	
t _{REF}	Time Between Refresh		4		4		4	ms	8
t _{RP}	RAS Precharge Time	50	utu. T	60		85		ns	
t _{CPN}	CAS Precharge Time	10		10		20		ns	
tCRP	CAS to RAS Precharge Time	- 20		-20		- 20		ns	
t _{RCD}	RAS to CAS Delay Time	25	80	30	95	35	120	ns	9
t _{CSH}	CAS Hold Time	100		120		150		ns	
tASR	Row Address Set-up Time	0		0	i i i i	0		ns	
t _{RAH}	Row Address Hold Time	15		20		25		ns	· .
t _{ASC}	Column Address Set-up Time	0		0		· 0		ns	
t _{CAH}	Column Address Hold Time	15		20		25		ns	
. t _T	Transition Time (Rise and Fall)	3	50	3	50	3	50	ns	10
t _{OFF} つ	Output Buffer Turn Off Delay	0	20	0	25	0	25	ns	

NOTES:

1. All Voltages referenced to V_{ss} . 2. An initial pause of 100 microseconds is required after power up followed by a minimum of eight initialization cycles (any combina-tion of cycles containing a RAS clock, such as RAS-only refresh). Eight initialization cycles are required after extended periods of bias without clocks (greater than 4 ms for the HY51C64 and greater than 64 ms for the HY51C64L).

3. A.C. characteristics assume $t_T = 5$ ns.

- A. Assumes that $t_{RCD} \le t_{RCD}$ (max). If $t_{RCD} > t_{RCD}$ (max) then t_{RAC} will increase by the amount that t_{RCD} exceeds t_{RCD} (max).
- 5. Load = 2 TTL loads and 100 pF.
- 6. Assumes $t_{RCD} \ge t_{RCD}$ (max). 7. If $t_{ASC} \le [t_{CAA}[max] t_T]$, then access time is defined by t_{CAA} rather than by t_{CAC} . 8. The HY51C64L extends the refresh period to 64 ms during RAS-only
- refresh cycles.
- 9. t_{RCD} (max) is specified for reference only. 10. t_{T} is measured between V_{IH} (min) and V_{IL} (max).

3

A.C. CHARACTERISTICS (CONT'D.) **READ AND REFRESH CYCLES**

		HY51C	64/L-10	HY51C	64/L-12	HY51C	64/L-15	UNIT	NOTES
SYMBOL	PARAMETER	Min.	Max.	Min.	Max.	Min.	Max.	UNII	NOTES
t _{RC}	Random Read Cycle Time	160		190		245		ns	
t _{RAS}	RAS Pulse Width	100	75000	120	75000	150	75000	ns	
t _{CAS(R)}	CAS Pulse Width (Read Cycle)	20	75000	25	75000	30	75000	ns	
t _{RSH(R)}	RAS Hold Time (Read Cycle)	20		25		30		ns	-
t _{RCS}	Read Command Set-up Time	0		0		0		ns	
t _{RCH}	Read Command Hold Time Referenced to CAS	0		0		0		ns	11
t _{RRH}	Read Command Hold Time Referenced to RAS	20		20		20		ns	11
t _{CAR}	Column Address to RAS Set-up Time	35		45		55		ns	

WRITE CYCLE

(See Waveforms B,C,F and G)

(See Waveforms A,C,D,E and G)

		HY51C	64/L-10	HY51C	64/L-12	HY51C	64/L-15	UNIT	NOTES
SYMBOL	PARAMETER	Min.	Max.	Min.	Max.	Min.	Max.	UNII	NULES
t _{RC}	Random Write Cycle Time	160		190		245		ns	
t _{RAS}	RAS Pulse Width	100	75000	120	75000	150	75000	ns	
t _{CAS(W)}	CAS Pulse Width (Write Cycle)	30	75000	35	75000	40	75000	ns	
t _{RSH(W)}	RAS Hold Time (Write Cycle)	30		35	·	40		ns	
twcs	Write Command Set-up Time	0		0	-	0		ns	12
twch	Write Command Hold Time	20		25		30		ns	
twp	Write Command Pulse Width	20	-	25		30		ns	
t _{RWL}	Write Command to RAS Lead Time	30		35		40		ns	
tcwL	Write Command to CAS Lead Time	30		35		40	- 	ns	
t _{DS}	Data-In Set-Up Time	0		0		0		ns	
t _{DH}	Data-In Hold Time	20		25		30		ns	

NOTES:

11. Either t_{RCH} or t_{RRH} must be satisfied. 12. t_{WCS} . t_{RWD} t_{CWD} and t_{AWD} are specified as reference points only. If $t_{WCS} \ge t_{WCS}$ (min) the cycle is an early write cycle and the data out pin will remain high impedance throughout the entire cycle. If $t_{CWD} \ge t_{CWD}$ (min) and $t_{RWD} \ge t_{RWD}$ (min) and $t_{AWD} \ge t_{AWD}$ (min) the cycle is a read-modify-write cycle and the date out will contain the data read from the selected address. If none of the above conditions is satisfied, the condition of the data out is indeterminate.

A.C. CHARACTERISTICS (CONT'D.)

READ-MODIFY-WRITE CYCLE

GWMDOL	HY51C64/L-10 HY51C64/L-12 HY51C64/L-15		64/L-15	UNIT	NOTES				
SYMBOL	PARAMETER	Min.	Max.	Min.	Max.	'Min.	Max.	UNII	NOTES
t _{RWC}	Read-Modify-Write Cycle Time	195		230		280		ns	
t _{RRW}	RMW Cycle RAS Pulse Width	135	75000	160	75000	185	75000	ns	
t _{CRW}	RMW Cycle CAS Pulse Width	50	75000	60	75000	70	75000	ns	
t _{RWD}	RAS to WE Delay	100		120		150	• •	ns	12
tcwD	CAS to WE Delay	20		25		30		ns	12
t _{AWD}	Column Address to WE Delay	35		45		55		ns	12

RIPPLEMODE^{TM*} CYCLE¹³

(See Waveforms E,F and G)

(See Waveforms C and G)

autoot			C64/L-10	HY51C64/L-12		HY51C64/L-15		UNIT	NOTES
SYMBOL	PARAMETER	Min.	Max.	Min.	Max.	Min.	Min. Max.		NOTES
t _{CAP}	Access Time From Column Precharge		55		65		75	ns	
t _{PC}	Ripplemode* Read or Write Cycle Time	6Q		70		80		ns	
t _{CP}	Ripplemode* CAS Precharge Time	10		15		20		ns	
t _{RPM}	Ripplemode* RAS Pulse Width		75000		75000		75000	ns	
t _{PCM}	Ripplemode* Read-Modify-Write Cycle Time	85		100		115		ns	

NOTES:

12. t_{WCS} , t_{RWD} , t_{CWD} , and t_{AWD} are specified as reference points only. If $t_{WCS} \ge t_{WCS}$ [min] the cycle is an early write cycle and the data out pin will remain high impedance throughout the entire cycle. If $t_{CWD} \ge t_{CWD}$ [min] and $t_{RWD} \ge t_{RWD}$ [min] and $t_{AWD} \ge t_{AWD}$ [min] the cycle is a read-modify-write cycle and the data out will contain the data read from the selected address. If none of the above conditions is satisfied, the condition of the data out is indeterminate. 13. All previously specified A.C. characteristics are applicable.

*Registered trademark of Intel Corporation.

WAVEFORMS

A. READ CYCLE

B. WRITE CYCLE

NOTES:

- 1,2. $V_{\rm IH\,\,MIN}$ and $V_{\rm IL\,\,MAX}$ are reference levels for measuring timing of
- input signals. 3,4. $V_{OH MIN}$ and $V_{OL MAX}$ are reference levels for measuring timing of
- A. V_{OH MIN} and V_{OL MAX} are reference levels for incasting timing of D_{OUT}.
 5. t_{DF} is measured to I_{OUT} ≤ |I_{LO}|.
 6. t_{DS} and t_{DH} are referenced to CAS or WE, whichever occurs last.
 7. t_{CRP} requirement is only applicable for RAS/CAS cycles preceded by a CAS-only cycle (i.e., for systems where CAS has not been decoded with RAS).
 8. Eithert are the much be satisfied
- 8. Either t_{RCH} or t_{RRH} must be satisfied.

HYUNDAI SEMICONDUCTOR

WAVEFORMS (CONT'D) C. READ-MODIFY-WRITE CYCLE

D. RAS-ONLY REFRESH CYCLE

NOTES:

- 1,2. $V_{\rm IH\,MIN}$ and $V_{\rm IL\,MAX}$ are reference levels for measuring timing of input signals.
- 3.4. $V_{OH MIN}$ and $V_{OL MAX}$ are reference levels for measuring timing of D_{OUT}.
- ^L J_{OUT}.
 ^L t_{OFF} is measured to I_{OUT} ≤ |I_{LO}].
 ^L t_{DS} and t_{DH} are referenced to CAS or WE, whichever occurs last.
 ^L t_{CRP} requirement is only applicable for RAS/CAS cycles preceded by a CAS-only cycle (i.e., for systems where CAS has not been decoded with RAS).
- 7

WAVEFORMS (CONT'D) E. RIPPLEMODETM* READ CYCLE

F. RIPPLEMODETM* WRITE CYCLE

NOTES:

- 1.2. $V_{\rm IH\,MIN}$ and $V_{\rm IL\,MAX}$ are reference levels for measuring timing of input signals
- 3.4. $V_{OH MIN}$ and $V_{OL MAX}$ are reference levels for measuring timing of D_{OUT}.
- 5. t_{OFF} is measured to $I_{OUT} \le |I_{LO}|$. 6. t_{DS} and t_{DH} are referenced to CAS or WE, whichever occurs last.
- t_{CRP} requirement is only applicable for RAS/CAS cycles preceded by a CAS-only cycle (i.e., for systems where CAS has not been decoded with RAS).
- 8. Either t_{RCH} or t_{RRH} must be satisfied.
 9. Access time is t_{CAP} or t_{CAA} dependent, see Ripplemode* discussion on pages 10 and 11.

*Registered trademark of Intel Corporation

HYUNDAI SEMICONDUCTOR

WAVEFORMS (CONT'D) G. RIPPLEMODETM* READ-MODIFY-WRITE CYCLE

NOTES:

9

- 1,2. V_{IH MIN} and V_{IL MAX} are reference levels for measuring timing of input signals.
- 3,4. $V_{OH MIN}$ and $V_{OL MAX}$ are reference levels for measuring timing of

- 4. V_{OH MIN} and V_{OL MAX} are reference to the provided of the point.
 b. top: is measured to I_{OUT} ≤ |I_{LO}|.
 6. t_{DS} and t_{DH} are referenced to CAS or WE, whichever occurs last.
 7. t_{CRP} requirement is only applicable for RAS/CAS cycles preceded by a CAS-only cycle (i.e., for systems where CAS has not been decoded with RAS). decoded with RAS).
- 8. Access time is t_{CAP} or t_{CAA} dependent, see Ripplemode* discussion on pages 10 and 11.

*Registered trademark of Intel Corporation.

DEVICE DESCRIPTION

The HY51C64 is produced with CMOS technology, combining the scaling techniques of production proven NMOS with CMOS. CMOS technology together with new circuit design concepts results in fast data access, low power, fast usable speed and a soft error rate average of less than 10 FITs.

RAS/CAS TIMING

 \overline{RAS} and \overline{CAS} have minimum pulse widths as defined by t_{RAS} and t_{CAS} respectively. These minimum pulse widths must be maintained for proper device operation and data integrity. A cycle, once begun by brining \overline{RAS} and/or \overline{CAS} low, must not be ended or aborted prior to fulfilling the minimum clock signal pulse width(s). A new cycle cannot begin until the minimum precharge time, t_{RP} , has been met.

READ CYCLE

A Read cycle is performed by maintaining Write Enable (\overline{WE}) high during a $\overline{RAS}/\overline{CAS}$ operation. The output pin of a selected device will remain in a high impedance state until valid data appears at the output at access time.

WRITE CYCLE

A Write cycle is performed by taking \overline{WE} low during a $\overline{RAS}/\overline{CAS}$ operation. Data Input (D_{IN}) must be valid relative to the falling edge of \overline{WE} or \overline{CAS} , whichever transition occurs last.

REFRESH CYCLE

To retain data, a refresh operation is performed by clocking each of the 256 row addresses (A0 through A7) with \overline{RAS} at least every 4 milliseconds. \overline{CAS} can remain high (inactive) for this sequence. Any cycle, Read, Write, Read-Modify-Write, or \overline{RAS} -only, will refresh the memory.

EXTENDED REFRESH CYCLE

The HY51C64L extends the refresh cycle period to 64 milliseconds for $\overline{\text{RAS}}$ -only refresh cycles. This feature reduces total power consumption to a maximum of 385 μ W, and typically 130 μ W for data retention, ($\overline{\text{RAS}} \ge V_{\text{CC}} - 0.2\text{V}$. $\overline{\text{RAS}}$ -Only refresh cycle for the HY51C64L-12). The low standby power can significantly

extend battery life in battery back-up applications. Power consumption is calculated from the following equation:

$$P=V_{CC} I_{AVG}=V_{CC} \left[\frac{(t_{RC})(I_{Active}) + (t_{RI}-t_{RC})(I_{Standby})}{t_{RI}} \right]$$

where t_{RC} = refresh cycle time, and t_{RI} = refresh interval time or $t_{REF}/256$.

RIPPLEMODE^{TM*}

Ripplemode operation permits all 256 columns within the selected row of the selected device to be accessed at a high data rate. Maintaining \overline{RAS} low while successive \overline{CAS} cycles are performed, retains the row address internally, eliminating the need to reapply it. The column address buffer acts as a transparent latch while \overline{CAS} is high. Access begins from valid column addresses rather than from \overline{CAS} , eliminating t_{ASC} and t_T from the critical timing path. \overline{CAS} latches the addresses into the column address buffer and serves as an output enable.

During this operation Read, Write, or Read-Modify-Write cycles are possible at random or sequential addresses within the row. Following the entry cycle into Ripplemode* operation, access time is t_{CAA} or t_{CAP} dependent. If the column addresses are valid prior to or coincident with the rising edge of \overline{CAS} , then the access time is determined by the rising edge of \overline{CAS} , specified by t_{CAP} (see Figure 1.) If the column and addresses are valid after the rising edge of \overline{CAS} , then the access time is determined by the valid column addresses specified by t_{CAP} . For both cases, the falling edge of \overline{CAS} latches the addresses and enables the output.

Ripplemode^{*} operation provides a sustained data rate beyond 15MHz for applications that require high data bandwidth, such as bit mapped graphics. The following formula can be used to calculate the data rate:

Data Rate = $\frac{256}{t_{BC}+255t_{PC}}$

HYUNDAI SEMICONDUCTOR

HIDDEN REFRESH

A standard feature of the HY51C64 is that refresh cycles may be performed while maintaining valid data at the output pin. This is referred to as Hidden Refresh. Hidden Refresh is performed by holding \overline{CAS} at V_{IL} and taking \overline{RAS} high and, after a specified precharge period (t_{RP}), executing a " \overline{RAS} -Only" refresh cycle, but with \overline{CAS} held low (see Figure 2).

This feature allows a refresh cycle to be "hidden" among data cycles without affecting the data availability. The part will be internally refreshed at the row addressed at the time of the second \overline{RAS} .

FIGURE 2. HIDDEN REFRESH CYCLE

DATA OUT OPERATION

The HY51C64 Data Output (D_{OUT}), which has threestate capability, is controlled by \overline{CAS} . During \overline{CAS} high state (\overline{CAS} at V_{IH}), the output is in the high impedance state. The following table summarizes the D_{OUT} state for various types of cycles.

HY51C64 DATA OUTPUT OPERATION FOR VARIOUS TYPES OF CYCLES

TYPE OF CYCLE	D _{OUT} STATE
Read Cycle	Data from Addressed
	Memory Cell
Early Write Cycle	Hi-Z
RAS-Only Refresh Cycle	Hi-Z
CAS-Only Cycle	Hi-Z
Read-Modify-Write Cycle	Data from Addressed
	Memory Cell
Delayed Write Cycle	Indeterminate

POWER ON

An initial pause of 100 μ s is required after the application of the V_{CC} supply, followed by a minimum of eight initialization cycles (any combination of cycles containing a RAS clock, such as RAS-only refresh). Eight initialization cycles are required after extended periods of bias without clocks (greater than 4 ms for the HY51C64 and greater than 64 ms for the HY51C64L). The V_{CC} current (I_{CC}) requirement of the HY51C64L during power on is, however, dependent upon the input levels of RAS and CAS.

If $\overline{RAS}=V_{SS}$ during power on, the device will go into an active cycle and I_{CC} would show current transients similar to those shown for the $\overline{RAS}/\overline{CAS}$ timings. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} or be held at a valid V_{IH} during power on.

PACKAGE OUTLINE

16 PIN PLASTIC

гем	MILLIMETERS	INCHES
Α	19.05	0.750
В	0.635	0.025
С	2.54	0.100
D	0.457	0.018
Е	17.78	0.700
F	1.524	0.060
G	3.302	0.130
Н	0.508	0.020
1	3.302	0.130
J	3.81	0.150
K	7.62	0.300
L	6.35	0.250
М	0.254	0.010

ORDERING INFORMATION

Korea Headquarters & Factory, Hyundai Electronics Industries Co., Ltd., Semiconductor Division

 HYUNDAAI
 Semiconductor Sales
 : 12th Fl. Hyundai Bldg., 140-2, Kye-Dong, Chongro-Ku, Seoul, Korea

 SEMICONDUCTOR
 & Marketing Division
 • Tei: 741-1311/25 Ext. 287 A Tlx: K29793/4 HDETN & Fax: (02) 741-0317

 • Head Office & Factory: San 136-1, Ami-Ri, Bubal-Myun, Ichon-Kun, Kyungki-Do, Korea
 • Tei: (0336) 2-6211/30, (02) 741-0661/4 & Telex: K23955/7 HDETN & Fax: (02) 741-0737

U.S. Headquarters, Hyundai Electronics America, Semiconductor Division 2191 Laurelwood Rd., Santa Clara, CA 95054, U.S.A. ▲ Tel: (408) 986-9800 ▲ Telex: 278841 HEA UR ▲ Fax: 988-0665

12 DS02-02/86