==== Personal Computer

===°%E Hardware Reference

Library
IBM Personal Computer 5
Professional Graphics =
Controller Technical =
Reference
6138161

August 15, 1984
© Copyright IBM Corporation 1984

Contents

Description 1
Major Componentsccovuiuur... 3
System-Bus Interface 4
Microprocessor Section 6
Video Control Generator Section 8
Emulator Address Control 11
Graphics Emulator 13
Display Memory 15
Look-Up Table and Video Output Section 18
Timing and Control Section 19
EmulatorModes 20
AlphanumericMode 20
GraphicsMode 24
Description of Basic Operations 28
High-Function GraphicsMode 29
Alphanumeric Operation 29
Graphics Operation 30
Description of Basic Operations 32
Programming Considerations 33
Emulator Programming Considerations 33
Programming the 6845 CRT Controller 33
Programming the Mode Control and Status
Registers 35
Color-Select Register 36
Mode-Select Register 38
Status Register 41
Sequence of Events for Changing Modes 42
Memory Requirements 42
High-Function Graphics Programming
Considerations 43
Coordinate Space 45
Video Generation 56
Display Control 58
Drawing Primitives 63
TeXt oo 69
Command Lists, 71
Look-UpTable 73

August 15,1984
© Copyright IBM Corporation 1984 il

Image Processing 74

Read-Back Commands 75
SystemReset 77
Communications 78
Communication Protocol 80
High-Function Graphics Commands 83

Interface 179
Connector Specifications 180
Specifications i e 181
Logic Diagrams 183
GlosSaryciiiiiiiiiinieerittstnaranonns Glossary-1
Indexiiiiiiitiiiieniinieessrosnnoacnnns Index-1

August 15,1984
iv © Copyright IBM Corporation 1984

vi

Description

The IBM Personal Computer Professional Graphics Controller is
an adapter that: (1) provides a high-function graphics capability
and (2) acts as an IBM Color/Graphics Monitor Adapter, with
the exception of the 160-by-100 color/graphics mode.

The operations of the Professional Graphics Controller are
controlled by an 8088 Microprocessor. It carries out all
communications through its data bus and address bus. The
system-bus interface recognizes its own commands and passes
only these commands to the controller. The interface allows the
microprocessor to read or write to memory locations, using the
IBM Professional Graphics Controller microprocessor’s data and
address busses.

The microprocessor controls and initializes several sections of the
controller. It defines the requirements of the controller’s
hardware so the controller can imitate the actions of the IBM
Color/Graphics Monitor Adapter. The microprocessor also
regulates the emulator address control, which translates the
system’s [/O address information and stores the associated data
in the graphics emulator memory for screen display. Finally, it
initializes the video control generator, which generates timing
pulses and the horizontal- and vertical-synchronization (sync)
pulses.

During operation, the microprocessor intercepts commands sent
to the emulator and interprets them. The microprocessor can also
accept and interpret the high-function graphics commands,
writing the results in the display memory for screen display. Both
the emulator and high-function graphics functions have access to
the look-up table (LUT) and output section.

August 15,1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 1

N

The following is a block diagram of the Professional Graphics
Controller.

Sync

Video

Micro- Control D.sphy
Processor Generator Memory | _Shift Register Bus
:> Section Section
Data Bus High-
” Function

Scanner
System- Address
R/W Control Y Bus > Look-Up
Interface Table & |\i400
. Video p—
Address Bus Output

]

Emulator
Timing > Address , PEL Bus

System Bus

and Control Emulator
Control Character ROM
Section Row Address

Emulator RAM Address Bus

. . August 15,1984
2 Professional Graphics Controller © Copyright IBM Corporation 1984

Major Components

« System-Bus Interface
— Bidirectional Buffer
— Control Decode Logic
— Address Decoder
+ Microprocessor Section
— 8088 Microprocessor
— Clock Generator Control
— Address Latch
— Data Latch
— Decoders
— 2K by 8-bit RAM
— 64K by 8-bit ROM
» Video Control Generator Section
— Video Controller
— Control Decoder
— 16- by 8-bit State Length Memory
— Synchronization Pulse Generator
— State Multiplexer
— Vertical and Horizontal State Counters
— Vertical and Horizontal State Length Counters
— Buffer
« Emulator Address Control
— Controller
— Cursor Generator
— Parameter Registers
— Character ROM Address Generator
— Row Address Generator
— Column Address Generator
— Microprocessor Address Buffers
¢ Graphics Emulator
— 16K by 16-bit Emulator RAM
— Shift Registers
— Character ROM
— Attribute Latch
— Emulator PEL Processing
— Buffer

August 15,1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 3

« Display Memory
— High-Function Graphics Display Memory

Latch

Tri-State Bidirectional Driver
Tri-State Latch

320K by 8-bit RAM

— Display RAM Address Control
— High-Function Graphics Scanner

ROM
Buffers

o Look-Up Table (LUT) and Video Output Section
— Latches

— Look-Up Table Memory

— Buffer
— Triple Digital-to-Analog Converter

¢ Timing and Control Section
— 50-MHz Oscillator

— High-Function Graphics Display Timing Generator
— Control Decoder and Latches

System-Bus Interface

Following is a block diagram of the system-bus interface.

[8

Bidirectional
~ta Bus
Da Buffer

8/

<

uP Bus >

7

4 Professional Graphics Controller

1]
3
]
13
3
g 4/
v [R/W COntroI> Decoded Control Lines >
/ Control
Decode
Logic 5
Address Bus
20
! Address P Add Bus
— ul ress
20/ > Decoder
/

August 15,1984
© Copyright IBM Corporation 1984

~

The system-bus interface allows the system microprocessor to
gain access to the display memory and emulated registers through
the ‘data,” ‘address,’ and ‘control’ lines. The system-bus interface
can detect the attempt by the system microprocessor to execute a
Memory Write command or an I/O Write command to either the
emulator memory addresses or the communications memory for
the high-function graphics mode.

When the interface logic detects an assigned address, a ‘hold’
signal is sent to the system microprocessor, which suspends the
operation of the controller microprocessor until the proper time.
Although the system microprocessor can gain access to the
memory of the controller microprocessor (through a series of
commands on the bus interface), it cannot directly access the
display RAM, nor can it issue interrupts to the controller
microprocessor. Likewise, the controller microprocessor cannot
gain control of the system bus.

If the system microprocessor writes to a register of the emulated
6845 CRT Controller, the data is stored in the controller’s local
RAM.

The controller operates by mapping both the I/0 addresses and
the addressed memory into its own memory. It then reads these
locations, interprets the data, and programs the hardware to
imitate the IBM Color/Graphics Monitor Adapter. If
high-function graphics commands are written to the
communication area, the controller microprocessor interprets
those commands and writes to the display memory for screen
display.

August 15,1984 .)
© Copyright IBM Corporation 1984 Professional Graphics Controller 5

Microprocessor Section

Following is a block diagram of the microprocessor section

> Control

o T
Lines
Clock
Generator
Control
R/W Control >
RAM
Control > 2Kx8
8088 P
uP 12
. Address 20/
b Horizantal Test 7 Address
. 8 Latch
Vertical Interrupt Address Data]
> ROM
64Kx8
i —
8 20,
E:::h P Dat UP_ Address Bus /J—>
8/
UP Data Bus 7 >
August 15,1984
6 Professional Graphics Controller

© Copyright IBM Corporation 1984

The microprocessor section is a standard 8088 Microprocessor
arrangement. A ‘timing control’ line’s input leads into a clock
generator control. The control signal emitted from the clock
generator provides the clock frequency that drives the 8088
Microprocessor. Address and data latches store the signals sent
over the address and data busses. Both the address and data lines
use two 32K by 8-bit ROMs and a single 2K by 8-bit static RAM.
The decoders control chip-select and latch registers.

A single, maskable interrupt occurs from the ‘vertical interrupt’
line. The test pin of the microprocessor samples the horizontal-
synchronization pulse.

August 15,1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 7

Video Control Generator Section

Following is a block diagram of the video control generator

section.

Control Signals !

Video
Controlier

3

ﬁ Sync

Vert Sync
—

Horz Sync
—_

Vertical State

K Horizontal State

Vertical Horizontal

4

State State
Counter Counter

Control

Done

3 Control [T
Decoder | 4
Control

Vert State

State
—POwuBE Y Length
Memory
N
8

Done

Length

Counter

| Timing Control Signals >

8 Professional Graphics Controller

Horiz State
Length K

Counter

August 15,1984

© Copyright IBM Corporation 1984

The video controller monitors and sequences the video control
generator section. The main loop of the control generator
controls the format of the display screen. A display screen is
divided into four states, as shown in the following.

[820 PELs >
_ Y
Vertical Sync
A
|<¢————————— 640 PELs >
Hori- !E E
zon- A A 508
Lines
tsal m Active 430 ﬁ |
ync | Display Lines |
N N
G G
A
A

States—»l 1 | 2 | 3 l 4 |

The state length memory is a part of the video control generator
section. The contents of the state length memory provide the
data to the state length counters, which then determine how long
each state remains active. For each scan line, the state length
memory loads this data, one at a time, into the horizontal state
length counter. At the end of the count, the counter signals
‘done’ to the video controller, which then sets the control lines or
particular stages of each state and sends the control information
into the horizontal state counter. The video controller determines
whether to start again at zero for some state, or to increment the
state counter and begin on the next state. The horizontal state
counter counts the number of states across the screen. From the
state counter, the synchronization pulse generator determines the
vertical- or horizontal-synchronization pulse and activates the
appropriate line.

August 15,1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 9

This same loop occurs for vertical states. The video controller
monitors the current vertical and horizontal states through the
state counters and synchronization pulse generator.

The controller microprocessor can write directly to the state
length memory. to vary the size of each state on the screen. State
lengths remain under program control.

August 15,1984
10 Professional Graphics Controller © Copyright IBM Corporation 1984

Emulator Address Control

Following is a block diagram of the emulator address control.

9/
Timing Control Signals
Mode
Cursor 2 { |
2
7/ Character
Cursor

-i> Generator Cont 2/ ROM 3 Character

3 / Address ROM Row
Generator Address

w/

3
s/ 8 [~ I7/—
uP Data Bus 3‘
Row Column uP 15
Address Address Address 1P Address Bus
Parameter| Generator Buffers Buffers
Registers
8/ 4 b é ; |
mulator RAI ddress Bus

7

To Emulator RAM

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 11

N

For the emulator mode, the address control consists of two
generators—a row address generator and a column address
generator. Both are driven by a controller and produce the
addresses needed for the emulator RAM.

The controller microprocessor can access the address bus to
program the address generators using an address buffer, and can
program the four parameter registers. The cursor generator
compares the addresses saved in the address generator with those
saved in the parameter registers. If a match is found, the cursor
generator activates the ‘cursor’ line.

The character ROM address generator produces a character ROM
row address that defines which line to write using a font with 8 by
16 character cells.

. August 15,1984
12 Professional Graphics Controller © Copyright IBM Corporation 1984

Graphics Emulator

Following is a block diagram of the graphics emulator.

Control 3 1BM Alpha Video Data

Shift Register

3 Control
Character

Character Address ROM

4/ RAM Control Signals

8,

Control

Attribute
Latch

8/
Attribute
Bus

Emuiator
RAM
Emulator s 16K x 16
A Control 8/ Emulator
Address Em.
B Control Pr

8
PEL Bus

uP Data Bus

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 13

The emulator RAM address bus sends signals to the 16K by
16-bit emulator RAM. The 16-bit-wide RAM allows the
character and its attributes to be read simultaneously. The RAM
shifts this information into a register that also acts as a latch.
During the alphanumeric mode, this information travels through
an attribute latch and the character ROM. The character ROM
checks the shift in the look-up table (LUT) before passing the
information through another shift register.

The attributes determine the foreground and background colors
of the character. The picture element (PEL) processor then shifts
this information out onto the PEL bus.

During the 320-by-200 and 640-by-200 modes, the emulator
RAM shifts out the information 16 bits at a time. The shift
register then shifts out its signals two bits at a time into the PEL
processor. The 640-by-200 mode uses these two bits alternately
as either black or white values. The 320-by-200 mode uses the
same two bits to determine the color placed on the screen.

The system microprocessor can read and write directly into the
emulator RAM space using the CPU address bus.

. August 15,1984
14 Professional Graphics Controller © Copyright IBM Corporation 1984

Display Memory

The display memory block consists of the high-function graphics
display memory and the display RAM address control.

High-Function Graphics Display Memory

Following is a block diagram of the high-function graphics display
memory

uP <‘; < 8/
Data Latch Data Bus
Bus /

Control —I

Tri-State
Bidirectional
Driver

PEL 1 80K x 8

8/ 80K x 8
Display Address Bus} PEL 0 x
80K x 8
/
Tri-State

Latch

I 8/
Shift Register Bus >
/

The high-function graphics display memory is logically arranged
as an array of 640-by-480 PELs. Each PEL represents one byte
of data. The Professional Graphics Controller provides a variety
of PEL write modes to improve the transfer of data to display
memory.

The high-function graphics display memory consists of five,
32-bit-wide banks (32 bits equal 4 PELs). The controller
microprocessor can write through the latch into the PEL memory.
All information is read from each memory and displayed each

August 15,1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 15

time the picture is scanned. This process begins when the tri-state
drivers latch four PELs. Each tri-state driver is enabled
individually as the beam crosses the screen. After the fourth PEL
appears on the screen, four new PELs become latched.

In the high-function graphics mode, the high-function graphics
scanner generates addresses for a display access cycle on one of
the five banks every 160 nanoseconds (ns). These cycles are
staggered over an 800-ns period. Of the 32 bits of data latched
from the memory, one PEL is released onto the shift register
every 40 ns. The address selection generator, a field
programmable logic sequencer (FPLS), interleaves
microprocessor access cycles between display cycles, thus
providing the possibility of access every 160 ns. This process
achieves a display-memory access capacity of 32 bits every 80 ns.

During a microprocessor write operation, even in multi-PEL write
modes, all data from the microprocessor is latched, so the
microprocessor receives a ‘ready’ instantly. The FPLS cycles to
the correct locations, or to all locations, depending on the mode,
while the microprocessor prepares for the next access.

Another important aspect of the display memory is low power
consumption. The staggered access technique reduces the RAM
cycle time to as low as 400 ns, even with both the microprocessor
and display at full capacity. When the display operates alone, the
cycle time increases to 800 ns, minimizing RAM power
consumption.

. . August 15,1984
16 Professional Graphics Controller © Copyright IBM Corporation 1984

~

~

Display RAM Address Control

Following is a block diagram of the display RAM address control.

8/ 8
Display Address Bus
~] /
/ 3 |
High-Function
3 .
Control+ Graphics Buffers
Scanner
3
5 Control
8] M~
ROM

16/ 3
uP Address Bus

/

In the high-function graphics mode, the high-function graphics
scanner operates as an address generator. The scanner output
selects data from each of the five 32-bit-wide banks (for a total of
20 PELs written). The controller microprocessor expects
memory to appear in a continuous manner; that is, 640 PELs
across. The address-translator ROM is an address map of 640
adjacent memory locations. This provides the display format,
thus leaving the controller microprocessor out of the conversion
process.

Because this address system operates on 20-PEL boundaries, the
memory for each line maps into an adjacent space of 640
locations for microprocessor access. Otherwise, if the
microprocessor did the work, the very high writing speeds would
be reduced.

August 15,1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 17

Look-Up Table and Video Output Section

Following is a block diagram of the look-up table and video
output section.

8 8[:
Shift Reg Bus Latch Look-Up
7] 12/

Table
256 x 12

8/ Memory /
Pixel Bus

7

8 Red
b
uP _K,déress Busy Latch i
:> Triple Green
DAC Blue
8 / 12,
<‘r P Data Bus Buffer
/

Shift registers from the display memory latch onto the PEL bus
leading from the emulator. Both the emulator and high-function
graphics modes use the same PEL bus. The latches provide an
address for data in the look-up table (LUT). The eight lines of
the PEL bus provide up to 256 colors, while the 256- by 12-bit
LUT in memory provides a selection from a palette of 4096
colors. The LUT generates the color sent as output. The 12 LUT
output lines (4 bits each for red, green, and blue) are the inputs to
a triple digital-to-analog converter (DAC), which converts the
signal to red, green, and blue (RGB) intensities. The controller
microprocessor can write to and read from the LUT.

August 15,1984
18 Professional Graphics Controller ~ © Copyright IBM Corporation 1984

Timing and Control Section

Following is a block diagram of the timing and control section.

System Control Signals >

High-Function

i 8/ :
50 MHz »| Graphics Control >
Osc Display I

Timing
Generator Control
uP Control 3/ Decoder
8 7 and
Control Latches

8 {:
P Address Bus

uE gata Eus >

The high-function graphics-display timing generator, which is
driven by a 50-MHz oscillator, sends control signals for memory
and for the latch control from the display memory. It signals the
controller microprocessor when it is ready to receive or send data
from display memory. Except for system control signals, the
signals from the timing generator are latched and decoded. The
controller microprocessor maintains some control of the latches
and decoder. The timing generator also generates clock signals to
synchronize the board functions.

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 19

Emulator Modes

To provide compatibility with the Color/Graphics Monitor
Adapter protocols, the Professional Graphics Controller emulates
the Color/Graphics Monitor Adapter in the alphanumeric and
graphics modes.

Note: If a Color/Graphics Adapter is already present in the
system unit, the emulator section of the Professional
Graphics Controller is disabled with the enable/disable
jumper.

Alphanumeric Mode

Every display-character position in the alphanumeric mode is
defined by two bytes in the regen buffer, not the system memory.
Both the Professional Graphics Controller and the
Color/Graphics Monitor Adapter use the following 2-byte
character or attribute format.

Display-Character Code Byte Attribute Byte
76543210 76543210

The attribute byte definitions are:

76543210
[B|]R G B]I[R G B

Foreground Color

l—— - Foreground Intensity

Background Color

> Foreground Blinking

. . August 15,1984
20 Professional Graphics Controller © Copyright IBM Corporation 1984

The following table provides a summary of available colors.

I R G B Color
0 0 0 0 Black

0 0 0 1 Blue

0 0 1 0 Green

0 0 1 1 Cyan

0 1 0 0 Red

0 1 0 1 Magenta

0 1 1 0 Brown

0 1 1 1 White

1 0 0 0 Gray

1 0 0 1 Light Blue

1 0 1 0 Light Green

1 0 1 1 Light Cyan

1 1 0 0 Light Red

1 1 0 1 Light Magenta

1 1 1 0 Yellow

1 1 1 1 White (High Intensity)

In the alphanumeric mode, the display mode can be operated in
either a 40-by-25 mode or a 80-by-25 mode.

August 15,1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 21

40-by-25 Alphanumeric Mode

The 40-by-25 alphanumeric mode:

Displays up to 25 rows of 40 characters each

Has a ROM character generator that contains dot patterns
for a maximum of 256 different characters

Requires 2000 bytes of read/write memory (on the
controller)

Has a 16-high by 8-wide character box

Has one character attribute for each character

August 15,1984

22 Professional Graphics Controller © Copyright IBM Corporation 1984

80-by-25 Alphanumeric Mode

The 80-by-25 alphanumeric mode:

« Supports the IBM Professional Graphics Display
« Displays up to 25 rows of 80 characters each

« Has a ROM character generator that contains dot patterns
for a maximum of 256 different characters

« Requires 4000 bytes of read/write memory (on the
controller)

+ Has a 16-high by 8-wide character box

. Has one character attribute for each character

August 15,1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 23

Graphics Mode

The Professional Graphics Controller has two modes available
with the graphics mode—the 320-by-200 color/graphics mode
and 640-by-200 black-and-white graphics mode. Both are

supported in ROM. The following table summarizes the two
modes.

Modes Number of Colors Available
(Includes Background Color)

320 x 200 4 Colors Total

1 of 16 for Background and

1 of Green, Red, or Brown or
1 of Cyan, Magenta, or White

640 x 200 Black-and-white only

320-by-200 Color/Graphics Mode

The 320-by-200 color/graphics mode supports the Color Display.
It has the following features:

24

Contains a maximum of 200 rows of 320 picture elements
(PELs), with each PEL being 2.4-high by 1-wide

Preselects one of four colors for each PEL

Requires 16,000 bytes of read/write memory (on the
controller)

Uses memory-mapped graphics

. . August 15,1984
Professional Graphics Controller © Copyright IBM Corporation 1984

« Formats four PELs for each byte as follows:

7 6 5 4 3 2 10
C1 Co C1 CO C1 CO C1 CO
First Second Third Fourth
Display Display Display Display
PEL PEL PEL PEL

« Organizes graphics storage in two banks of 8000 bytes, using
the following format:

Memory
Address
(in hex)
Function
BIF3F
Even Scans (0,1,4,5,8,9...198)
8,000 bytes
B8000
Not Used
BA00OO
Odd Scans (2,3,6,7,10,11. . .199)
8,000 bytes
BBF3F
Not Used
BBFFF

Address hex B8000 contains PEL information for the
upper-left corner of the display.

August 15,1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 25

e Determines color selection by the following logic:

C1 CO0 Function

0 0 Dot takes on the color of 1 of 16 preselected
background colors

0 1 Selects first color of preselected Color Set 1 or
Color Set 2

1 0 Selects second color of preslelcted Color Set 1
or Color Set 2

1 1 Selects third color of preselected Color Set 1 or
Color Set 2

C1 and CO select 4 to 16 preselected colors. This color selection
(palette) is preloaded in an I/O port.

The two color sets are:

Color Set 1 Color Set 2
Color 1 is green Color 1 is cyan
Color 2 is red Color 2 is magenta
Color 3 is brown Color 3 is white

August 15,1984
26 Professional Graphics Controller © Copyright IBM Corporation 1984

640-by-200 Black-and-White Graphics Mode

The 640-by-200 black-and-white graphics mode supports color
monitors. This mode:

o Contains a maximum of 200 rows of 640 PELs, with each
PEL being 1-high by 1-wide.

« Supports black-and-white mode only.

e Requires 16,000 bytes of read/write memory (on the
controller).

« Uses the same addressing and mapping procedures as the
320-by-200 color/graphics mode, but the data format is
different. In this mode, each bit in memory is mapped to a
PEL on the screen.

« Formats eight PELs per byte as follows:

[7]e]s]4[s]2]+]o]
]

First Display PEL
Second Display PEL
Third Display PEL
Fourth Display PEL
Fifth Display PEL
Sixth Display PEL
Seventh Display PEL
Eighth Display PEL

ﬂ A A Ar Ar A A 1\

August 15,1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 27

Description of Basic Operations

In the alphanumeric mode, the controller fetches character and
attribute information from its display buffer. The starting address
of the display buffer is programmable through the 8088
Microprocessor, but it must be an even address. The character
codes and attributes are then displayed according to their relative
positions in the buffer as shown in the following.

Memory
Address
(in hex) Display Buffer
B8000
(Even) Character Code A
Starting 1
Address B800
Attribute A
B8002 (Example of a 40 by 25 Screen)
Character Code B AB
B8003
Attribute B
B87CE X
Character Code X Video Screen
Last B87CF
Address Attribute X

The processor and display control unit have equal access to the
display buffer during all operating modes except the 640-by-200
alphanumeric mode. During this mode, the processor should have
access to the display buffer during the vertical retrace time. If it
does not, the display will be affected with random patterns as the
processor is using the display buffer. In the alphanumeric mode,
the characters are displayed from a prestored ROM character
generator that contains the dot patterns of all the displayable
characters.

In the graphics mode, the displayed dots and colors (up to 16K
bytes) are also fetched from the display buffer.

August 15,1984
28 Professional Graphics Controller © Copyright IBM Corporation 1984

High-Function Graphics Mode

The Professional Graphics Controller provides high function
graphics capability for the PC by processing simple command
strings into bit-mapped images in the controller. The Professional

N\ Graphics Controller provides both alphanumeric and graphic
capabilities.

Alphanumeric Operation
The alphanumeric operation:

« Contains a built-in character font with character enlargement
capabilities.

» Uses a smoothing function for enlarged characters.

« Permits characters to be drawn in a foreground color with a
transparent background; therefore, whatever is behind the
character remains there.

« Contains programmable character fonts accessible through
the high-function graphics command set.

Note: The programmable character sets cannot be
enlarged.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 29

Graphics Operation

The high-function graphics mode supports the Professional
Graphics Display. It has the following features:

« Contains 480 rows of 640 PELs; the PELs are spaced the
same distance vertically and horizontally providing the
standard 4:3 screen aspect ratio.

+ The color of each PEL is selected from a set of 256 colors,
which are selected from a palette of 4096 colors.

« Requires 307,200 bytes of read/write memory (on the
controller).

Note: This memory is addressable only through the
high-function graphics commands and does not occupy
system address space.

« Uses memory-mapped graphics.

« Formats one PEL for each byte.

+ Organizes a communications area consisting of a bank of
1000 bytes.

August 15,1984
30 Professional Graphics Controller © Copyright IBM Corporation 1984

o Color selection is determined by the following logic:

The display RAM supplies an 8-bit byte that is used as an
address to the LUT. This 8-bit address selects one of 256
12-bit words from the LUT. This data provides the color
information for each PEL to be sent to the screen. The
12-bit word is divided into three groups of 4-bits: 4 red, 4
green, and 4 blue, as shown in the following table.

4 Bits 4 Bits 4 Bits
Red Green Blue
1 PEL
1 Byte

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 31

Description of Basic Operations

The controller microprocessor interprets high-function graphics
commands and translates them into data that is stored in the
display memory. The display memory is then scanned 60 times

each second. Each byte is then sent to the LUT. Whatever data '
is in memory is used as an address to the LUT data to determine
what is sent to the screen.
N
N

August 15, 1984
32 Professional Graphics Controller © Copyright IBM Corporation 1984

Programming Considerations

The Professional Graphics Controller provides the operation of
two individual adapters: (1) the Color/Graphics Monitor
Adapter and (2) the High-Function Graphics Adapter. The
emulation operation and the high-function graphics operation may
be individually programmed. High-function graphics commands
determine which of the two operations appears on the screen.

Emulator Programming Considerations

The Professional Graphics Controller emulates the 6845 CRT
Controller of the Color/Graphics Monitor Adapter.

Programming the 6845 CRT Controller

The CRT Controller has 19 accessible internal registers, which
are used to define and control a raster-scan CRT display. One of
these registers, the index register, is actually used as a pointer to
the other 18 registers. It is a write-only register, and is loaded
from the processor by executing an Out instruction to I/O
address hex 3D4. The five least-significant bits of the I/O bus
are loaded into the index register.

To load any of the other 18 registers, the index register is first
loaded with the necessary pointer; then the data register is loaded
with the information to be placed in the selected register. The
data register is loaded from the processor by an Out instruction to
I/0 address hex 3D5.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 33

The following table defines the values that must be loaded into
the 6845 CRT Controller registers to control the different modes
of operation supported by the controller.

Address | Register| Register Units 1/0 | 40 by 25 | 80 by 25 | Graphic
Register | Number Type Alpha- | Alpha- | Modes
numeric [numeric

4 R4 Vertical Total| Character | Write 1F 1F 1F
Row Only

5 R5 Vertical Total| Scan Line | Write 06 06 06
Adjust Only

6 R6 Vertical Character | Write 19 19 19
Displayed Row Only

7 R7 Vertical Sync| Character | Write 1C 1C 1C
Position Row Only

A R10 Cursor Start | Scan Line | Write 06 06 06
Only

B R11 Cursor End | Scan Line | Write 07 07 07
Only

C R12 Start - Write 00 00 00
Address(H) Only

D R13 Start - Write 00 00 00
Address(L) Only

E R14 Cursor - Read/ XX XX XX
Address(H) Write

F " R15 Cursor - Read/| XX XX XX
Address(L) Write

Note: All register values are in hexadecimal

. . August 15, 1984
34 Professional Graphics Controller © Copyright IBM Corporation 1984

Programming the Mode Control and Status Registers

The following shows the I/O registers of the Professional
Graphics Controller.

Function of Register Hex A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
Address

Mode Control Register 3D8 1 11 1 0 1 1 0 O O
(DO) .
Color Select Register 3D9 1 1 1 1 0 1 1 0 0 1
(DO)
Status Register (D1) 3DA 11 1 1 0 1 1 0 1 O
6845 Index Register 3D4 111 1 0 1 0 1 0 O
6845 Data Register 3D5 111 1 0 1 0 1 0 1

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 35

Color-Select Register

This is a 6-bit, output-only register (cannot be read). Its I/O
address is hex 3D9, and it can be written to by using the 8088
Microprocessor’s I/O Out command. Following is a description
of the bits of the color-select register.

Bit O

Bit 1

Bit 2

Bit 3

Bit 4

Bit5
Bit 6

Bit 7

Selects B (blue) background color in 320 x 200 graphics mode
Selects B (blue) foreground color in 640 x 200 graphics mode

Selects G {(green) background color in 320 x 200 graphics mode
Selects G (green) foreground color in 640 x 200 graphics mode

Selects R (red) background color in 320 x 200 graphics mode
Selects R (red) foreground color in 640 x 200 graphics mode

Selects | (intensified) background color in 320 x 200 graphics mode
Selects | (intensified) foreground color in 640 x 200 graphics mode

Selects alternate, intensified set of colors in graphics mode

Selects active color set in graphics mode
Not used

Not used

Bits 0,1, 2,3 Select the foreground color in the 640-by-200

Bit 4

Bit 5

color/graphics mode, and the background color
(CO or C1) in the 320 by 200 color/graphics
mode.

When set, selects an alternate, intensified set of
colors.

Used in the 320 by 200 color/graphics mode to

select the active set of screen colors for the
display.

August 15, 1984

36 Professional Graphics Controller © Copyright IBM Corporation 1984

When bit 5 is set to 0, colors are determined as follows:

C1 CO Colors Selected
0 0 Background (Defined by
bits 0-3 of port hex 3D9)
0 1 Green
1 0 Red
1 1 Brown

When bit 5 is set to 1, colors are determined as follows:

C1 CO Colors Selected

0 0 Background (Defined by
bits 0-3 of port hex 3D9)

0 1 Cyan
1 0 Magenta
1 1 White

When bit 5 is set to 0 and bit 2 of the mode-select register is set
to 1, colors are determined as follows:

C1 [&1) Colors Selected
0 0 Background
0 1 Cyan
1 0 Red
1 1 White

August 15,1984

© Copyright IBM Corporation 1984 Professional Graphics Controller 37

Mode-Select Register

This is a 6-bit, output-only register (cannot be read). Its I/O
address is hex 3D8, and it can be written to using the 8088
Microprocessor’s I/O Out command.

The following table is a description of the register’s functions
when the bit values are set to 1.

BitO 80 x 25 alphanumeric mode

Bit 1 Graphics select

Bit 2 Black /white select

Bit 3 Enable video signal

Bit4 640 x 200 black /white mode

Bit 5 Change background intensity to blink bit
Bit 6 Not used

Bit 7 Not used

Bit 0 A 1 selects 80-by-25 alphanumeric mode.
A 0 selects 40-by-25 alphanumeric mode.

Bit 1 A 1 selects graphics mode.
A 0 selects alphanumeric mode.

August 15, 1984
38 Professional Graphics Controller ~ © Copyright IBM Corporation 1984

Bit 2-

Bit 3

Bit 4

Bit S

A 1 selects black-and-white mode.
A 0 selects color mode.

A 1 enables the video signal at certain times when
modes are being changed. The video signal should be
disabled when changing modes.

A 1 selects the 640-by-200 mode black-and-white
graphics mode. One of 8 colors can be selected on
direct-drive sets in this mode by using register hex 3D9.

When on (set to 1), this bit changes the character
background intensity to the blinking attribute function
for alphanumeric modes. When the high-order attribute
bit is not selected, 16 background colors (or intensified
colors) are available. For normal operation, this bit
should be set to 1 to allow the blinking function.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 39

Mode-Select Register Summary

The following table shows the mode-select registers.

Bits

0 2|13|4]|5

ojoj1(1]10]1 40 x 25 Alphanumeric Black-and-White
o|0jOf1]0]|1 40 x 25 Alphanumeric Color
1]1011|1|0f1 80 x 25 Alphanumeric Black-and-White
110101101 80 x 25 Alphanumeric Color
oj111]1]10]|z 320 x 200 Black-and-White Graphics
o|1|0]|1|0]|=z 320 x 200 Color Graphics
oj1|1|1|1]z 640 x 200 Black-and-White Graphics

I—> Enable Blink Attribute

640 x 200 Black-and-White
Enable Video Signal
» Select Black-and-White Mode
Select 320 x 200 Graphics
80 x 25 Alphanumeric Select

\ 4

z = Don’t care condition

. August 15, 1984
40 Professional Graphics Controller © Copyright IBM Corporation 1984

Status Register

The status register is a 4-bit, read-only register. Its I/O address is

hex 3DA, and it can be read using the 8088 Microprocessor’s I/O

In command. The following table is a description of the register
~ functions.

Bit O Display Enable
Bit 1 Reserved

Bit 2 Reserved

Bit3 Vertical Sync
Bit 4 Not Used

Bit 5 Not Used

Bit 6 Not Used

Bit 7 Not Used

Bit 0 When set to 1, indicates that access to the regen buffer
memory can be made without interfering with the display.

Bit3 When set to 1, indicates that the raster is in a vertical
retrace mode. This is a good time to update the screen
buffer.

August 15,1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 41

Sequence of Events for Changing Modes

1. Determine the mode of operation.

2. Reset the video enable bit in the mode-select register.

3. Program the CRT Controller to select the mode.

4. Program the mode- and color-select registers, including

re-enabling video.

Memory Requirements

The memory used by this controller is provided entirely on-board.
It consists of 16K bytes without parity. This memory is used as
both a display buffer for alphanumeric data and as a bit map for
graphics data. The regen buffer’s address starts at hex B§000.
The following table shows the memory requirements.

Read/Write Memory Address

Space (in hex)
01000
System
Read/Write
Memory
A0000
B8000

BBFFF

C0000

42 Professional Graphics Controller

Display Buffer
(16K Bytes)

August 15, 1984

© Copyright IBM Corporation 1984

High-Function Graphics Programming
Considerations

The high-function graphics command set uses a wide range of
two-dimensional and three-dimensional programs that include:

Drawing primitives with points, vectors, and polygons in two
and three dimensions

Coordinate transformations with modeling (scaling, rotation,
translation) and viewing transformations

Drawing primitives with rectangles, circles, ellipses, arcs, and
sectors in two dimensions

Stored segments that define and execute command lists
Color control functions

Text generation

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 43

Following is a flowchart of the two- and three-dimensional

commands.
3D Modeling
Commands Transformation
(4-by-4 Matrix)
y
Viewing
Transformation
(4-by-4 Matrix)
A
Hither/Yon
Clipping
Y
3D to 2D
Transformation
2D -~
Commands o
Y

44 Professional Graphics Controller

Window Clipping
and Viewport
Transformation

Standard 2D
Draw Routines

August 15, 1984

© Copyright IBM Corporation 1984

Objects may be defined in three dimensions using the
three-dimensional drawing commands. A modeling matrix allows
the object to be moved (translated), changed in size (scaled), and
rotated. A viewing matrix allows the object to be viewed from
different directions and distances.

Two clipping planes are defined at right angles to the
line-of-sight. Any part of an object beyond the yon clipping plane
and any part of an object in front of the hither clipping plane are
not seen.

Three-dimensional objects are projected onto a two-dimensional
viewplane, which is the plane of the monitor’s screen.
Two-dimensional objects are defined directly on the viewplane.
Coordinates on the viewplane are referred to as virtual
coordinates. A window defines that area of the viewplane that is
visible. Any part of an object outside the defined window is not
seen. A viewport specifies a rectangular area on the monitor’s
screen that completely contains the defined window.

Coordinate Space

Two-dimensional commands operate on a virtual coordinate space
whose x and y boundaries range from -32768.00000 bits to
+32767.99999 bits, with 16 bits of precision to the right of the
decimal point. The display screen, however, is 640 PELs wide by
480 high. Therefore, commands are available to specify how
coordinates are converted from virtual values to screen values. In
addition, portions of the physical screen may be declared *off
limits” to drawing. This is accomplished through the command
VWPORT, which defines a rectangular clipping viewport.

August 15,1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 45

The following figure shows the relationship of two-dimensional
virtual coordinate space to real coordinate space.

Virtual Coordinate Space (2D) Real Coordinate Space
+32767.99999 Bits — 640 Bits —
Transformation
Process 480
y — Bits
~32768.00000 Bits X +32767.99999 J_
(0.0) Bits (0.0)

—32768.00000 Bits

Three-dimensional drawing commands operate in a virtual
coordinate space whose x and y boundaries range from
-32768.00000 bits to +32767.99999 bits, but a z coordinate is
added, which may have any value in the same range as x and y.
All three-dimensional drawing may be divided into a series of
points and lines; these points and lines are what are mapped onto
the two-dimensional plane for actual writing to the display.

The following figure shows the relationship of three-dimensional
virtual coordinate space to real coordinate space.

Virtual Coordinate Space (3D) Real Coordinate Space
—32768.00000 Bits +32767.99999 Bits |—640 Bits—|
\\ Transformation
N P
AN rocess 480 Bits
v ——
~
A X
~32768.00000 Bits > +32767.99999
Bits (0,0,0)
(0,0,0)
\Z~

~32768.00000 Bits +32767.99999 Bits

)) August 15, 1984
46 Professional Graphics Controller © Copyright IBM Corporation 1984

~

Coordinate Transformations

The high-function graphics mode refers to four coordinate
systems when converting three-dimensional virtual coordinates to
a screen image. The two-dimensional commands MOVE and
DRAW undergo a single transformation.

Two-Dimensional Transformation

The lowest level of transformation occurs following the
two-dimensional command MOVE or DRAW. These commands
use parameters given in two-dimensional virtual coordinates. The
high-function graphics mode converts these points to screen
coordinates. To understand this conversion, keep in mind that the
window in two-dimensional virtual space maps onto the viewport
of the screen.

The WINDOW command defines an area (window) in

two-dimensional virtual space to be mapped into a defined
viewport with x and y virtual coordinate values, as follows:

Window

Yw2

Xwil:Ywi Xw2

August 15,1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 47

The x and y values may range from -32768.00000 to
+32767.99999. The VWPORT command defines an area
(viewport) within the display screen with x and y screen
coordinate values, as shown in the following.

Viewport

'

Xy1:Yyl Xv2

0,0

The x values range from 0 to 639, and the y values from 0 to 479.
The two-dimensional command uses virtual coordinates; that is,
X2dvir and Y2dvir. The high-function graphics mode converts
these to screen coordinates, Xscrn and Yscrn, using the following
equations.

(Xv2 - Xvl)

Xscrn = (X2dvir - Xwl) X =====-=--===------ + Xvl
(Xw2 - Xwl)
(Yv2 - Yvl)

Yscrn = (Y2dvir - Ywl) x ----------------- + Yvl
(Yw2 - Ywl)

The X2dvir, Y2dvir are two-dimensional virtual coordinates. The
variables Xw1, Xw2, Yw1, and Yw2 are window coordinates, and
Xvl, Xv2, Yvl, and Yv2 are viewport coordinates.

. . August 15, 1984
48 Professional Graphics Controller © Copyright IBM Corporation 1984

Three-Dimensional Transformation

Three-dimensional transformations involve converting
three-dimensional points to two dimensions. This process uses
the following matrix operation for the conversion; that is
three-dimensional world coordinates to three-dimensional viewing
coordinates:

[Xview, Yview, Zview, 1] =
[Xvirtual, Yvirtual, Zvirtual, 1] x [M] x [VRP] x [V]

[M] represents the modeling matrix, [VRP] represents the view
reference point matrix, and [V] denotes the viewing matrix. The
three-dimensional viewing coordinates can be read back using the
command FLAGRD 24. The last value of the viewing matrix
remains 1 only if the last columns of all matrixes entered in this
formula have the following form.

X X X X
X X X X
X X X X
- 0O0O0Oo

Otherwise, the result will have the form:

[Xview, Yview, Zview, Q]

To reduce this result to the form required, simply divide the X, Y,
and Z values by the value Q. This operation gives a 1 as the final

column value of the matrix, and proper values for the other three
parameters.

The Modeling Matrix

The modeling matrix, [M], rotates, translates, and scales the
coordinate values of an object defined in three-dimensional

August 15,1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 49

virtual coordinates. Rotation about any axis uses the right-hand
rule. To understand this principle, refer to the coordinate space
depicted below (the positive z direction comes out of the page).

yx

To rotate in a positive direction around the y axis, the positive z
axis rotates toward the positive x axis. To rotate in a positive
direction around the x axis, the positive y axis rotates toward the
positive z axis. To rotate in a positive direction around the z axis,
the positive x axis rotates toward the positive y axis.

Keep in mind that the order of rotation changes the viewing faces
of the object. That is, an object rotated along the x axis, then the
y axis, gives a different perspective than if the same object is
rotated first along the y axis, then the x axis.

August 15, 1984
50 Professional Graphics Controller = © Copyright IBM Corporation 1984

The following illustration depicts various viewing perspectives.

FRONF

Original

*

caony/ | S =

MDROTX 90 ... then ... MDROTY 90

*

il

MDROTY 90 ... then ... MDROTX 90

NI

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 51

Rotation involves the matrix operation,

[M(new)] = [M(01d)] x [M(rst)]

[M(rst)] represents the rotation, scaling, or translation matrix.
For rotation, this matrix differs with each axis chosen as the axis
of rotation. For each direction of rotation, the algorithm refers to
the appropriate matrix as follows:

1 0 0 0
| 0 cos6 sing O
Rx(0) = 0 -sind cosé O
0 0 0o 1
cos& O -sinf O
0o 1 0 0

Ry (6
V() sinf 0 cosd O
0o 0 0 1
cosd sing O O
_ sin6 cos6 O O
Rz(6) = 0 01 0
0 0 0 1

The scaling operation uses the following matrix.

xs 0 0 O
s = 0 vyg O O
0 0 2z O
0 o o0 1

August 15, 1984
52 Professional Graphics Controller © Copyright IBM Corporation 1984

The translation operation uses the following matrix.

1 0o 0 o

T = 0 1 0O o0

N o 0 1 0
Xt Yt Zt 1

Viewer Reference-Point Matrix

The viewer reference-point matrix, [VRP], translates the point
viewed by the user to the center of the currently defined window.
Because the window coordinates map onto the viewport
coordinates, this matrix also places the user-viewed point at the
center of the viewport.

The viewing matrix, [V], affects the degree of rotation of the

object by moving the eye about the object, while keeping the

object stationary. Like the modeling matrix, the viewing matrix

uses the right-hand rule for rotation of the eye about the viewing
~~ reference point.

August 15,1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 53

L e

Three-Dimensional Hither and Yon Clipping

Besides two-dimensional viewport clipping, the high-function

graphics mode also clips in the third dimension. The hither and

yon clipping designate two x-y planes along the z axis beyond

which no drawing takes place. N

~¢—= Yon Plane

X = +X

e o o o o e o o

. .

. .

L[] tz (]

. ¢ , —+—Hither Plane S
. . Y . -

. -y .

August 15, 1984
54 Professional Graphics Controller © Copyright IBM Corporation 1984

Three-Dimensional Viewing to Two-Dimensional Virtual
Projection

Using the DISTAN command, the user specifies the distance from
the eye to the viewplane. The command PROJCT provides a
viewing angle with a value ranging from 1 to 179 degrees. The
high-function graphics mode projects the viewing coordinate into
a two-dimensional coordinate value using the following formulas.

~

DISTAN WINDOW DIAGONAL
X2dvir = -=---------- X XView X ========--==-------o---oo--
DISTAN - Z 2 x DISTAN x tan(PROJCT)
2
DISTAN WINDOW DIAGONAL
Y2dvir = -=---------- X YView X =---=------------oo--oo--
DISTAN - Z 2 x DISTAN x tan(PROJCT)
2

N
Placing the object closer magnifies the X and Y values.
Increasing the viewing angle increases the amount of picture
visible in the viewing field.

If the PROJCT angle is O, the projection is orthographic parallel
(non-oblique), The high-function graphics mode projects the
viewing coordinate into a two-dimensional coordinate value using
the following formulas:

X2dvir

Xview

Y2dvir

Yview

August 15,1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 55

Video Generation

A total of 256 colors may be displayed on the screen at one time.
A total of 4096 possible color selections is available to the LUTs.
The video generation process begins when the video scanner reads
the value of the PEL about to be displayed. The PEL value
consists of eight bits and is used as an address to the LUT. The
PEL value selects one of 256 12-bit entries in the table. The
three 4-bit output values from the LUT represent the red, green,
and blue intensities required to compose the target PEL. Because
the table outputs are 4 bits each for the three colors, the 256
simultaneous colors may be chosen from a 4096-color palette.
The LUTINT command sets the entire look-up table from one of
several predefined LUT selections. The LUT command loads
individual LUT entries, and LUTRD reads them back.

Each bit of each PEL resides in one of eight bit planes in the
display memory. The bit planes are masked for reading and
writing. These bit planes are shown in the following.

Bit Plane 7
1
1
|
1
1l
1 —
Bit Plane 0 B
480
Bits
ﬂ—ﬁ

—r—

L 640 |

! Bits !

. . August 15, 1984
56 Professional Graphics Controller © Copyright IBM Corporation 1984

Current Point

The current point is the x-y-z coordinate point at which the last
command finished. Many high-function graphics commands use a
current point in carrying out their functions. Two current points
are maintained; one is used by two-dimensional commands, the
other by three-dimensional commands. For example, the
two-dimensional command CIRCLE draws a circle centered on
the two-dimensional current point; the three-dimensional
command DRAW3 draws a vector that starts at the
three-dimensional current point. The current points are moved
whenever move and draw commands are executed. When
referred to in the command descriptions, the applicable current
point will be identified, unless it is clear from the context of the
command.

The command CONVRT will change a three-dimensional current
point to a two-dimensional virtual coordinate. This conversion
allows the user to overdraw a three-dimensional drawing with
two-dimensional commands, such as text.

August 15,1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 57

Current Color

The current color is the last color a COLOR command defines for
general drawing. Drawing is possible in two modes—the
complement drawing mode and the replace drawing mode. In the
complement drawing mode, the PEL bit value in display RAM is
complemented from its current value. In the replace drawing
mode, the PEL bit value in display RAM is changed to a specified
value. The value comes from the current color, which is set by
using the COLOR command.

Note: In both cases, the actual value written into a PEL may
be affected by a mask.

Display Control

Display control commands set or reset flags or define commonly
used parameters. All these commands affect the way that later
commands draw to the screen.

Drawing Modes

The high-function graphics mode provides several drawing modes.
It has its own language. The Professional Graphics Controller
also imitates two current graphics modes resident in the existing
PC graphics systems. The Professional Graphics Controller will
accept and execute all commands sent to either mode. To view
the current status of commands sent to a particular mode, use the
DISPLA command, indicating the appropriate mode as the
parameter. This command simply switches between the
high-function graphics screen and the emulator screen. All
previous drawing sent to either screen remains intact during these
switches, because Draw commands are independent of the
viewing status; that is, high-function graphics commands affect
the high-function graphics screen even while the emulator screen
is displayed.

August 15, 1984
58 Professional Graphics Controller © Copyright IBM Corporation 1984

Primitive Fills and Drawing Patterns

The command PRMFIL sets an on/off flag to fill the commands
that draw defined geometric shapes and create an enclosed area.
Each command description will note the effects of any flags.

The user can change the drawing pattern by using Pattern
commands. The command LINPAT governs any vector or other
command drawing a geometric shape (with PRMFIL off). The
parameter, a 16-bit number, acts as a mask during drawing. Each
bit sets an on/off pattern for a corresponding PEL on the screen.
This pattern repeats every 16 PELs. A 1 in any bit position
draws a PEL, while a 0 changes nothing. The value 65535
produces a solid line.

Similarly, the command AREAPT establishes a drawing pattern
for an area using a 16-bit by 16-bit format. This command
repeats in blocks of 16-by-16 PELs, duplicating the pattern in
both a horizontal and vertical direction. To define a pattern,
enter sixteen 16-bit words, visualizing their orientation on a grid.
For example:

Word Pattern Bit

Order Number
F XX XX XX XX XX XX 62415
E XX XX XX XX XXX 31207
D XX XX XX XX XX 15603
C X XXXX XX XX X 40569
B X X XX XX XX XX 53057
A XXX XX XX XXXX 59294
9 XXX X X XXX XX XX 62415
8 XX XX XXXX XXX 31207
7 XX XX X XXX X X 15603
6 X XXXX XX XX X 40569
5 X X XX XX XX XX 53057
4 XXX XX XX XX XX 59294
3 XX XX XX XX X XXX 62415
2 XX XX XXXX XXX 31207
1 XX XX XX XX X X 15603
0 X XX XX XXXX X 40569

FEDCBA9876543210

August 15,1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 59

Each word, then, would equal the decimal equivalent of the 16-bit
number. For this example, use 40569 for word 0, 15603 for word
1, and so on. In hexadecimal mode, these same words should read
9E79 for word 0, 3CF3 for word 1, and so on.

Masks

Masks act as an overlay to either reveal or overwrite the bits of a
PEL. Inreference to bit planes, the mask can effectively separate
planes and protect certain ones. Masks affect only read and write
operations but do not affect the displayed PELs.

Bit Planes

The number of bits used to define the colors of a graphics system

also defines the number of bit planes. Masks control the CPU

reads and writes. By using LUT entries, the user can designate

which bits will actually draw to the screen. This capability

effectively produces backgrounds. For example, if a mask hides

the first four bits of all color values, the system draws colors using

only the last four bits. Colors defined using the first four bits can =\
be protected by suitably setting the LUTs. Switching among

more than one LUT can produce animation.

The following mask writes only PELs whose color-values
(indexes) are given as xXOH, where x can equal 0 to F.

[1 1 1 1Jo 0 0 0}— 8-Bit Mask Value

Masked Bits

= Written Bit

Color values such as 19H and B4H will write as 1xH and BxH
respectively, where x leaves any previous draw untouched.

) . August 15, 1984
60 Professional Graphics Controller © Copyright IBM Corporation 1984

Area Pattern Mask

The command FILMSK affects the two Area Fill commands. The
8-bit value of FILMSK is ANDed with the value of MASK and
with each PEL value read in an Area Fill command. The
high-function graphics mode then compares the ANDed value to
the boundary color.

Clipping

The high-function graphics mode describes a clipping window and
a set of clipping planes. Both the VWPORT and WINDOW
command define a clipping border, for the screen and
two-dimensional virtual space, respectively. The clipping window
can change to include more or less of the image in
two-dimensional virtual space. The viewport clipping window
defines the area on the screen that is to contain the image.
Redefining the coordinates of the viewport allows several clipped
images to appear on the screen simultaneously.

In three-dimension, the high-function graphics mode adds hither
and yon clipping capabilities. The previously defined clipping
window projects forward and backward to define a clipping space.
The high-function graphics mode calculates all intersecting
clipping planes.

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 61

Viewing

Viewing involves selecting a viewing distance with the command
DISTAN and a viewing angle with the command PROJCT.

WAIT

The command WAIT causes the system to pause for a specified
number of frame scan cycles. An imbedded Wait command will
hold the drawn image on the screen for a specified amount of time
before continuing with the program. The Wait command bases its
timing on frame time, which equals 1/60 of a second. Use this
value to calculate the actual wait period. For example, specifying
300 frame times would give a wait period of 5 seconds.

. August 15, 1984
62 Professional Graphics Controller © Copyright IBM Corporation 1984

Drawing Primitives

The term drawing primitives defines a group of commands that
draw defined geometric shapes. The user specifies size and
position with the parameters associated with each command.

Two-Dimensional and Three-Dimensional Command Format

Two-dimensional commands use no numbers within the 6-letter
command. All three-dimensional commands end in the numeral
3. Coordinates for two-dimensional commands require one
variable each for the x and y values; the three-dimensional
commands require three coordinate values (one each for the x, y,
and z direction). Not all two-dimensional Draw commands have
a three-dimensional counterpart.

Move Commands

The Move commands change the current point in either the
two-dimensional or three-dimensional coordinate space, one
current point for each space. The commands MOVE and
MOVES3 specify a change using absolute coordinate values.

These commands use the virtual coordinate systems. MOVER
and MOVER3 change the current point by a relative amount,
adding the parameter values to the current point to produce a new
coordinate value as the current point.

Point

The Point command changes the PEL at the current point to the
current color.

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 63

Vectors

Draw commands produce vectors (directed line segments)
between two specified points. The current-point value supplies
the first coordinate. The high-function graphics mode then draws
a vector ending at the absolute coordinate values given in a
DRAW or DRAW3 command or at the relative distance specified
by the parameters of a DRAWR or a DRAWR3 commands.
After a vector command, the current point shifts to the location
of the last PEL drawn. The following examples show vectors.

Parameter Point Parameter Point
o xy) (x0+dx,y0+dy)
(x0,y0) (x0,y0)
Current Point Current Point

. . August 15, 1984
64 Professional Graphics Controller © Copyright IBM Corporation 1984

Linear Forms

The high-function graphics mode produces two closed linear
forms: rectangles and polygons. Two points define a rectangle.
The current point is one corner of the shape. The parameters,
given in absolute values (RECT) or in a relative, offset distance
(RECTR), specify the opposite corner. The current point does
not change for any rectangle command. Rectangles are specified
only in two dimensions. The following example shows rectangles:

Parameter Point Parameter Point
(x,y) (x0+dx,yO+dy)

(x0,y0) (x0,y0)
Current Point Current Point

Rectangle Rectangle Relative

Each pair of coordinates in a Polygon command declares a vertex
of any multisided figure. Two pairs of coordinate values, adjacent
within a command’s variable string, produce a side between them.
The command effectively draws multiple vectors, changing the
current point to the location of the last PEL drawn. This pattern
continues until a vector has been drawn to the last coordinate.
The final draw of the command connects the final coordinates
given to the beginning point of the polygon. The current point
returns to its original value. Again this command uses either
absolute or relative coordinates—POLY or POLYR for
two-dimensional, and POLY3 or POLYR3 for three-dimensional.
All relative coordinates are expressed relative to the original
point. Keep in mind that nonplanar values in three-dimensional
polygons may produce undesired effects.

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 65

The following is an example of a polygon.

(x4,y4)
Final Point
in Parameter List
(x5,y5)

(x3,y3)

(x2,y2)

Final

Draw °

Current
Point

(x0,y0) (x1,y1)

Note: The primitive fill flag in PRMFIL 1 directs the
high-function graphics mode to draw any of the above
rectangles or polygons as a solid (that is, all enclosed PELs
are set to the current color). Undesirable effects may occur
if the filled polygon intersects itself.

Nonlinear Forms

The high-function graphics mode also produces some nonlinear
geometric shapes. The commands CIRCLE and ELIPSE require
only radius values (both an x and y radius value for ELIPSE).
The current point specifies the center of both of these figures.
The parameters for the command ARC list a radius, a beginning
angle value, and an ending angle value. The current point also
serves as the center point of rotation for this command. The
command SECTOR has the same parameter requirements as an
ARC command, but produces a pie-shaped figure. That is, the
end-points of the arc connect with vectors to the center point of
rotation.

Except when used with the ARC command, a PRMFIL command
with the fill flag set on, will instruct the commands to produce
solid shapes filled with PELs of the current color. All nonlinear
commands draw only in two dimensions.

August 15, 1984
66 Professional Graphics Controller © Copyright IBMgCorporation 1984

\

The following illustrations show examples of nonlinear forms.

Current Point

Current Point

ARC deg 0 deg 1 example CIRCLE radius example

Y radius

X radius

Current Point

ELIPSE x radius y radius example

SECTOR deg 0 deg 1 example

August 15, 1984

© Copyright IBM Corporation 1984 Professional Graphics Controller 67

Area Fills

The Area Fill commands employ a seed point. Before sending an
Area Fill command, place the current point within the area to be
filled. The current color must differ from the color being
changed. The command AREA changes PELs outward in all
directions from the current (seed) point until is encountered a
color different from either the one being changed or the current
color. The command AREABC allows the user to specify a color
to act as a boundary. This command converts PELs from the
seed point outward until PELs of the same color as the specified
boundary color are encountered. The current color must differ
from the boundary color. The following is an Area Fill example.

Seed Point
Color 4

77777

.

Color 1 Color 2 Boundary
Color 3

N

In the Area Fill example, set the current color to color 4. The
Area Fill will fill only the area covered by color 1. The Area
Boundary Fill specified with the boundary color set to color 3 will
fill the area covered by color 1 and color 2.

. August 15, 1984
68 Professional Graphics Controller © Copyright IBM Corporation 1984

Text

Various Text commands help in placing and moving text. The
two-dimensional current point acts as a placement marker. For
justifying text, this point defines the horizontal and vertical
placement of the text string, using the command TJUST (see the
following). The defaultisH=1,V = 1.

H=1 H=2 H=3
| | |
— V=3
Text String — V=2
—_— V=1

Altering the angle adjusts the slope of the centering point for each
letter but not the rotation of the letter itself. The command
TANGLE uses standard Cartesian coordinates to measure the
angle, as shown in the following.

deg O

To adjust the text size, use the command TSIZE. The parameter
of this command specifies a two-dimensional virtual x-distance.
Keep in mind that the high-function graphics mode sizes letters
using the mapping of the window onto the viewport. For
example, a window of 320 PELs by 240 PELs mapped to a
viewport of 640 PELs by 480 PELs would draw size 8 letters in a
16-PEL horizontal space. All text that exceeds the viewport

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 69

boundary undergoes clipping. The default, size 8, writes a
character of 7 by 9 PELs in a cell of 8 by 12 PELs using one
column for horizontal spacing between letters (see the following).

Use the commands TEXT or TEXTD to write text to the screen.
TEXT uses a default text font; TEXTD uses any text defined in
the command TDEFIN. This command requires a size
specification followed by a bit value to describe each line of
blocks. The first step is to outline an area that encompasses the
character (see the following).

Line Number 5 ————pm X
Line Number 4 — | X X X
Line Number 3 ——p X
Line Number 2 —m | X X X
Line Number 1 — X

5

~¢— Bit Number

Then list each bit; start with the bottom, leftmost block and work
to the right and up. The command for this character becomes:

—-ooool|z
0000 x\
—-oooo°;
-ococoo|9

[Y NN

.) August 15, 1984
70 Professional Graphics Controller © Copyright IBM Corporation 1984

Command Lists

Command lists consist of a series of valid high-function graphics
commands executed by a single command. The commands
CLBEG and CLEND mark the beginning and end of command
lists. Two commands begin execution of command lists. CLRUN
executes a single command list once; CLOOP executes a single
command list a specified number of times. The commands
CLDEL and CLBEG delete a command list previously defined by
the specified parameter value. Space permitting, the user can
define up to 256 command lists. Any command, except CLBEG,
may appear within a command list definition. However, during
the execution of a command list, the high-function graphics mode
will not execute an imbedded CLDEL.

The following examples show valid formats for command lists.

CLBEG 8 CLBEG 17
CLEARS 0 CLEARS 0
MOVE 0 O PRMFIL 1
PRMFIL 1 MOVER 10 0
COLOR 2 COLOR 2
SECTOR 100 60 359 CIRCLE 5
MOVE 10 10 CLEND
COLOR 3 CLOOP 17 5
SECTOR 90 0 59
CLEND

CLRUN 8

Command list 8 will draw two sectors of different colors.
Command list 17 will draw a small circle of radius 5. The
command CLOOP repeats command list 17 five times, thus
drawing five, small, tangential circles.

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 71

The following example shows an invalid format for a command
list.

CLBEG 23
CLEARS 0
CLBEG 1
CIRCLE 25
CLEND 2
CLDEL 14
CLEND

Command list 23 is invalid because:

« CLBEG cannot appear within a stream of command list
commands.

o If the high-function graphics mode receives CLRUN 23, the
execution of CLDEL command would produce an error.

. . August 15, 1984
72 Professional Graphics Controller © Copyright IBM Corporation 1984

Look-Up Table

The look-up table (LUT) contains the red, green, and blue
intensity information associated with each color. A value, or
index, identifies each color. The high-function graphics mode
provides several default LUT selections, which are accessible with
the command LUTINT. The user can change values by using the
command LUT or by initializing a new table. The command
LUTSAV stores the current LUT values. LUTSAV overwrites
any previously saved LUT values. The saved values may be
selected by the command LUTINT 255. The following block
diagram illustrates LUT generation.

States

1
0 1 LUTINT O LUT Command
j
1 LUTINT 1
°

5 LUTINT 5 :h LUT

255 LUTINT 255

LUTSAV Command

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 73

Image Processing

The high-function graphics mode uses limited image-processing
techniques. The user can read or write a line of PEL data with
variable endpoints. The user specifies a line number and a
beginning and ending point within that line. The Image Read
command (IMAGER) returns the line data formatted as an Image
Write command (IMAGEW). This format makes it easier to use
stored image information. The following illustrates image
processing.

- Line 479

PELs | <= Monitor Screen

Specified Line

0000000000000 000000000 4

|
X1 x2

- Line O

f |

PEL O PEL 63°

. . August 15, 1984
74 Professional Graphics Controller ~ © Copyright IBM Corporation 1984

Read-Back Commands

The high-function graphics mode allows the user to read various
parameters from the color board back to the program. Items
readable in this way include LUT entries, both three-dimensional
transformation matrixes, and the line pattern and line function
flags. The read-back protocol is straightforward. When the
high-function graphics mode executes one of the read-back
commands (for example, FLAGRD), it puts the value of the
requested item in the output buffer. In ASCII mode, the value is
written as a decimal number followed by a carriage-return
character. A high-level language, such as BASIC, need only
execute an Input statement to get the data from the color board.
Some data read-back commands return more than one value. The
individual commands describe the format of the return in both
ASCII and hexadecimal communication modes.

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 75

The following table lists the flags readable by FLAGRD, and the

size and type of the value returned.

available

Flag Name Type of Value
Returned
1 AREAPT 16 integers
2 CLIPH 1 integer {byte)
3 CLIPY 1 integer (byte)
4 COLOR 1 integer (byte)
5 DISPLA 1 integer (byte)
6 DISTAN 1 real number
7 DISTH 1 real number
8 DISTY 1 real number
9 FILMSK 1 integer {byte)
10 LINFUN 1 integer {byte)
11 LINPAT 1 integer
12 MASK 1 integer (byte)
13 MDORG 3 real numbers
14 2D current point 2 real numbers
15 3D current point 3 real numbers
16 PRMFIL 1 integer (byte)
17 PROJCT 1 integer (byte)
18 TANGLE 1 word
19 TJUST 2 integers
{bytes)
20 TSIZE 1 real number
21 VWPQORT 4 integers
22 VWRPT 3 real numbers
23 WINDOW 4 real numbers
24 Transformed 3D 3 real numbers
current point

25 Free memory 1 integer

The command LUTRD reads back the red, green, and blue
intensity levels for a particular LUT index. To read back either
the viewing matrix [V] specified in the command VWMATX, or
the modeling matrix [M] specified in the command MDMATX,
use the command MATXRD. This command returns a string of
16 values. These values of the 4-by-4 matrix begin at the
upper-left corner and read across the rows.

August 15, 1984

76 Professional Graphics Controller © Copyright IBM Corporation 1984

System Reset

The command RESETF resets all flags. The following table lists
the default values of all flags that can be reset.

Flag Name Default Value

1 AREAPT 65535 16 times Solid area

2 CLIPH Flag=0 Disabled

3 CLIPY Flag =0 Disabled

4 COLOR Value = 255

5 DISPLA No change after a RESETF

6 DISTAN Distance = 500

7 DISTH Distance = -30000

8 DISTY Distance = 30000

9 FILMSK Mask = 255 No PEL draw
effect

10 LINFUN Function =0 Replacement
mode

11 LINPAT Pattern = 65535 Solid line

12 MASK Mask = 255 All planes
enabled

13 MDORG OX=0Y=0Z2=0

14 2D current point X=Y=0

15 3D current point X=Y=2=0

16 PRMFIL Flag=0 Primitive fill off

17 PROJCT Angle = 60

18 TANGLE Angle =0 Horizontal,
left-right text

19 TJUST H=VvV=1 Left, bottom
justification

20 TSIZE Size =8 12 by 8 cell
characters

21 VWPORT 0, 639, 0, 479 Entire screen

22 VWRPT X=Y=2=0

23 WINDOW -320, 319, -240, 239

24 Transformed 3D X=Y=2=0

current point

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 77

Communications

The Professional Graphics Controller accepts high-function
graphics commands in either ASCII or hexadecimal format. In
ASCII mode, English-like commands and their parameters are
sent to the board as ASCII character strings. This allows easy
transmission of instructions from such high-level languages as
BASIC. For example, to draw a circle of radius 55.05 centered at
the screen center, execute a BASIC statement to transmit the
following character string:

MOVE 0,0 CIRCLE 55.05

In hexadecimal communication mode, the commands are sent as a
stream of bytes for greatest throughput. The statement above
could be sent in hexadecimal mode as

10 00 00 00 00 00 00 00 00 38 37 00 CD OC

to realize substantial time savings.

ASCII Communications

ASCII mode commands are sent in a format designed to
accommodate the restriction of a high-level language. The ASCII
command consists of a command word (no more than six letters
in length) and parameters, if applicable. Every command word
has a short form, which is always three characters or less in
length. Parameters may be either decimal numbers or text strings
enclosed in quotes.

Commands and parameters in a command line are separated by
delimiters. A delimiter is one or more of the following, except
when enclosed by quotation marks:

e« Space

e Tab

o« Comma

o Semicolon
 Hyphen

e Plus sign

August 15, 1984
78 Professional Graphics Controller © Copyright IBM Corporation 1984

Commands and parameters consist of letters, numbers, and
decimal points. Any other character, except when enclosed in
quotes, is illegal and will be ignored.

When a hyphen immediately precedes a numeric parameter, that
~~\ number is interpreted as negative.

Examples of Legal Commands:

"CcI 5" Draw a circle of radius 5.
"RECT 67-88" Draw a rectangle.
“COLOR 2 FLOOD 3" Change the current color to 2,
and flood the screen to the color 3.
"LUTRD 3" Read LUT entry 3.

Examples of Illegal Commands:

"CIR 5" CIR is not a valid abbreviation.
"RECT%67,-68" "%" is not a legal character.
"COLOR 2 4 FLOOD 3" COLOR takes only one parameter.
"LUTRD 3.4" The parameter to the LUTRD command
is an integer.
~
~

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 79

Communication Protocol

The high-function graphics data is sent and received as a
sequential stream of bytes. To realize maximum throughput
between the system and the Professional Graphics Controller, a
first-in-first-out (FIFO) buffer protocol has been set up. This
protocol must be adhered to for proper transmission and
reception. These buffers, and their associated pointers and flags,
are directly addressable when the system uses addresses in the
hexadecimal range C6000 to C63FF.

There are three channels through which data may pass to and
from the controller. From the system’s point of view, these
channels are ‘output’ (for sending commands and parameters),
‘input’ (for receiving data read-back commands), and ‘error’ (for
receiving high-function graphics-generated error and warning
codes). Each channel has a FIFO buffer associated with it and
each buffer has 256 bytes reserved in the 1K-byte communication
area. A portion of the remaining 256 bytes is reserved for three
sets of buffer pointers—one pair for each channel—as well as the
warm and cold restart and diagnostic flags. The following
memory map shows the addresses as seen by the system.

Memory
Address
(in hex)

Function

C6000

Output FIFO (256 bytes)

C6100

Input FIFO (256 bytes)

C6200

Error FIFO (256 bytes)

C6300

Qutput FIFO Write Pointer

C6301

Qutput FIFO Read Pointer

C6302

Input FIFO Write Pointer

C6303

Input FIFO Read Pointer

C6304

Error FIFO Write Pointer

C6305

Error FIFO Read Pointer

C6306

Cold Restart Flag

C6307

Warm Restart Flag

C6308

Error Enable Flag

80 Professional Graphics Controller

August 15, 1984

© Copyright IBM Corporation 1984

Each buffer has a one-byte read pointer and a one-byte write
pointer, which refer to buffer locations relative to the base of the
buffer in question. The read pointer always points to the next
byte to be read; the write pointer always points to the next byte
to be written. The buffer is empty when the read pointer is equal

A~ to the write pointer, because the byte that would be read has not
yet been written. Alternately, the buffer is full when the write
pointer is one less than the read pointer.

A FIFO write must be done as follows:

1. Ensure the buffer has room by comparing the write
pointer to the read pointer. If the read pointer is only
one greater than the write pointer, there is no room, and
no writing may take place until there is room.

2. Write one byte to the address specified by that buffer’s
base address plus the value in its write pointer.

3. Increment the write pointer, modulo-255.

More than one byte may be written if the buffer’s write pointer is
increased by the same number as the number of bytes written.

A FIFO read must be done as follows:

1. Ensure the buffer has data by comparing the write
pointer to the read pointer. If the read pointer is equal
to the write pointer, the buffer is empty, and no reading
may take place until there is data to be read.

2. Read one byte from the address specified by that
buffer’s base address plus the value in its read pointer.

3. Increment the read pointer, modulo-255.

More than one byte may be read if the buffer’s read pointer is
increased by the same number as the number of bytes read.

N

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 81

Error Handling

The high-function graphics mode provides an error-reporting

capability. If the host sets the error-enable flag in the

communication area, the high-function graphics mode returns

errors in the error buffer. In ASCII mode, the error is returned as
a message, such as ““Arithmetic Overflow.” In hexadecimal mode,

the error is returned as a single byte code.

August 15, 1984
82 Professional Graphics Controller © Copyright IBM Corporation 1984

N\

High-Function Graphics Commands

The high-function graphics commands can be logically grouped
into the following categories:

¢« Two-Dimensional Drawing

— ARC (AR) Arc

— CIRCLE (CI) Circle

— DRAW (D) Draw

— DRAWR (DR) Draw Relative

— ELIPSE (EL) Ellipse

- MOVE (M) Move

— MOVER (MR) Move Relative

— POINT (PT) Point

— POLY (P) Polygon

— POLYR (PR) Polygon Relative

— RECT (R) Rectangle

— RECTR (RR) Rectangle Relative

— SECTOR (S) Sector
o Three-Dimensional Drawing

— DRAW3 (D3) Drawin 3D

— DRAWR3 (DR3) Draw Relative in 3D

— MOVE3 (M3) Move in 3D

— MOVER3 (MR3) Move Relative in 3D

— POINT3 (PT3) Pointin 3D

- POLY3 (P3) Polygon in 3D

— POLYR3 (PR3) Polygon Relative in 3D
e Modeling Transformations

— MATXRD (MRD) Matrix Read

— MDIDEN (MDI) Modeling Identity

— MDMATX (MDM) Modeling Matrix

— MDORG (MDO) Modeling Origin

— MDROTX (MDX) Modeling Rotate X Axis

— MDROTY (MDY) Modeling Rotate Y Axis

— MDROTZ (MDZ) Modeling Rotate Z Axis

— MDSCAL (MDS) Modeling Scale

MDTRAN (MDT) Modeling Translation

. V1ewport /Window /Projection

— CLIPH (CH) Clip Hither

— CLIPY (CY) Clip Yon

— CONVRT (CV) Convert

— DISTAN (DS) Distance

— DISTH (DH) Distance Hither

August 15, 1984 .
© Cgopyright IBM Corporation 1984 Professional Graphics Controller 83

— DISTY (DY) Distance Yon
— PROJCT (PRO) Projection
— VWIDEN (VWI) Viewing Identity
- VWMATX (VWM) Viewing Matrix
— VWPORT (VWP) Viewport
- VWROTX (VWX) Viewing Rotate X Axis
— VWROTY (VWY) Viewing Rotate Y Axis
— VWROTZ (VWZ) Viewing Rotate Z Axis
— VWRPT (VWR) Viewing Reference Point
— WINDOW (WI) Window
« Command List
- CLBEG (CB) Command List Begin
CLDEL (CD) Command List Delete
CLEND (CE) Command List End
CLOOP (CL) Command List Loop
— CLRD (CRD) Command List Read
— CLRUN (CR) Command List Run
« Mode Set/Read
— CA (CA) Communications ASCII
- CX (CX) Communications Hexadecimal
— DISPLA (DI) Display
— FLAGRD (FRD) Flag Read
— RESETF (RF) Reset Flags
WAIT (W) Wait
. Color/ Fills/Patterns
— AREA (A) AreaFill
— AREABC (AB) Area Fill to Boundary Color
— AREAPT (AP) Area Pattern
— CLEARS (CLS) Clear Screen
— COLOR (C) Color
— FLOOD (F) Flood
— FILMSK (FM) Fill Mask
— LINFUN (LF) Line Function
— LINPAT (LP) Line Pattern
— MASK (MK) Mask
— PRMFIL (PF) Primitive Fill
¢ Image Transmission
- IMAGER (IR) Image Read
- IMAGEW (IW) Image Write

August 15, 1984
84 Professional Graphics Controller © Copyright IBM Corporation 1984

o Look-Up Table Operations
— LUT (L) Look-Up Table
— LUTINT (LI) Look-Up Table Initialize
— LUTRD (LRD) Look-Up Table Read
— LUTSAV (LS) Look-Up Table Save
o Text
— TANGLE (TA) Text Angle
— TDEFIN (TD) Text Define
— TEXT (T) Text
— TEXTP (TP) Text Programmed
— TIUST (TJ) Text Justify
— TSIZE (TS) Text Size

The high-function graphics commands appear on the following
pages in alphabetic order.

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 85

ARC

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Arc)
Draw an arc in two dimensions.
ARC radius deg0 degl

ARC draws the arc of a circle in the current color.
The center is at the current point. The radius is
specified in the attribute radius, starting at the
angle given in deg0 and ending at the angle given
in degl. The angles are expressed in degrees and
are measured counterclockwise from a ray that is
parallel to the X axis, starting at the origin and
going toward increasing X values. Radius values
are real numbers and may range from -8191 to
8191. Start and end angles are treated as
modulo-360. If radius is negative, 180 degrees are
added to both angles.

AR radius deg0 degl

3C lowradius highradius
lowfracradius highfracradius
lowdeg0 highdeg0
lowdegl highdeg1

ASCIT: AR 50.25 45 135
HEX: 3C 32 00 00 40 2D 00 87 00

Radius too large

August 15, 1984

86 Professional Graphics Controller © Copyright IBM Corporation 1984

AREA
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Area Fill)
Random area fill.
AREA

AREA sets all PELs in a given closed region to the
current color. The region extends from the
two-dimensional current point outward in all
directions until reaching a boundary of PELs
whose colors differ from the original color of the
PEL at the current point and the current color.
The region to be filled must be continuous. All
data read is ANDed against the fill mask and the
mask to compare colors. The original color should
not be equal to the current color.

A

Co
ASCII: A
HEX: co
None

August 15, 1984

© Copyright IBM Corporation 1984

Professional Graphics Controller 87

AREABC
Purpose:
Command:

Description:

Short form:
Hex Format:

Example:

Errors:

(Area Fill to Boundary Color)

Random area fill to the boundary color.
AREABC bcolor

AREABC sets all PELs in a given closed region to
the current color under mask. The region extends
from the two-dimensional current point outward
until reaching a boundary of PELs with the color
specified by bcolor. Bcolor must be different from
the current color. All data read is ANDed against
the fill mask and the mask for boundary
comparison.

AB bcolor

C1 bcolor

ASCII: AB 4

HEX: C1 04

Boundary = current color

August 15, 1984

88 Professional Graphics Controller © Copyright IBM Corporation 1984

AREAPT (Area Pattern)

Purpose: Define an area pattern mask.
Command: AREAPT pattern

Description: AREAPT defines the area pattern mask. The 16
pattern mask words define a 16-by-16 PEL array
to be repeated horizontally and vertically when
drawing filled figures. Setting all bits in the mask
(sending 16 words of 65535) causes areas to be
filled solidly; this is the default after a reset.

Short Form: AP pattern

Hex Format: E7 lowp0O highp0 lowpl highpl
lowp2 highp2 lowp3 highp3
lowp4 highp4 lowp5S highp5
lowp6 highp6 lowp7 highp7
lowp8 highp8 lowp9 highp9
lowp10 highp10 lowp11 highpl1

lowp12 highp12 lowp13 highp13
lowp14 highp14 lowpl5 highp1l5

Example:

ASCII: AP 52428 52428 13107 13107
52428 52428 13107 13107
52428 52428 13107 13107
52428 52428 13107 13107

HEX: E7 CC CC CC CC 33 33 33 33
CC CC CC CC 33 33 33 33
CC CC C€C CC 33 33 33 33
CC CC CC CC 33 33 33 33

Errors: None

~

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 89

CA (Communications ASCII)
Purpose: Set the communication mode to ASCIL.
Command: CA

Description: ~ This command may be given in either ASCII or
hexadecimal mode.

Short Form: CA
Hex Format: 43 41 20

Note: This is the hexadecimal equivalent of the three ASCII
characters “CA .

Example:

ASCII: CA

HEX: 43 41 20
Errors: None

. August 15, 1984
90 Professional Graphics Controller © Copyright IBM Corporation 1984

CIRCLE

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Circle)
Draw a circle in two dimensions.
CIRCLE radius

CIRCLE draws a circle of a given radius, with its
center at the current point. The circle is drawn in
the current color and is filled if the PRMFIL flag
is set (see “PRMFIL”). Nothing is drawn if the
radius value is outside the range of -8191 to 8191.

ClI radius

38 lowradius highradius
lowfracradius highfracradius

ASCII: CI 25.5 5 135
HEX: 38 19 00 00 80

Radius too large

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 91

CLBEG
Purpose:
Command:

Description:

Short Form:
Hex Format:

Example:

Errors:

(Command List Begin)

Begin command-list definition.
CLBEG clist

CLBEG begins the definition of the command list
specified by clist. Commands sent later to the
controller are saved in the command-list definition
area for execution (see “CLRUN” and
“CLOOP”). CLEND ends the command-list
definition. clist may be from O to 255. Any
previous definition of the command-list is erased.

CB clist

70 clist

ASCIT: CLBEG 1

HEX: 70 01 07 02 06 01 30 00 C8 00 00 71

Not enough memory; command list running

August 15, 1984

92 Professional Graphics Controller ~ © Copyright IBM Corporation 1984

CLDEL (Command List Delete)

Purpose: Delete the definition of a command list.

Command: CLDEL clist

Description: CLDEL deletes the definition of the command list
specified by clist. Tt also reclaims command-list
memory for other definitions. clist may be from 0
to 255.

Short Form: CD clist

Hex Format: 74 clist

Example:
ASCII: CD 3
HEX: 74 03
Error: Command list running

August 15, 1984 .)
© Copyright IBM Corporation 1984 Professional Graphics Controller 93

g n D

CLEARS

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Clear Screen)

Clear the screen to a given color.

CLEARS color ~
Sets every PEL in the high-function graphics
display buffer to the color specified by color
regardless of the mask. This command does not
change the current color. It is similar, but not
identical, to the command FLOOD.
CLS color
OF color
ASCII: CLS 23
HEX: OF 17
N

None

N

August 15, 1984

94 Professional Graphics Controller © Copyright IBM Corporation 1984

CLEND
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Command List End)

End the definition of a command-list.

CLEND

CLEND ends the definition of a command-list.
When the controller receives a CLEND, it resumes
executing commands as they are received.

CE

71

ASCII: CE
HEX: 71
None

August 15, 1984
© Copyright IBM Corporation 1984

Professional Graphics Controller 95

CLIPH
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Clip Hither)

Set the hither clip flag.

CLIPH flag

CLIPH enables or disables hither clipping. Hither
clipping is enabled when flag is 1 or any odd
number, and disabled when flag is 0 or any even
number (default). Three-dimensional drawing
commands draw faster when hither clipping is
disabled.

CH flag

AA flag

ASCII: CH O
HEX: AA 01

None

August 15, 1984

96 Professional Graphics Controller © Copyright IBM Corporation 1984

CLIPY (Clip Yon)

Purpose: Set the yon clip flag.
Command: CLIPY flag

Description: CLIPY enables or disables yon clipping. Yon
clipping is enabled when flag is 1 or any odd
number, and disabled when flag is 0 or any even
number (default). Three-dimensional drawing
commands draw faster when yon clipping is
disabled.

Short Form: CY flag

Hex Format: AB flag

Example:
ASCII: CY O
HEX: AB 01
Errors: None

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 97

CLOOP

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Command List Loop)

Repeat execution of a command list.

CLOORP clist count

CLOOP executes the command list specified by

clist, for the number of times specified by count.
clist may be between 0 and 255; count can be from

0 to 65535.

CL clist count

73 clist lowcount highcount

ASCII: CL 1 1000

HEX: 73 01 E8 03

Command list running; stack full.

August 15, 1984

98 Professional Graphics Controller © Copyright IBM Corporation 1984

CLRD (Command List Read)

Purpose: Read back command list.
Command: CLRD clist

Description: In hexadecimal mode, a word representing the
number of bytes in the command list is read back
(zero if the list is undefined), followed by the
bytes as they are stored.

Short Form: CRD clist

Hex Format: 75 clist

Example:
ASCII: CRD 1
HEX: 75 01
Errors: None

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 99

CLRUN (Command List Run)
Purpose: Execute command list.
Command: CLRUN clist

Description: CLRUN executes commands in the command list
specified by clist. clist must be from O to 15.

Short Form: CR clist

Hex Format: 72 clist

Example:
ASCII: CR 14
HEX: 72 01
Errors: Command list running; stack full; nested

command list

August 15, 1984
100 Professional Graphics Controller © Copyright IBM Corporation 1984

COLOR (Color)

Purpose: Set the current color.

Command: COLOR value

Description: COLOR sets the current color to that specified by
value. All noncomplement mode drawing is done
in the current color. All drawing, including
complement mode, is subject to MASK and
FILMSK. value is treated as modulo-256.

Short Form: C value

Hex Format: 06 value

Example:
ASCII: C 2
HEX: 06 02
Errors: None

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 101

CONVRT
Purpose:

Command:

Description:

Short Form:

Hex format:

Example:

Errors:

(Convert)

Convert three dimension to two dimension.
CONVRT

CONYVRT converts the three-dimensional current
point to two-dimensional virtual coordinates, using
the current transformation matrixes. The result is
left in the two-dimensional current point.

Ccv
AF
ASCII: CV
HEX: AF

Arithmetic overflow

August 15, 1984

102 Professional Graphics Controller © Copyright IBM Corporation 1984

CX (Communications Hexadecimal)
Purpose: Set the communication mode to hexadecimal.
Command: CX

Description: This command may be given in either ASCII or
hexadecimal mode.

Short Form: CX
Hex Format: 43 58 20

Note: This is the hexadecimal equivalent of the three ASCII
characters “CA .

Example:

ASCII: CX

HEX: 43 58 20
Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 103

DISPLA
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Display)

Select the display mode.

DISPLA flag

DISPLA selects a screen for display. If flag is O,
the color high-function graphics screen is
displayed. If flag is 1, the emulator screen is
shown. Color graphics commands are accepted
and executed, no matter which screen is displayed.

DI flag

DO flag

ASCII: DI O

HEX: DO 01

None

August 15, 1984

104 Professional Graphics Controller © Copyright IBM Corporation 1984

DISTAN (Distance)
Purpose: Define the distance to the viewing reference point.
Command: DISTAN dist

Description: DISTAN defines the distance (dist) from the eye
to the viewing reference point.

Short Form: DS dist

Hex Format: B1 lowdist highdist
lowfracdist highfracdist
Example:
ASCII: DS 1200
HEX: Bl BO 04 9A 59
Errors: None

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 105

DISTH (Distance Hither)
Purpose: Define the hither clip plane.
Command: DISTH dist

Description: DISTH defines the distance to the hither clip plane
from the viewing reference point. The hither clip
plane is parallel to the view plane, and the distance
(dist) is relative. When hither clipping is enabled,
no points before the hither clip plane are
displayed. Hither clipping affects only
three-dimensional drawing commands.

Short Form: DH dist

Hex Format: A8 lowdist highdist
lowfracdist highfracdist
Examples:
ASCII: DH 15.01
HEX: A8 OF 00 8F 02
Errors: None

August 15, 1984
106 Professional Graphics Controller © Copyright IBM Corporation 1984

DISTY
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Distance Yon)
Define the yon clip plane.
DISTY dist

DISTY defines the distance to the yon clip plane
from the viewing reference point. The yon clip
plane is parallel to the view plane, and the distance
(dist) is relative. When yon clipping is enabled, no
points beyond the yon clip plane are displayed.
Yon clipping affects only three-dimensional
drawing commands.

DY dist

A9 lowdist highdist
lowfracdist highfracdist

ASCII: DY 15.999
HEX: A9 OF 00 BE FF

None

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 107

DRAW (Draw)
Purpose: Absolute draw in two dimensions.

Command: DRAW x y

~
Description: DRAW draws a line from the current point to the
point specified by x,y. The current point moves to
the x and y value.
Short Form: Dxy
Hex Format: 28 lowx highx
lowfracx highfracx
lowy highy
lowfracy highfracy
Example:
ASCII: D 23.5 -90.71
HEX: 20 17 00 00 80 A5 FF C3 B5
N\
Errors: Arithmetic overflow
~

. August 15, 1984
108 Professional Graphics Controller © Copyright IBM Corporation 1984

DRAWR (Draw Relative)
Purpose: Relative draw in two dimensions.
Command: DRAWR dx dy

Description: DRAWR draws a line from the current point to a
point dx,dy from the current point. The current
point moves to the end point of the line.

Short Form: DR dx dy

Hex Format: 29 lowdx highdx
lowfracdx highfracdx
lowdy highdy
lowfracdy highfracdy

Example:

ASCII: DR 65.8 12.2

HEX: 21 41 00 CD CC OC 00 34 33
Errors: Arithmetic overflow

August 15, 1984))
© Copyright IBM Corporation 1984 Professional Graphics Controller 109

DRAW3 (Draw in 3D)

Purpose: Draw absolute in three dimensions.

Command: DRAW3 xyz

/N
Description: DRAWS3 draws a line from the current point to the
point in the three-dimensional space given. After
the draw, the current point moves to x,),z.
Short Form: D3 xyz
Hex Format: 2A lowx highx
lowfracx highfracx
lowy highy
lowfracy highfracy
lowz highz
lowfracz highfracz
Example:
ASCII: D3 943, -266, 100
~
HEX: 22 AF 03 00 00 F6 FE 00 00 64 00 00 00
Errors: Arithmetic overflow
N

August 15, 1984
110 Professional Graphics Controller © Copyright IBM Corporation 1984

DRAWR3
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Draw Relative in 3D)
Draw relative in three dimensions.
DRAWR3 dx dy dz

DRAWR3 draws a line to the point offset from the
current point by dx,dy,dz and moves the current
point to this new point.

DR3 dx dy dz

2B lowdx highdx
lowfracdx highfracdx
lowdy highdy
lowfracdy highfracdy
lowdz highdz
lowfracdz highfracdz

ASCII: DR3 835.02 44.62 98
HEX: 23 43 03 1F 05 2C 00 B8 9E 62 00 00 00

Arithmetic overflow

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 111

ELIPSE (Ellipse)

Purpose: Draw an ellipse in two dimensions.

Command: ELIPSE xradius yradius

Description: ELIPSE draws an ellipse centered on the
two-dimensional current point whose x and y axis
lengths are given in xradius and yradius. The
ellipse is filled if the PRMFIL flag is set.

Short Form: EL xradius yradius

Hex Format: 39 lowxradius

highxradius
highfracxradius
highyradius
highfracyradius

HEX: 39 25 00 00 80 19 00 00 00

lowfracxradius
lowyradius
lowfracyradius
Example:
ASCII: EL 50 100
Errors: Radius too large

112 Professional Graphics Controller

August 15, 1984
© Copyright IBM Corporation 1984

FILMSK

Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

7~ X\ Errors:

(Fill Mask)

Set area fill mask.

FILMSK mask

FILLMSK sets the 8-bit area fill mask to mask. All
PELs read by the Area Fill commands are ANDed
against this mask, and also MASK, before
comparison with the boundary color.

FM mask

EF mask

ASCIT: FM 254

HEX: EF FE

None

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 113

FLAGRD

Purpose:
Command:

Description:

(Flag Read)

Read flag value.

FLAGRD flag

FLAGRD loads the current value of the flag
specified by flag into the output buffer for later

reading by the host. The flag numbers assigned
are as follows.

available

Flag Name Type of Value
Returned
1 AREAPT 16 integers
2 CLIPH 1 integer (byte)
3 CLIPY 1 integer (byte)
4 COLOR 1 integer (byte)
5 DISPLA 1 integer (byte)
6 DISTAN 1 real number
7 DISTH 1 real number
8 DISTY 1 real number
9 FILMSK 1 integer (byte)
10 LINFUN 1 integer (byte)
11 LINPAT 1 integer
12 MASK 1 integer (byte)
13 MDORG 3 real numbers
14 2D current point 2 real numbers
15 3D current point 3 real numbers
16 PRMFIL 1 integer (byte)
17 PROJCT 1 integer (byte)
18 TANGLE 1 word
19 TJUST 2 integers
(bytes)
20 TSIZE 1 real number
21 VWPORT 4 integers
22 VWRPT 3 real numbers
23 WINDOW 4 real numbers
24 Transformed 3D 3 real numbers
current point
25 Free memory 1 integer

114 Professional Graphics Controller

August 15, 1984
© Copyright IBM Corporation 1984

Short Form:

Hex Format:

Example:

Error:

Each value is read in the same order as provided to
the command that sets it. For example, the
three-dimensional current point is read as one real
number each for x, y, and z. In ASCII mode,
commas separate multiple return values, with a
carriage return at the end.

FRD flag

51 flag
ASCII: FRD 3
HEX: 51 03
None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 115

FLOOD (Flood)

Purpose: Flood the screen to the color given.

Command: FLOOD color

Description: FLOOD sets every PEL in the defined viewport,
to the color specified by color subject to MASK.
This command does not change the current color.

Short Form: F color

Hex Format: 07 color

Example:
ASCII: F 4
HEX: 07 04
Errors: None

. . August 15, 1984
116 Professional Graphics Controller © Copyright IBM Corporation 1984

IMAGER
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Image Read)
Read image from the display.
IMAGER line x1 x2

IMAGER reads a line from the image being
displayed. If the communication mode is ASCII
(CA) the image is placed in the output buffer as
one ASCII number for each PEL, separated by
carriage returns. If communication is in
hexadecimal mode (CX) the image output is in a
run-length encoded format. line, xI, and x2 are
expressed in PELs measured from the lower-left
corner of the screen.

IR line x1 x2

D8 lowline highline
lowx1l highx1
lowx2 highx2

ASCII: IR 100 0 127
HEX: D8 64 00 00 00 7F 00

Value out of range

August 15, 1984

© Copyright IBM Corporation 1984

Professional Graphics Controller 117

IMAGEW
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Image Write)
Write image to the display.
IMAGEW line x1 x2

IMAGEW writes a line of PELs to the display. If
communication is in ASCII (CA) each parameter
represents one PEL. If communication is in
hexadecimal (CX) the image is sent in run-length
encoded format. line, xI, and x2 are expressed in
PELs measured from the lower-left corner of the
screen.

IW line x1 x2

D9 lowline highline
lowx1 highx1
lowx2 highx2

data
Vo
ASCII: IW 100 50 60
HEX: D9 64 00 32 00 3C 00 82 2C
18 42 03 0C 01 OE 81 18 2C
Value out of range
N

August 15, 1984

118 Professional Graphics Controller © Copyright IBM Corporation 1984

LINFUN
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Line Function)
Select drawing function.
LINFUN function

LINFUN sets the drawing function to that
specified by function. Available functions are:

0 Draw by writing PELs of the current color
(default).
1 Draw by complementing PEL. The current

color will be ignored.

Note: With both functions, drawing is subject
to MASK and FILMSK where appropriate.

LF function

EB function

ASCII: LF O
HEX: EB 00
None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 119

LINPAT (Line Pattern)
Purpose: Set line pattern.
Command: LINPAT pattern

Description: LINPAT sets the line-drawing pattern from a
16-bit number. The line pattern is used to
implement dotted or dashed lines. As each PEL is
generated, the line-pattern mask is rotated right.

If there is a 1 in the least-significant bit (LSB), a
PEL is drawn. If that bit is a O then no PEL is
drawn and the background remains visible. A
line-pattern mask of all 1’s (65535) produces solid
lines, and is the default following a RESETF. The
line pattern affects the following commands except
when drawing a filled primitive:

ARC, CIRCLE, DRAW, DRAW3, DRAWR,
DRAWR3, ELIPSE, POLY, POLY3, POLYR,
POLYR3, RECT, RECTR, SECTOR

Short Form: LP pattern

Hex Format: EA lowpattern highpattern

Example:
ASCII: LP 65280
HEX: EA 00 FF
Errors: None

August 15, 1984
120 Professional Graphics Controller © Copyright IBMgCorporation 1984

LUT (Look-Up Table)

Purpose: Set an entry in the look-up table.

Command: LUT indexrgb

Description: ~ LUT loads red, green, and blue intensity levels
into the LUT entry specified by index. Intensity
values are treated as modulo-16 numbers.

Short Form: L indexrgb

Hex Format: EE indexrgb

Example:
ASCIT: L 30150
HEX: EE 04 00 00 OF
—~. Errors: None

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 121

LUTINT (Look-Up Table Initialize)
Purpose: Initialize the look-up table.
Command: LUTINT state

Description: LUTINT sets the LUT to one of the following
states specified by state:

State
0 Color-cone distribution
1 Foreground/background colors in the low
4-bits of a value code will be visible only if
the high 4-bits is O {or “invisible™)
2 Value codes interpreted as: RRG GG B B B
3 Value codes interpreted as: RRRG GB BB
4 Value codes interpreted as: RRRGGGBB
5 6-level RGB
255 Load LUT from LUT storage area (opposite
of LUTSAV)
Short Form: LI state
Hex Format: EC state
Example:
ASCII: LI 4
HEX: EC 04
Errors: Value out of range

August 15, 1984
122 Professional Graphics Controller © Copyright IBM Corporation 1984

LUTRD (Look-Up Table Read)

Purpose: Read the look-up table entry.

Command: LUTRD index

Description: LUTRD loads the red, green, and blue entries at
the LUT entry specified by index into the output
buffer for reading by the host.

In ASCII mode, the LUT entries are read as red,

green, and blue intensities, separated by commas,
and ended by a carriage return.

In hexadecimal mode, the LUT entries are read
one byte for each entry for a total of three bytes.

Short Form: LRD index

Hex Format: 50 index

Example:
ASCII: LRD 2
HEX: 50 02
Errors: None

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 123

LUTSAV (Look-Up Table Save)

Purpose: Save the look-up table in the look-up table storage
area.

Command: LUTSAV

Description: LUTSAYV saves all 256 LUT entries in the LUT
storage area. These values may be reloaded with a
“LUTINT 255” command. Each LUTSAV
overwrites any previous LUTSAV.

Short Form: LS

Hex Format: ED

Example:
ASCII: LS
HEX: ED
Errors: None

August 15, 1984

124 Professional Graphics Controller © Copyright IBM Corporation 1984

MASK
Purpose:
Command:

Description:

Short Form:
Hex Format:

Example:

Errors:

(Mask)
Set bit-plane mask.
MASK planemask

MASK sets the 8-bit, read/write, bit-plane mask
to the value specified by planemask. A zero in any
position in the mask means that no bits in that
plane are written to; when read, bits in that plane
return zero. Because of the organization of
display memory, the fastest drawing speed occurs
when planemask is FF, OF, or FO.

MK planemask

E8 planemask

ASCII: MK 15
HEX: E8 OF
None

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 125

MATXRD (Matrix Read)

Purpose: Read the matrix contents.

Command: MATXRD matrix
o
Description: MATXRD reads the contents of the 4-by-4 matrix
specified by matrix into the output buffer for later
reading by the host. The matrix number
assignments are:

1 Three-dimensional modeling transformation
matrix

2 Three-dimensional viewing transformation
matrix

In ASCII mode, the matrix entries are read in four
lines. Each line has four entries separated by
commas.

In hexadecimal mode, four bytes for each matrix A~
entry are read, for a total of 64 bytes. The reading

order is:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
Short Form: MRD matrix
Hex Format: 52 matrix
Example:
ASCII: MRD 1
HEX: 52 01 ~~
Errors: Value out of range

August 15, 1984
126 Professional Graphics Controller © Copyright IBMgCorporation 1984

MDIDEN (Modeling Identity)
Purpose: Reset the modeling transformation matrix.
Command: MDIDEN

Description: MDIDEN sets the modeling transformation matrix
to the identity matrix.

Short Form: MDI

Hex Format: 90

Example:
ASCII: MDI
HEX: 90
Errors: None

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 127

MDMATX
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Modeling Matrix)

Define the modeling matrix.

MDMATX array

MDMATX loads the modeling matrix directly

from the 4-by-4 real-number array.

MDM array

97 lowm11
lowm12
lowm13
lowm14
lowm21
lowm?22
lowm23
lowm?24
lowm31
lowm32
lowm33
lowm34
lowm41
lowm42
lowm43
lowm44

ASCII: MDM

HEX:

highm11
highm12
highm13
highm14
highm21
highm?22
highm23
highm24
highm31
highm32
highm33
highm34
highm41
highm42
highm43
highm44

lowfracm11
lowfracm12
lowfracm13
lowfracm14
lowfracm21
lowfracm22
lowfracm23
lowfracm24
lowfracm31
lowfracm32
lowfracm33
lowfracm34
lowfracm41
lowfracm42
lowfracm43
lowfracm44

highfracm11
highfracm12
highfracm13
highfracm14
highfracm?21
highfracm22
highfracm23
highfracm24
highfracm31
highfracm32
highfracm33
highfracm34
highfracm41
highfracm42
highfracm43
highfracm44

68.25 12.5
65503 0.25
8418 324.
313.5 50

97 44 00 00 40 0C 00 00

11 00 00 00
32 01 00 CO
44 01 00 CO
39 01 00 80
01 00 00 00

Arithmetic overflow

128 Professional Graphics Controller

253 17

306.75 34.5
751.25 0

1.25 1

80 FD 00 00 00
00 00 00 00 40
80 E2 20 00 00
40 00 00 00 00
00 01 00 00 40 7\

DF FF QO
22 00 00
01 00 00
32 00 00

August 15, 1984
© Copyright IBM Corporation 1984

MDORG (Modeling Origin)

Purpose: Define the modeling origin.
Command: MDORG ox oy oz

Description: MDORG defines the origin for
modeling-transformation scaling and rotating
specified by ox,0y,0z.

Short Form: MDO ox oy oz

Hex Format: 91 lowox highox lowfracox highfracox
lowoy highoy lowfracoy highfracoy
lowoz highoz lowfracoz highfracoz

Example:

ASCII: MDO 1.7 0.2 1.5

HEX: 91 01 00 33 B3 00 00 33 33 01 00 00 80
Errors: None

August 15, 1984 .
© Cgopyrighl IBM Corporation 1984 Professional Graphics Controller 129

MDROTX (Modeling Rotate X Axis)
Purpose: Rotate about the X axis.
Command: MDROTX deg

Description: MDROTX defines the rotation about the x axis
component of the modeling matrix.

Short Form: MDX deg

Hex Format: 93 lowdeg highdeg

Examples:
ASCII: MDX 30
HEX: 93 2D 00
Errors: Arithmetic overflow

. . August 15, 1984
130 Professional Graphics Controller © Copyright IBM Corporation 1984

MDROTY (Modeling Rotate Y Axis)
Purpose: Rotate about the Y axis.
Command: MDROTY deg

Description: MDROTY defines the rotation about the y axis
component of the modeling matrix.

Short Form: MDY deg

Hex Format: 94 lowdeg highdeg

Example:
ASCII: MDY 15
HEX: 94 OF 00
Errors: Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 131

MDROTZ
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

132 Professional Graphics Controller

(Modeling Rotate Z Axis)

Rotate about the Z axis.

MDROTZ deg

MDROT?Z defines the rotation about the z axis
component of the modeling matrix.

MDZ deg

95 lowdeg highdeg

ASCIT: MDZ 33
HEX: 95 21 00

Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984

MDSCAL (Modeling Scale)
Purpose: Set modeling scaling.
Command: MDSCAL sx sy s7

Description: MDSCAL defines the scaling components for the
image transformation.

Short Form: MDS sx sy sz

Hex Format 92 lowsx highsx lowfracsx highfracsx
lowsy highsy lowfracsy highfracsy
lowsz highsz lowfracsz highfracsz

Example:

ASCII: MDS 2 2 2

HEX: 92 02 00 00 80 01 00 00 00 01 00 00 80
Errors: Arithmetic overflow

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 133

MDTRAN (Modeling Translation)

Purpose: Define the modeling translation.
Command: MDTRAN tx ty tz

Description: MDTRAN defines the translation components for
the image transformation specified by tx,y,1z.

Short Form: MDT tx ty tz

Hex Format: 96 lowtx hightx lowfractx highfractx
lowty highty lowfracty highfracty
lowtz hightz lowfractz highfractz

Example:

ASCII: MDT 50 0 O

HEX: 96 32 00 00 00 00 00 00 Q0 00 00 0O 00
Errors: Arithmetic overflow

August 15, 1984
134 Professional Graphics Controller © Copyright IBM Corporation 1984

MOVE (Move)

Purpose: Absolute move in two dimensions.
Command: MOVE xy

Description: MOVE moves the two-dimensional current point
to the x and y coordinates given.

Short Form: Mxy

Hex Format: 10 lowx highx lowfracx highfracx
lowy highy lowfracy highfracy

Example:

ASCII: M 300 -400

HEX: 10 2C 01 00 00 70 FE 00 00
Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 135

MOVER (Move Relative)
Purpose: Relative move in two dimensions.
Command: MOVER dx dy

Description: MOVER moves the two-dimensional current point
a relative amount specified by dx,dy.

Short Form: MR dx dy

Hex Format: 11 lowdx highdx lowfracdx highfracdx
lowdy highdy lowfracdy highfracdy

Example:

ASCITI: MR 20.44 59

HEX: 11 14 00 A2 71 3B 00 00 0O
Errors: Arithmetic overflow

August 15, 1984
136 Professional Graphics Controller © Copyright IBM Corporation 1984

MOVE3 (Move in 3D)

Purpose: Absolute move in three dimensions.

Command: MOVE3 xyz

Description: MOVE3 moves the three-dimensional current
point to the coordinates specified by x,y,z.

Short Form: M3 xyz

Hex Format: 12 lowx highx lowfracx highfracx
lowy highy lowfracy highfracy
lowz highz lowfracz highfracz

Example:
ASCIT: M3 -1300 -233 519
HEX: 12 EC FA 00 00 17 FF 00 00 07 02 00 00
7~ Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 137

MOVER3 (Move Relative in 3D)
Purpose: Relative move in three dimensions.
Command: MOVER3 dx dy dz

Description: MOVER3 moves the three-dimensional current
point a relative amount specified by dx,dy,dz.

Short Form: MR3 dx dy dz

Hex Format: 13 lowdx highdx lowfracdx highfracdx
lowdy highdy lowfracdy highfracdy
lowdz highdz lowfracdz highfracdz

Example:

ASCII: MR3 722 0 0

HEX: 13 D2 02 00 00 00 00 00 00 00 00 00 0O
Errors: Arithmetic overflow

August 15, 1984
138 Professional Graphics Controller © Copyright IBM Corporation 1984

POINT (Point)

Purpose: Set the PEL to the current color in two
dimensions.

Command: POINT

Description: POINT writes the current color to the PEL at the
two-dimensional current point.

Short Form: PT

Hex Format: 08

Example:
ASCII: PT
HEX: 08
Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 139

POINT3 (Point in 3D)

Purpose: Set the PEL to the current color in three
dimensions.

Command: POINT3

Description: POINT3 writes the current color to the PEL at the
current three-dimensional point.

Short Form: PT3

Hex Format: 09

Example:
ASCII: PT3
HEX: 09
Errors: None

. August 15, 1984
140 Professional Graphics Controller © Copyright [BM Corporation 1984

POLY
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Polygon)
Draw a polygon.
POLY npts x1yl x2y2..... Xn yn

POLY draws an absolute polygon in two
dimensions, where npts is the number of points,
and x and y are the coordinates of the points. The
polygon is filled if the PRMFIL flag is set. The
current point is not changed.

Pnptsxl yl x2y2..... Xn yn

30 npts lowx1 highx1 lowfracxl highfracxl
lowyl highyl lowfracyl highfracyl
lowx2 highx2 lowfracx2 highfracx2
lowy2 highy2 lowfracy2 highfracy2
lowxN highxN lowfracxN highfracxN
lowyN highyN lowfracyN highfracyN

ASCII: P3 00 10 10 -10 30
HEX: 30 03 00 00 00 00 00 00 00 00

OA 00 00 00 F6 FF 00 00
F6 FF 00 00 E2 FF 00 00

Not enough memory; arithmetic overflow

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 141

POLYR (Polygon Relative)
Purpose: Draw a relative polygon.
Command: POLYR npts dx1 dyl dx2dy2..... dxn dyn

Description: POLYR draws a relative polygon in two
dimensions, where npts is the number of points,
and dx and dy are the offsets from the current
point. The polygon is filled if the PRMFIL flag is
set. The current point is not changed.

Short Form: PR npts dx1 dyl1 dx2dy2..... dxn dyn

Hex Format: 31npts lowdx1 highdxl lowfracdx1 highfracdx1
lowdyl highdyl lowfracdyl highfracdyl
lowdx2 highdx2 lowfracdx2 highfracdx2
lowdy2 highdy2 lowfracdy2 highfracdy2
lowdxN highdxN lowfracdxN highfracdxN
lowdyN highdyN lowfracdyN highfracdyN

Example:
ASCII: PR 3 0 0 20 20 -20 40
HEX: 31 03 00 00 00 00 00 00 00 00
OA 00 00 00 OA 00 00 00
F6 FF 00 00 E2 FF 00 00
Errors: Not enough memory; arithmetic overflow

) . August 15, 1984
142 Professional Graphics Controller © Copyright IBM Corporation 1984

POLY3
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Polygon in 3D)

Draw a polygon in three dimensions.

POLY3 nptsxlylzl..... Xn yn zn

POLY3 draws an absolute polygon in three

dimensions, where npts is the number of points,
and x, y, and z are the coordinates of the points.

The polygon is filled if the PRMFIL flag is set.

The current point does not change.

P3nptsxlylzl..... Xn yn zn

32 npts lowx1
lowy1
lowz1
lowx2
lowy?2
lowz2

ASCIT:

P33000 10 10 10 -10 30 -10

HEX:

32 03 00 00 00 00 00 00 00 0O 00 00 00 00
OA 00 00 00 OA 00 00 00 OA 00 00 00
F6 FF 00 00 E2 FF 00 00 F6 FF 00 00

highx1 lowfracx1
highyl lowfracyl
highz1 lowfraczl
highx2 lowfracx2
highy2 lowfracy2
highz2 lowfracz2

highxN lowfracxN highfracxN
highyN lowfracyN highfracyN
highzN lowfraczN highfraczN

highfracx1
highfracy1
highfracz1
highfracx2
highfracy2
highfracz2

Not enough memory; arithmetic overflow

Professional Graphics Controller 143

.

POLYR3 (Polygon Relative in 3D)

Purpose: Draw a relative polygon in three dimensions.
Command: POLYR3 npts dx1 dyl1 dzl..... dxn dyn dzn

Description: POLYR3 draws a relative polygon in three
dimensions, where npts is the number of points,
and dx, dy, and dz are the offsets from the current
point. The polygon is filled if the PRMFIL flag is
set. The current point is not affected.

Short Form: PR3 npts dx1 dyl dz1 dxn dyn dzn

Hex Format: 33 npts lowdx1 highdx1 lowfracdx1 highfracdx1
lowdyl highdyl lowfracdyl highfracdyl
lowdz1 highdzl lowfracdzl highfracdzl
lowdx2 highdx2 lowfracdx2 highfracdx2
lowdy2 highdy2 lowfracdy2 highfracdy2
lowdz2 highdz2 lowfracdz2 highfracdz2
lowdxN highdxN lowfracdxN highfracdxN
lowdyN highdyN lowfracdyN highfracdyN
lowdzN highdzN lowfracdzN highfracdzN

Example:
ASCII:
PR33 000 10 10 10 -10 30 -10
HEX:
33 03 00 00 00 00 00 00 00 00 00 00 00 00
0OA 00 00 00 OA 00 00 00 OA 00 00 00
F6 FF 00 00 E2 FF 00 00 F6 FF 00 00
Errors: Not enough memory; arithmetic overflow

August 15, 1984
144 Professional Graphics Controller © Copyright IBM Corporation 1984

PRMFIL
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Primitive Fill)
Set primitive fill flag.
PRMFIL flag

PRMFIL sets the primitive fill flag to the value
specified by flag. If flag is 0, closed figures are
drawn in outline only. If flag is 1, closed figures
are drawn filled with the current color. If flag is 2,
there is a performance improvement but
degenerate polygons will fill unpredictably.
PRMFIL affects the following commands:

CIRCLE, ELIPSE, POLY, POLYR, POLY3,
POLYR3, RECT, RECTR, SECTOR

PF flag

E9 flag

ASCII: PF 1

HEX: E9 01

None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 145

PROJCT
Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Projection)

Set the type of projection.

PROJCT angle

PROIJCT defines the type of projection used in the
three-dimensional to two-dimensional
transformation. If angle is 0, the projection is
orthographic parallel (non-oblique). Otherwise,
the projection is perspective, with angle being the
view angle (default is 60). The range of angle is O
to 179 degrees.

PRO angle

BO angle

ASCII: PR O
HEX: BO 3C

Value out of range; arithmetic overflow

August 15, 1984

146 Professional Graphics Controller © Copyright IBM Corporation 1984

RECT (Rectangle)
Purpose: Draw an absolute rectangle in two dimensions.
Command: RECT xy

Description: RECT draws a rectangle with one corner at the
current point and its diagonally opposite corner at
the point given. The current point does not move.
If the PRMFIL flag is set, the rectangle is drawn
filled.

Short Form: Rxy

Hex Format: 34 lowx highx lowfracx highfracx
lowy highy lowfracy highfracy

Example:
ASCII: R 70.50 90.75
HEX: 34 46 00 00 80 5A 00 00 CO

Errors: None

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 147

RECTR (Rectangle Relative)

Purpose: Draw a relative rectangle in two dimensions.

Command: RECTR dx dy

Description: RECTR draws a rectangle. One corner is at the -
current point, and its diagonally opposite corner is
offset by dx,dy. The current point does not move.
If the PRMFIL flag is set, the rectangle is drawn
filled.

Short Form: RR dx dy

Hex Format: 35 lowdx highdx lowfracdx highfracdx

lowdy highdy lowfracdy highfracdy
Example:
ASCII: RR -12.5 60
HEX: 35 F3 FF 00 80 3C 00 00 00
Errors: Arithmetic overflow

August 15, 1984
148 Professional Graphics Controller © Copyright IBM Corporation 1984

RESETF (Reset Flags)
Purpose: Reset program parameters.
Command: RESETF
~
Description: Reset all settable flags to their default values.
Flag Name Default Value
1 AREAPT 65535 16 times Solid area
2 CLIPH Flag=0 Disabled
3 CLIPY Flag =0 Disabled
4 COLOR Value = 255
5 DISPLA No change after a RESETF
6 DISTAN Distance = 500
7 DISTH Distance = -30000
8 DISTY Distance = 30000
9 FILMSK Mask = 255 No PEL draw
effect
10 LINFUN Function=0 Replacement
mode
N1 LINPAT Pattern = 65535 Solid line
12 MASK Mask = 255 All planes
enabled
13 MDORG OX=0Y=0Z=0
14 2D current point X=Y=0
15 3D current point X=Y=2Z2=0
16 PRMFIL Flag =0 Primitive fill off
17 PROJCT Angle = 60
18 TANGLE Angle =0 Horizontal,
left-right text
19 TJUST H=V=1 Left, bottom
justification
20 TSIZE Size =8 12 by 8 cell
characters
21 VWPORT 0, 639, 0, 479 Entire screen
22 VWRPT X=Y=Z=0
23 WINDOW -320, 319, -240, 239
24 Transformed 3D X=Y=2Z=0
N current point

August 15, 1984

© Copyright IBM Corporation 1984 Professional Graphics Controller 149

Short Form: RF

Hex Format: 04

Example:
ASCII: RF
HEX: 04
Errors: None

150 Professional Graphics Controller

August 15, 1984
© Copyright IBM Corporation 1984

SECTOR
Purpose:
Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Sector)

Draw a sector in two dimensions.
SECTOR radius deg0 degl

SECTOR draws a pie-shaped sector that consists
of an arc with a given radius, with the arc spanning
two given angles, and a vector from the center of
the arc to each of the arc’s endpoints. If the
PRMFIL flag is set, the sector is drawn filled.
radius is a real number. Angles are integers and
treated modulo-360. If radius is negative, 180
degrees are added to each angle.

S radius deg0 degl

3D lowradius highradius
lowfracradius highfracradius
lowdeg0 highdeg0
lowdeg1 highdeg1

ASCII: S 50 -90 30
HEX: 3D 32 00 00 00 A6 FF 1E 00

Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 151

TANGLE (Text Angle)

Purpose: Set text angle.
Command: TANGLE deg
VR
Description: TANGLE specifies the angle for drawing text. An
angle of O (default) causes the text to be drawn
normally from left to right.
Short Form: TA deg
Hex Format: 82 lowdeg highdeg
Example:
ASCII: TA 90
HEX: 82 5A 00
Errors: None
N
N

August 15, 1984
152 Professional Graphics Controller © Copyright IBM Corporation 1984

TDEFIN

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Text Define)

Define programmable text character.

TDEFIN N x y array

TDEFIN stores the character image given by x, y,
and array for a character with the ASCII value of
N. If communication is in ASCII, the character
image is to be sent as a series of 0’s and 1’s. If
communication is in hexadecimal, the character is
sent as a series of bytes, as many for each line as
required, for as many lines as specified.

TD N x y array

84 N x y linelbytel linelbyte2 ...
line2bytel line2byte2 ...

lineYbytel lineYbyte2 ...

ASCIT: T 65 70 12 14

line1byteX
line2byteX

lineYbyteX

HEX: 84 62 05 07 1E 11 11 1E 10 10 10

Not enough memory

August 15, 1984

© Copyright IBM Corporation 1984

Professional Graphics Controller 153

TEXT (Text)

Purpose: Draw hardware font text.

Command: TEXT ‘string’
TEXT ““string”

Description: TEXT writes a text string to the screen, justified
about the current point as specified by the last
TJUST command. The string may be delimited by
either single or double quotes.

Short Form: T ‘string’
T "string"

Hex Format: 80 22 c1 c2 c3

..... cN 22
or
80 27 c1 c2 ¢3
..... cN 27
Example:
ASCII: T 'This is a test'
HEX: 80 27 58 20 65 71 75 61
6C 73 20 31 2E 34 27
Errors: Not enough memory

August 15, 1984
154 Professional Graphics Controller © Copyright IBM Corporation 1984

TEXTP

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Text Programmed)

Draw text using a programmed font.

TEXTP ‘string’
TEXTP “string”

TEXTP draws text with the user-programmed
font. The size is that specified by the latest TSIZE
command, and the angle is that specified by
TANGLE. The text is justified about the current
point.

TP ‘string’
TP "string"

83 22 cl c2 c3

..... cN 22
or

83 27 cl c2 c3
..... cN 27

ASCII: TP 'Hello'
HEX: 83 27 48 65 6C 6F 27

Not enough memory

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 155

TJUST (Text Justify)

Purpose: Set text justification
Command: TJUST horiz vert

Description: The TJUST command specifies the text
justification, where horiz is one of the following:

1 Left justify text at current point.

2 Center the text string about the current
point.

3 Right justify text at current point.

vert is one of the following:

1 Bottom of text at Y coordinate of current
point.

2 Center text string vertically about the
current point.

3 Top of text at Y coordinate of current
point.

The defaultisH=1,V = 1.
Short Form: TJ horiz vert

Hex Format: 85

Example:
ASCII: TJd 21
HEX: 85 02 01
Errors: Value out of range

August 15, 1984
156 Professional Graphics Controller © Copyright IBM Corporation 1984

TSIZE (Text Size)

Purpose: Set the text size.

Command: TSIZE size

Description: TSIZE sets text size by specifying the virtual x
distance from one character to the next when
displayed. '

Short Form: TS size

Hex Format: 81 lowsize highsize
lowfracsize highfracsize

Example:
ASCII: TS 10
HEX: 81 OA 00 00 00
7~ Errors: Arithmetic overflow

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 157

VWIDEN (Viewing Identity)
Purpose: Reset the viewing matrix.
Command: VWIDEN

Description: VWIDEN sets the viewing transformation matrix
to the identity matrix.

Short Form: VWI

Hex Format: A0

Example:
ASCII: VWI
HEX: A0
Errors: None

August 15, 1984
158 Professional Graphics Controller © Copyright IBM Corporation 1984

VWMATX

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Viewing Matrix)

Define the viewing matrix.

VWMATX array

VWMATX loads the viewing matrix directly from
the 4-by-4 array.

VWM array

A7lowml1
lowm12
lowm13
lowm14
lowm?21
lowm?22
lowm?23
lowm?24
lowm31
lowm32
lowm33
lowm34
lowm41
lowm42
lowm43
lowm44

ASCII: VWM

HEX:

A7 44
00
00
00
01
00
01

highm11
highm12
highm13
highm14
highm21
highm?22
highm23
highm24
highm31
highm32
highm33
highm34
highm41
highm42
highm43
highm44

68
65503.5 0
8418

313.75

Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984

12.5

lowfracm11
lowfracm12
lowfracm13
lowfracm14
lowfracm21
lowfracm22
lowfracm23
lowfracm24
lowfracm31
lowfracm32
lowfracm33
lowfracm34
lowfracm41
lowfracm42
lowfracm43
lowfracm44

253

306.25
2628.25 1.75
50.

25 1

0cC
00
32
00
00
00

00 00 80
40 DF FF
01 00 40
00 44 OA
00 00 80
40 01 00

highfracm11
highfracm12
highfracm13
highfracm14
highfracm21
highfracm22
highfracm23
highfracm24
highfracm31
highfracm32
highfracm33
highfracm34
highfracm41
highfracm4?2
highfracm43
highfracm44

17.25
34
0.5
1.5

FD 00
00 80
22 00
00 40
39 01
00 00

Professional Graphics Controller 159

VWPORT (Viewport)
Purpose: Define a viewport.
Command: VWPORT x1 x2 y1 y2

Description: VWPORT defines a viewport within the viewplane
and is measured in PELs from the lower-left
corner of the screen. Clipping is always enabled.
The default is the entire screen (0,639 and 0,479).
x1 must be less than x2; otherwise, a warning is
generated and the coordinates are swapped. The
same is true for y/ and y2. A warning is generated
if any of the coordinates fall outside the screen
boundary.

Short Form: VWP x1 x2 yl y2

Hex Format: B2 lowx1 highxl lowx2 highx2
lowyl highyl lowy2 highy2

Example:

ASCII: VWP 50 450 30 250

HEX: B2 32 00 C4 01 1E 00 FA 0O
Errors: Arithmetic overflow

August 15, 1984
160 Professional Graphics Controller © Copyright IBM Corporation 1984

VWROTX

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Viewing Rotate X Axis)
Rotate viewing about the x axis.
VWROTX deg

VWROTX defines the rotation about the x axis
component of the viewing matrix.

VWX deg

A3 lowdeg highdeg

ASCIT: VWX 30
HEX: A3 2D 00

Arithmetic overflow

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 161

VWROTY (Viewing Rotate Y Axis)
Purpose: Rotate viewing about the y axis.
Command: VWROTY deg

Description: VWROTY defines the rotation about the y axis
component of the viewing matrix.

Short Form: VWY deg

Hex Format: A4 lowdeg highdeg

Example:
ASCII: VWY 45
HEX: A4 1E 00
Errors: Arithmetic overflow

August 15, 1984
162 Professional Graphics Controller © Copyright IBM Corporation 1984

VWROTZ (Viewing Rotate Z Axis)
Purpose: Rotate viewing about the z axis.
Command: VWROTZ deg

Description: VWROTZ defines the rotation about the z axis
component of the viewing matrix.

Short Form: VWZ deg

Hex Format: A5 lowdeg highdeg

Example:
ASCII: VWZ 30
HEX: A5 44 00
Errors: Arithmetic overflow

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 163

VWRPT (Viewing Reference Point)

Purpose: Define the viewing reference point.
Command: VWRPT xy z

Description: VWRPT defines the viewing reference point (the
point the user is looking at); specified by x,y,z.

Short Form: VWRxyz

Hex Format: Allowx highx lowfracx highfracx
lowy highy lowfracy highfracy
lowz highz lowfracz highfracz

Example:

ASCII: VWR 50 75 -25

HEX: Al 32 00 00 00 4B 00 00 00 E7 FF 00 00
Errors: Arithmetic overflow

) . August 15, 1984
164 Professional Graphics Controller © Copyright IBM Corporation 1984

WAIT
Purpose:
Command:

Description:

Short form:

Hex Format:

Example:

Errors:

(Wait)

Insert a delay in execution.

WAIT frames

WAIT inserts a delay in the execution of
commands by waiting the number of frames
specified by frames. A frame is 1/60 second.
With the maximum of 65535 frames, a delay of up
to 20 minutes may be inserted.

W frames

05 lowframes highframes

ASCII: W 60
HEX: 05 3C 00

None

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 165

WINDOW

Purpose:

Command:

Description:

Short Form:

Hex Format:

Example:

Errors:

(Window)

Define the viewport coordinates.

WINDOW x1 x2 y1 y2

WINDOW defines the corner coordinates of the

viewport. These two-dimensional real coordinates
will map to the screen’s PEL locations specified by

.the most recent VWPORT command.

WI x1 x2 yl y2

B3 lowxleft highxleft
lowfracxleft highfracxleft
lowxright highxright

lowfracxright highfracxright
lowybottom highybottom
lowfracybottom highfracybottom
lowytop highytop
lowfracytop highfracytop

ASCIT: WI -100 100 100 100

HEX: B3 96 FF 00 00 64 00 00 00
64 00 00 00 64 00 00 00

Arithmetic overflow

August 15, 1984

166 Professional Graphics Controller © Copyright IBM Corporation 1984

Run-Length Encoding

In hexadecimal mode, the commands IMAGER and IMAGEW
send and receive data in run-length encoded format. This format
allows for extremely high data rates. The format is described as
follows:

Command (1 byte) IMAGER or IMAGEW
Line # (1 word)

Start x

End x

One or more PEL packets

A PEL packet is either of the following:
« A solid block of one color:

Count (1 byte: N-1)

Color (1 byte)

The count may range from 0 to 127 (N = 1 to 128),
with the most-significant bit set to 0. This packet
defines multiple occurrences of the same color and
requires only two bytes to specify up to 128 PELs.

« PELs of different colors:

Count (1 byte: N -1 + 128)

PEL O

PEL 1

PEL 2

PEL N - 1 (N bytes)

The count may range from 128 to 255 (N = 1 to 128),
with the most-significant bit set to 1. This packet
defines strings of color codes that are different from one
another.

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 167

Default LUT Selections for LUTINT

Each state provides a distinct way for initializing the look-up
table (LUT). Following are descriptions for each currently
defined state. The descriptions include a list of the default values
for that LUT.

State 0

State O reproduces a color-cone distribution. The 8-bit LUT
value divides into two 4-bit hexadecimal digits. The
least-significant digit supplies the luminance value, and the
most-significant digit supplies the color scale, each of the 16
values corresponding to a color. The color scale shades from
black through the given color to white.

August 15, 1984
168 Professional Graphics Controller © Copyright IBM Corporation 1984

The following table shows the default values of state O for the
various colors.

Color Default Values (in Hex) for State 0

000 [111] 222 | 333 | 444 | 555 | 666 | 777
888 [999 | AAA| BBB| CCC| DDD| EEE| FFF
000 | 20G | 400 | 600 | 800 | AOO | COO | EOO
FOO | F22 | F44 | F66 | F88 | FAA| FCC| FEE
000 | 201 | 402 | 603 | 904 | AO5 | CO6 | EO7
FO8 | F29 | FAA| F6B| F8C | FAD| FCE| FEF
000 | 202 | 404 | 606 | 808 | AOA | COC | EQE
FOF | F2F | FAF | F6F | F8F | FAF | FCF | FEF
000 | 102 | 204 | 306 | 408 | 50A | 60C | 70E
80F [92F | AAF | B6F | CBF | DAF| ECF | FEF
000 [002 | 004 | 006 | 008 | OOA | 00OC [OOE
OOF | 22F | 44F | 66F | 88F | AAF| CCF| EEF
000 | 012 | 042 | 036 | 048 | O5A | 06C | O7E
O8F | 29F | 4AF | 6BF | 8CF | ADF| CEF| EFF
000 | 022 | 044 | 066 | 088 | OAA| OCC | OEE
OFF | 2FF | 4FF | 6FF | 8FF | AFF| CFF| EFF
000 | 021 | 042 | 063 | 084 | OA5 | OC6 | OE7
OF8 | 2F9 | 4FA | 6FB| 8FC | AFD| DFE| EFF
000 | 020 | 040 | 060 | 080 | OAO | OCO | OEO
OF0 | 2F2 | 4F4 | 6F6 | 8F8 | AFA| CFC| EFE
000 | 120 | 240 | 360 | 480 | 5A0 | 6CO | 7EO
3F0 | 9F2 | AF4 | BF6 | CF8 | DFA| EFC| EFF
000 | 220 [440 | 660 | 880 | AAO| CCO | EEO
FFO | FF2| FF4 | FF6 | FF8 | FFA| FFC| FFE
000 | 210 | 420 | 630 | 840 | ABO | C60 | E70
F80 | F92 | FA4| FB6 | FC8 | FDA| FEC| FFE
000 | 211 | 422 | 633 | 844 | A55 | C66 | E77
F88 | F99 | FAA| FBB| FCC| FDD| FEE| FFF
000 | 121 | 242 | 363 | 484 | 5A5 | 6C6 | 7E7
8F8 | 9F9 | AFA| BFB| CFC| DFD| EFE| FFF
000 | 112 | 224 | 336 | 448 | 55A | 66C | 77E
88F | 99F | AAF| BBF | CCF | DDF| EEF| FFF

Black to Grey to White

Black to Red to White

Black to Red-magenta to White

Black to Magenta to White

Black to Magenta-blue to White

Black to Blue to White

Black to Blue-cyan to White

Black to Cyan to White

Black to Cyan-green to White

Black to Green to White

Black to Green-yellow to White

Black to Yellow to White

Black to Yellow-red to White

Black to Unsaturated Red to White

Black to Unsaturated Green to White

Black to Unsaturated Blue to White

August 15, 1984 . .
© Copyright IBM Corporation 1984 Professional Graphics Controller 169

State 1

State 1 divides the 8-bit LUT value into two 4-bit hexadecimal
digits. The least-significant digit provides the background color,
and the most-significant digit defines the foreground color. The

high-function graphics mode interprets a value of 0000 for the —
most-significant digit as a transparent foreground, allowing the
background color to be displayed. Otherwise, the high-function
graphics mode ignores the background color.
The following table lists the colors represented by each 4-bit
value for State 1.
Value Color RGB
0 Sky Blue (background only) 68D
1 Black 000
2 Dark Brown 742
3 Light Brown A74
4 Dark Red 700
5 Light Red FOO
6 Orange F70
7 Yellow FFO N\
8 Yellow-Green AFQO
9 Light Green OF0
A Dark Green 070
B Green-Blue 077
o Dark Blue 007
D Light Burnt-Sienna E96
E Grey 777
F White FFF
Y

. . August 15, 1984
170 Professional Graphics Controller © Copyright IBM Corporation 1984

States 2 through 4

For states 2 through 4, red, green, and blue LUT values employ
either two or three bits of information. For each state, one color
receives two bits while the other two colors each receive three.
Each bit value then translates to an RGB intensity of that color.
The following tables give the corresponding intensity values for
each bit value.

2-Bit Intensity Values

Decimal Bit Intensity
Value Value Level
0 00 0
1 01 5
2 1 10
3 11 15

3-Bit Intensity Values

Decimal Bit Intensity
Value Value Level
0 700 0
1 001 3
2 010 5
3 011 7
4 100 9
5 101 11
6 110 13
7 111 15

State 2 uses two bits for red (R), three bits for green (G), and
three bits for blue (B). Thus, RR G G G B B B means:

[R R[G G G[B B B|—> 8-Bitcode

3 Three bits for blue intensity value
» Three bits for green intensity value
-» Two bits for red intensity value

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 171

Similarly, state 3 uses two bits for green and three bits each for
red and blue (R R R G G B B B). State 4 allows two bits for blue
and three bits each for red and green (R R R G G G B B).

August 15, 1984
172 Professional Graphics Controller © Copyright IBM Corporation 1984

The following table shows the default values for state 2.

Default Values (in Hex) for State 2
000 003 005 007 009 00B 00D 00F
030 033 035 037 039 03B 03D O3F
050 053 055 057 059 058 05D 05F
070 073 075 077 079 07B 07D 07E
090 093 095 097 099 09B 09D 09F
0BO 0B3 0B5 0B7 0B9 0OBB 0BD OBF
0DO 0D3 0D5 0D7 0D9 0DB 0DD ODF
OF0 OF3 OF5 OF7 0F9 OFB OFD OFF
050 503 505 507 509 508 50D 50F
530 533 535 537 539 53B 53D 53F
550 553 555 557 559 55B 55D 55F
570 573 575 577 579 57B 57D 57F
590 593 595 597 599 59B 59D 59F
5B0 5B3 5B5 5B7 5B9 5BB 5BD 5BF
5D0 5D3 5D5 5D7 5D9 5DB 5DD 5DF
5F0 5F3 5F5 5F7 5F9 5FB 5FD 5FF
AQ00 AO03 AO05 A07 A09 AOB AOD AOF
A30 A33 A35 A37 A39 A3B A3D A3F
A50 A53 A55 A57 AB9 A5B A5D A5F
A70 A73 A75 A77 A79 A7B A7D A7F
A90 A93 A95 A97 A99 A9B A9D A9F
ABO AB3 AB5 AB7 AB9 ABB ABD ABF
ADO AD3 AD5 AD7 AD9 ADB ADD ADF
AFO AF3 AF5 AF7 AF9 AFB AFD AFF
FOO FO3 FO5 FO7 FO9 FOB FOD FOF
F30 F33 F35 F37 F39 F3B F3D F3F
F50 F53 F55 F57 F59 F5B F5D F5F
F70 F73 F75 F77 F79 F7B F7D F7F
F30 F93 F95 F97 F99 FOB FOD FOF
FBO FB3 FB5 FB7 FB9 FBB FBD FBF
FDO FD3 FD5 FD7 FD9 FDB FDD FDF
FFO FF3 FF5 FF7 FF9 FFB FFD FFF

August 15, 1984]
© Cgopyright IBM Corporation 1984 Professional Graphics Controller 173

The following table shows the default values for state 3.

Default Values (in Hex) for State 3
000 003 005 007 009 00B 00D OO0F
050 053 055 057 059 05B 05D O5F
0AO 0A3 OA5 0A7 0A9 0AB OAD OAF
OF0 OF3 OF5 OF7 OF9 OFB OFD OFF
300 303 305 307 309 30B 30D 30F
350 353 355 357 359 358 35D 35F
3A0 3A3 3A5 3A7 3A9 3AB 3AD 3AF
3F0 3F3 3F5 3F7 3F9 3FB 3FD 3FF
500 503 505 507 509 50B 50D 50F
550 553 555 557 559 55B 55D 55F
5A0 5A3 5A5 5A7 5A9 5AB 5AD 5AF
5F0 5F3 5F5 5F7 5F9 5FB 5FD 5FF
700 703 705 707 709 70B 70D 70F
750 753 755 757 759 75B 75D 75F
7A0 7A3 7A5 7A7 7A9 7AB 7AD 7AF
7F0 7F3 7F5 7F7 7F9 7FB 7FD 7FF
900 903 905 907 909 90B 90D 90F
950 953 955 957 959 95B 95D 95F
9A0 9A3 9A5 9A7 9A9 9AB 9AD 9AF
9F0 9F3 9F5 9F7 9F9 9FB 9FD 9FF
BOO BO3 BO5 BO7 BO9 BOB BOD BOF
B50 B53 B55 B57 B59 B5B B5D B5F
BAO BA3 BAS BA7 BA9 BAB BAD BAF
BFO BF3 BF5 BF7 BF9 BFB BFD BFF
D00 D03 D05 D07 D09 DOB DOD DOF
D50 D53 D55 D57 D59 D5B D5D D5F
DAO DA3 DA5S DA7 DAY DAB DAD DAF
DFO DF3 DF5 DF7 DF9 DFB DFD DFF
FOO FO3 FO5 FO7 FO9 FOB FOD FOF
F50 F53 F55 F57 F59 F5B F5D F5F
FAO FA3 FAS FA7 FA9 FAB FAD FAF
FFO FF3 FF5 FF7 FF9 FFB FFD FFF

. August 15, 1984
174 Professional Graphics Controller © Copyright IBM Corporation 1984

The following table shows the default values for state 4.

Default Values (in Hex) for State 4
000 005 00A Q0F 030 035 03A 0O3F
050 055 05A 05F 070 075 07A 07F
090 095 09A 09F 0BO 0B5 OBA OBF
0DO 0D5 ODA ODF OF0 OF5 OFA OFF
300 305 30A 30F 330 335 33A 33F
350 355 35A 35F 370 375 37A 37F
390 395 39A 39F 3B0 3B5 3BA 3BF
3D0 3D5 3DA 3DF 3F0 3F5 3FA 3FF
500 505 50A 50F 530 535 53A 53F
550 555 55A 55F 570 575 57A 57F
590 595 59A 59F 5B0 5B5 5BA 5BF
5D0 5D5 5DA 5DF 5F0 5F5 5FA 5FF
700 705 70A 70F 730 735 73A 73F
750 755 75A 75F 770 775 77A 77F
790 795 79A 79F 7B0 7B5 7BA 7BF
7D0 7D5 7DA 7DF 7F0 7F% 7FA 7FF
900 905 90A 90F 930 935 93A 93F
950 955 95A 95F 970 975 97A 97F
990 995 99A 99F 9B0 9B5 9BA 9BF
9D0 9D5 9DA 9DF 9F0 9F5 9FA 9FF
BOO BOS BOA BOF B30 B35 B3A B3F
_B50 B55 B5A B5F B70 B75 B7A B7F
B90 B95 B9A BOF BBO BB5 BBA BBF
BDO BDS BDA BDF BFO BF5 BFA BFF
D00 D05 DOA DOF D30 D35 D3A D3F
D50 D55 D5A D5SF D70 D75 D7A D7F
D90 D95 D9A D9F DBO DB5 DBA DBF
DDO DD5 DDA DDF DFO DF5 DFA DFF
FOO FO5 FOA FOF F30 F3E F3A F3F
F50 F55 FS5A F5F F70 F75 F7A F7F
F90 FO5 FOA FOF FBO FB5 FBA FBF
FDO FD5 FDA FDF FFO FF5 FFA FFF

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 175

State 5

In state 5, the 8-bit value becomes the arithmetic result of the
formula (R x 36) + (G x 6) + B, where R, G, and B represent
coded values of intensity levels ranging from O to 5. The
following table defines which coded values correspond to which

intensity levels.

Coded Actual Intensity
RGB Levels

Values

0 0

1 3

2 6

3 9

4 12

5 15

176 Professional Graphics Controller

August 15, 1984

© Copyright IBM Corporation 1984

~

The following table shows the default values for state 5:

Default Values (in Hex) for State 5
000 003 006 009 00C O0F 030 033
036 039 03C 03F 060 063 066 069
06C O6F 090 093 096 099 09C 09F
0CO 0C3 0C6 0C9 0CC OcF OF0 OF3
OF6 OF9 OFC OFF 300 303 306 309
30C 30F 330 333 336 339 33C 33F
360 363 366 369 36C 36F 390 393
396 399 39C 39F 3C0 3C3 3C6 3C9
3CC 3Cf 3FO0 3F3 3F6 3F9 3FC 3FF
600 603 606 609 60C 60F 630 633
636 639 63C 63F 660 663 666 669
66C 66F 690 693 696 699 69C 69F
6CO 6C3 6C6 6C9 6CC 6CF 6F0 6F3
6F6 6F9 6FC 6FF 900 903 906 909
90C 90F 930 933 936 939 93C 93F
960 999 99C 99F 9CO0 9C3 9C6 9C9
996 999 99C 99F 9C0 9C3 9C6 9C9
9CC 9CF 9F0 9F3 9F6 9F9 9FC 9FF
C00 C03 C06 C09 COc COF C30 C33
C36 C39 C3C C3F C60 C63 C66 C69
C6C C6F C90 C93 C96 C99 C9C C9F
CCO CC3 CC6 CC9 CCC CCF CFO CF3
CF6 CF9 CFC CFF FOO FO3 FO6 FO9
FOC FOF F30 F33 F36 F39 F3C F3F
F60 F99 F9C FOF FCO Fc3 FC6 FC9
£96 F99 FOC FOF FCO FC3 FC6 FC9
FCC FCF FFO FF3 FF6 FF9 FFC FFF
000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 177

State 255

State 255 restores the LUT values that were previously saved
with the command LUTSAV. These tables can include
user-defined values.

August 15, 1984
178 Professional Graphics Controller © Copyright IBM Corporation 1984

Enable/Disable

Emulator
Connector

The following illustration shows the location of the connectors

and jumper on the Professional Graphics Controller.

Interface

Disabled

Professional Graphics

Controller

9-Pin D-Shell
Connector

August 15, 1984

Professional Graphics Controller 179

© Copyright IBM Corporation 1984

Connector Specifications

The following table shows the pin numbers and their respective

signals.

Signal Name/Description

Pin

Professional
Graphics
Display

Red Video

Green Video

Blue Video

Horizontal and Vertical Sync

Professional

Mode Control

Graphics

Ground for Pin 1

Controller

Ground for Pin 2

Ground for Pin 3

Ground for Pins 4 and 5

[CoX [BN [00 (61 B [/V 00 L G0 B

180 Professional Graphics Controller

August 15, 1984
© Copyright IBM Corporation 1984

Specifications
The following is a description of the Professional Graphics
Controller specifications.
Size:
Length: 668 mm (4.2 in.)
Depth: 32 mm (1.26 in.)
Height: 210 mm (3.36 in.)
Weight: 90.72 kg (2 Ib)
Power Requirements:
Voltage: 5 VDC (+/-5%)
Current: 5 A Maximum

Power Dissipation: 25 W Maximum

August 15, 1984
© Copyright IBM Corporation 1984 Professional Graphics Controller 181

Notes:

. . August 15, 1984
182 Professional Graphics Controller © Copyright IBM Corporation 1984

Logic Diagrams

This section shows the logic diagrams for:
« Professional Graphics Controller’s processor card
« Professional Graphics Controller’s emulator card

o Professional Graphics Controller’s memory card

August 15, 1984 .
© Copyright IBM Corporation 1984 Professional Graphics Controller 183

L 30 | 193Yys

1]

oce

mE

ecey

peee |

= — foee

@)1snexia— o5 o 80VN42S) 28

wssnaxa—] o] [ves

03AB3S3Y {ov] Q3A¥3SIY cza

I e £10vN4IIS) 228

e — o 210vN4d(S) 28

[ect— o0 foce

e vl [618]

[Se—onte) [818]

[ee— e 0avnadIs) [s]

[T} HOOVSIOI6) £LvaNnadIs) [s18]
62 3uves 21vanad(s) e

(611vsvo — 8e | 3uves {ez] 11v0N4dI(S) {vig]

[(9e}— 3uves 52— 1umBOSHNDIS) 01van4d(s) fcis]

(s1n¢9/ 14510 —— ¥z | [e2}— 1imnoiionnais) (6918La (oW —{ » ——t—{ze]

A [Czz}— nainoniie) [} avie) ON8eD woming —) wwaw ———{1ie]

[0z — awnm@) 61— saviel wm3s) (9o — foie] }—— aouno oniw

al (6110n30Y —— 81 [— savie 10u365) ZwvHo(6) [6

=. [[o}— 3uves [stt—— vavie) Q3Au3SIY £AVHO(6) (e8]

e suvas — w]| Fei— cover (s AoHgsIo vsole) [

[o} (6110gNINIgT — 21| L — zavie 16100 —— 98|
[s | 1N0300WIL) (6'BIMSNIAT [[6 —— v (69100 —— [Cse
[+ — 1noonasole) HW 4oIHasIOA®) [oovie) 1 m3cowis) | [
[¢ —1noniea [9_— nsvoavie) Q3A¥3SIY S Q3AW3SIY (15100 —— Ase ——4—¢
[[¢ — 1nonuoie [v +— wsvuaie ﬁ]ﬂ & HLINIS) (§IMAHO 1353 ——— @
[+ —1nooaue (29 1008 LNONIT 3] TLINIS) ano —— e

[a] [~ia] (wi<] [fid]

er o o 7] va

August 15, 1984

© Copyright IBM Corporation 1984

184 Professional Graphics Controller

L 30 Z 199Yys

00h9) SS3UAQY WYY WHOD ¥O4 € OL 2
0009 SSIHAQY WYY ‘WHOD 804 2 OL |
0378VSIO YOIV IHI ¥03 € 01 2
Q378VN3 HOIVINHI ¥04 Z O1 |

(S IHS) INIWVHNWI

(€ 1MS) AQY KD 0/1+
(5 1HS) HQTOH

(5 1H5) 2

(F 1HS)§1QVNdD

19 1HS) NIHOLYINWI

3N
43aWnr
T
43w

:SILON

EEISTVRL

w
©

ofury [y

8QVNd) €

D &
0IQVNd) L
T

2Qvndd It
€1aqvndd €

h0SIVhL
92n

N_A:|,

-

HOSTVRL
920,

21

o

e

61v+ (1 LHS)
Bive

— ive

9uv+

Sive

pive

1ve
ov- (1 1HS)

N3IQHYOB (1 LHS)

GIOH (€ LHS

S
hIQVNGY €
SIAVNd>

1A

€ IS WMNdD

L

I£1HS 10MNdD

1£ 1HS) 01YONdD
* (1vaNdd ——
21vaNdd ——

91vaNdD ——
(€ 1HS) £1¥ONdD

6

19€SThL

o0in

004

IAQV3H3 ¥ LHS!

BNE

[TZ3

SIve

1965
on

©G10H (€ LHS!

M3 (1 LHS)

240

on

o

FEN

11

o

1h2SIVRL
8zn

NI (1 LHS)

WOI (4 1K)
N3V~ (1 LHS)

HIQZHOM (£ LHS)

INIA (Y LHS)

1IN0l (L 1HS)

Professional Graphics Controller 185

© Copyright IBM Corporation 1984

August 15, 1984

L J0 £ 109Yys

12 1HS) 0010
(Z 1HS) HYQIOH
S 1HS) N30 L]
1§'2 1MS) 10UND L]
(2 1HS) 18MNAD 3
15 14S) 113SINOY
19 1MS) T0HMLN 5 —na5) o Jw:#ﬂ
19 1HS) WSMLNT arq 1 1ol 3N L MR e e
(4 1HS) UMITOW v Y (§ 1HS)
© 1HS) UM3INEBIN 1 ' ofSav> 7 7 196 M € o
Z_tiama), on
(1 1Hs) S 73 (LA
(4 1r9) € hiavnd>) "
929 |l v
,.wx,m»,xm.:s:au) S XXXOE ZIvandd 11 1AS an o el < bz
]
$1vaNdd — BeiSnL 4 _|.Aal~|.__l
$1vQNdd — \
Y1¥0Nd) — :
cwvandd — L L7 VA VAV o
avanad — [
11vaNd0 —— BLISTVRL N30 m
(1% °Z'\ 1H4S) 01¥aNdD 2n . Hena S wLSTYRL
B ~ wn
(9 118) 10081M —————— 404 YO W .
© 145 1081 ———1d 1x 19} o—08ND) 2 e i INIA WY IHS)
M cav [
o erovin ny 7]
(1 1HS) WINI T g £ hlaved SV L rs AU UTT) - 2IndY 15 1HS)
P o | o
osn
(V'L IHS) HLINI 5 T T
n = T oav hSRL
—dw u.% i D T Jav N
('L 1HS) M3 o MO n V. Tav Sl 20v ToH 0 o:
Sov €T v 20V hil oy 1€ 000K 6] =ls
WiiHg o3 — {80 vovi W ey L _€Qv €l
—d o] MY e mepy £IdY 5 1HS)
g 3 sav
('L 1HS) 108dSI0 0 v 2 Sav V1 oqy 2 @ HOOH (Z 1HS)
(21 14S) TuMdSIO vi a o) Av_0l] gy ¥
B (] Tav [l Y m
(51HS) 113SZWOY ————————— n i o] YO1ou Ny
T v T N.ws s3p .A|x>xn 13534+ (1 HS)
8y
1S 1HS) 113SWVHO0T J@m W ov M_. i <”_c= :rﬂ.«l
" v o o] MY AQV3E3 (¥ 1HS)
b 2 nv " w2
.)
(¥ 1HS) LUMAYEYVIILVIS o.@. s 2V M o 3 i TA0HASIO 1 1HS
" LY v »unt_w} {1338 oyt
(¥ 1HS) IBA s (13 W] 'Y 2x '
(1-¥'Z1 LHS)81OVNAD d € 9 u
210vNdd oI
910vNdd ——| 1 2-8808d = &
510vNdd —! Al an 2z 1z i 2§
riovnad — D v
a voIS X BOIS
£10¥Ndd —
210vNdd — T W Zwmz e
110vNdd ——
0iQvNdD —— v
8avNad —— az, A.||_¢||-m.n 112 av o e
8QVNdD —— 7 7 Ti i P
= anf2 iy X1 o s TONASH (8 1HS)
9avNad v 3 C3
$QvNd) —— o oIy
»QvNdd —
£avnad — Z1Hs)
20vNdd =
1avNdd iHs)
1HS) 0QYNdD

August 15, 1984

© Copyright IBM Corporation 1984

186 Professional Graphics Controller

L 30 ¥ 109ys

9IndH (s 1HS)

WYHYA3LVLS (€ LHS)

(£Z SIHS) 1AQV3BI

(1 1HS) NdD/HdSITI

11 1HS) HSYOY

(1 1HS) HSYH3

ISCEL]

(L LHS) NIINONN

Iz ! 1QVNAD (€ 1HS)
0w oz avd 20vNad i€ 1hS)
€AZ o £QYNd3J (€ LHS)
tavd €| [hAZ e QYNdD (€ LHS)
InZSIVRL
20
92
)
01vaNdJ (€ LHS)
1 h 11YaNdD
1 , Zivandd

v1vaNad
SLYQN4D
91¥aN40
£1¥0NdD (€ 1HS)

1

HN3WYHYIILYLS (€ LHS)

o 1
ey I
avodpE
e]
T0JHLNONI
30 HLINIIE IHS)
K 1
m Qe ng
s01S28 HeW3 U 1HS)
2655) -
o oL sialer2l
.;w s]cfe 0an,
5 M3 (€ LHS)
O 1043 € LHS)
o
. Q10U 1M
J
0 d)
@YETSINS NI 7
19 LHS) HANYIE 10 19
T} i) ramnH———120 20l
(11181 1931 €q|
121 SIHS) HNIH at¥;
(ST SINSI TONASH 5
¥IN9Y 15 1HS)
15 1451 NASAROD el
HOW3 1 LHS)
TANYIB D (9 1HS)
N8 (€ IHS)

Professional Graphics Controller 187

© Copyright IBM Corporation 1984

August 15, 1984

L 30 G 193ys

8sisL_
n

(1 LHS 1N0ONASD — <5 ONASIHOD P 145!
69N
88150
(1481100 300W ke - HOW3 11 1151
69N 10HNGD 1f LHS!
r L — T t
| n3sewoy !
| ——————————— nishveoncms

12, 8
0 I 1
v 1119 1Nay) Y ogvnad e s
» LS 1ONASH — ov] o
15 1HS1INIA o 20vnd 1
ot v £avnad
LS 1094INONI) — P e |
6
01 ey 50vNgd
nena g €O/1 WY aq¥nad
04y B WO/L oY ‘avngd
gy ———— ——2 so1 v 0¥nad
Ny 901 1y 60vNad
Nay £ i 8y 010vnad
M1 LN s eyl iavngd
pstenas z o1vje2 SO 2i0vnad
6 cigvng
»10VNGD € LHS!
€49119WH
1y 2

01¥0NdD (€ 11S)
11vaNdd
21vandd

1

£190NdD
»1vaNdD
51¥0NdD
a1vandd
£1¥0NdD IF 1HS!

August 15, 1984

© Copyright IBM Corporation 1984

188 Professional Graphics Controller

L }0 9 188ys

LM3IIBBIN (€ 1HS)
NQYLNT (€ 1HS)
NIYOLYINW3 (2 LHS)

HOW3 (1 LHS)
§INdH (S 1HS!

8V NdD € 1HS!
(% 1HS) 1¥NYIE NdD

£av Ndd

{1 1HSI ON 90v Ndd

LIHS) N i

vav Ndd

(211810 5890 v

12 1HS) $820 2av NdD.
£ 148105800

10V NdD (€ LHS!
(2 1HS) 1 $800

UHMLNT (€ IHS!
00811 (€ LHS)

2SN8 Xid 11 LHS!
95N8 xid
558 xid
¥SN8 Xid
€58 Xid
2508 xid
1SN8 x1d
0S8 Xid 14 LHS!

£1¥Q NdD (€ 1HS!

1 1vQ nad
01¥0 NI (€ 1HS!

(1 1Ks1 100 3N18
(1 LHSI 1NO N¥D
(1 1HS) 100 03

| 9 4% Nd
€0 €q
9" sz-zz16My [SI L 1WA ND
59N

3n
0sn T

I0HMLNT (€ LHS)
%1010 (1 1HS!
HYNYIE (7 1HS)

Professional Graphics Controller 189

© Copyright IBM Corporation 1984

August 15, 1984

L 30 £ 199Yg

£INdH 1S LHS}
(1 1HS) HOOVSIa B o
_ 0 WMISIO (€ LHS)
08800 19 (HS)
(1 1HS) QY IETIS U LHS)
9Qv P)
Sav 810V NdD (€ LHS)
vav £1Qv Ndd
£av 910v¥ NdD
zav T siavnad
‘o 3 — navnad
(1 1HS1 00Y — cavnd
al o — zvnao
a —— Lavnad
25 15 —— oiavnad
4 1HS! b WYHa I S 2 g 9| ——— 6avned
(1 1HSI € WYHa T < H_m wvea | ~_w ovb—; w1 _— nm< maw
QL Lnsiz wva I W g — wvna
= h Wi 6l Z__¢qvnd) o il savngd
o [mavady nSWhL T v
oav_7] % 3 1 e ol —savod) i Q¥ 4D
i ! W 1 b4 o W £av nad
zav_9]%0 T 2159 viA 2av D e LHS)
€y 6] M3 o 20 205 (5830 9 1HS)
wav_zi] Oy 1| Sezrnzady [6 60D)
50 50 ¥4
av_ai] 39 Sororavna
Sgv_ai] 50 Nl iravndy aﬂ
1av 6| “osegawd o 2 o>

12 IHS) HIGZHOM

INTA W LHS)

TONASH (¥ 1HS)

L] L
I
Mo
- wisw 8
&hn 2] B
Mg
vo
EH i
hH & A2 a) HNIH P LHS!
N—||r||m> @1 INS)
10735 11 1HS!
0S840 19 1HSH
158009 1HS!
IS4 LnsH

August 15, 1984

© Copyright IBM Corporation 1984

190 Professional Graphics Controller

G JO | 199ys

(E)HNIH
(€)Ndd/14S1a
(S)INILNONIN

(S)1dNNH

(¥'€)NdD/HdSIa3
(9'¥'€)HSVYHIV
(P'E)HSYH3I

[C0s }—¢snaxia(s)
[8v —9snaxid(s)
oy F—ssnaxid(s)
[vv —vsnaxid(s)
[ev —sesnaxid(s)
[ov —zsnaxid(s)
[88— 1snax1d(s)
| o€ —osnaxid(s)
Ve |

ze
or]
| 8¢ |
| 9¢ |
v |
e
oc]
o1 |

ol
En
et
| 01|
| 8 |
| 9 |
na

Z —"00HLNONI(S)
NId

er

(9)1LMHOSHND —]
(S)TLMNOILONNS —

jslelelss]

G+ &—
(€)a
(€)0 —
(€)g Ih
() Inlm
st
[ee |
[ie]
62
]
st
[X4
o
61
]
51
€L

l

—

]

i

ELLEET

N
S

G+

(€)eLavndd
(€)21LAvYNdO
(€)11LAVYNdO
(€)0LAvNdO
(€)6avNdd
(€)74MAAVYLHV 1S
(9's’€)£1vAaNdD
(9's'€)91vandd
(9'S°€)SLvANdD
(9°'6°€)p1vANdD
(s'elgdid
(9's’e)8ed
(5'e)em3
(§)1a43

G+

I

TTH

L]

|

Nig|lo|lolo|N g |Oo|lo|Q|N|T|O|IC
NN NN o|o|t || T[T |F|Wv

el k=]
- |

|

o

|

<

|

o

|

[=]

z
a

g

(€)£AVNdD
(€)9avNdd
(€)SAQVNdD
(€)yavNdO
(€)£AvNdO

(€)2avNndo

(€£)0avndo
(9'6°€)€LvAaNdD
(9'6°€)2Lvand?d
(9's’e)11vandd
(9'6'£)0LvANdD

(9'5°'p)%10.100

(E)TLINI —

2ls]e]

E

<

|

BE

w
™

™
™

|

™

|

NN

Yo}
~N

|

™
o~

A

(o))

~

|

w

|

™

—

—— HZW3(9)
M HLW3(S)

—— HOW3(S)

Higgag

S

Professional Graphics Controller 191

© Copyright IBM Corporation 1984

August 15, 1984

S Jo 2 198ys

 148) 101
(€ 1181 D18

w 1ks)osa

¥ 1ns) IS8

]

(€ 1HS) 10M

2
L 3T

[FUCRT

-2

R
£5ldnL
i

INESEIGR S

(€ 1HS) VOS

(€ 1HS) HOS.

{S'C LHS) WOS

2595333

2

L]

o ¢

(€ 1nS) 2OV

Py
233
232
S35

€ 11S) 00v3
1H8) 188ND

_TN w\[x

av3

El

o|r|er]

01h0 2 [mlev]

M3 (1 1HS)
NNYE b IHS'

HNIH (1 LHSH

HIW3 (v LHS)

NdO/dSIA (1 1HS)
a
2

a
Vi LHS)

HZW3 (¥ 1HS)

2Indu 15 1HS)

ISVH3 (£ LHSH

NdO/HASIAT (1 LHS!
£1Q¥NdD 1 IHS}H

0QV NdD 1 1K)

:konlx:w [IPTE

N 1¥Q 4D 1 LHS)
91vQ Ndd
51va Ndd

TINIIS LHG)
HSYOT 11 WS

August 15, 1984

© Copyright IBM Corporation 1984

192 Professional Graphics Controller

S Jo € J199ys

HOS 1Z LHS)
S (Z 1HS!
1sqf svpgr IS¥O30 S LHS!
ad |
[£ ovfs
11103 r] S— -+ ' Wi T nosms
v103 [[l
€103 oS fs—wos Y z W AN O HEvE3 1 1kS)
z103 ey
1103 el Ihe 100 hav3
0103 7] 99 wn % 7] od 1k 4 e
R apem rE =
i we ohd S et s
903 2 Ly m bl ! €dy
$03
vo3
€03 WOS Z 1HS
203 5] [wos
103 o 3 a4 A 711
v 1451003 ¥sq L ﬂ —4
[7Y] S A— 4 © oV
s ——— — whe o
(2 1481 15vH3 S PO i) N 2vfE <
00 « Bl) HOS o H 3 0 HPCH)
(¥ {HS) SLV [} Ite o] CIEYC) o e Wi < HSYIIV (1 LHS!
v] 20 coftl i 0d| 10 vl
€ K INF) [EELTERN L7 A8 2] g v -
2y 3 €0 b xcxat) 0] kad W L1l M3 e R &
Ly W b4 i Eww] o tdl-o—o03” e R
(v 11 01v T *° L] e] Py e [D
SLeant LA BT 21-d0292SM1
9 €2n ein
5 1HS) L1vd D
HS) 91vd ¥sa SO pg————
¥ 1HS) 0HSD v
¥ LHS! 184SO >
Y —] T Wi
— or I - 5]
os —t 4 v
.W 2| 02] 6 oS [e
W ¥5Q 0 D oo 100 M \A
00 R ENN /oa1 7]
9 & E] 200 vt
10 o] o [N 7
] 20] 20 24 i\l €od L T
U € wpp—n woa A —— 0m 2 1HS!
(¥ 1HS) 1S100VHd IV 50 o] € 2 5 03 €3 L D Fun S
15 oy worane® T 21~40252S W1 edd
weidn og o1 220 Lon | 3
an 20 | G
s D C
ﬂ, T a8
Ll T - 2Qv3 v LKS)
! 7 1S5 1 90v3
(TR v — sav3
)) M i Blowos vav3
T 9 I €av3
%0 ov 0d zav3
0 D Ll I PO R AN \ava
a L B oz B - 00v3 (¥ 1S
dSOLIMNH ¢ i 203,
neldhs | ® s2n 0 2 Hdl 003
@n heldhL m
w4 o v ey 120
T [0 8] < 9 J
£VY (¥ JHS!
vy
vy
ovy (v Ius)
YOS (Z 1HS!
H1DL100W3 (L LHS!
9INdHY (S LHS!

Professional Graphics Controller 193

© Copyright IBM Corporation 1984

August 15, 1984

G JO ¢ 1e8Ys

(€2 1HS) HINA

Hona

SNYE

HNIIN

IWYHD

@1 1Hs) HZwa

(1 1HS) 0 SN Xid

£5n8 Xid
»$N8 Xid
S5SN8 XId
95N8 Xid
T4 1HS) £ $08 Xid

(SEIHS) Ovy
(SELHS) vy
(SELHS! 2wy
SEINS) vy

=

\=

ooy 5]

galanL
hen

3404 €

TNNH AL LHGH

14SD (€ 1HS)
c ol L1ug)

TLMNOILONNA (1 LHSH

€ WNdH (5 1HS)
01¥G NI (4 IHS)
11¥0 N0

21va Ndd

€1v0 nad

»1v0 Ndd

S 1¥0 Ndd

91vQ Ndd

2190 NdD (1 LHS)

15812 1HS)

THM3 (1 LHS)
3043 (4 1HS)

103
003 (£ 1HS!

=

{1 1ust
0LV (S'€ IHS)

LY S'E 1HS)

19ISWhL
n

(1 LHS! TOBINONIT

2]

[FTE]

2Ind8 (1 1HS)
8104 1HS)
NILNONIT (4 LHS)

10145 1HS)

1S10QYHAY (£ 1HS)
WHJTYNI (5 LHS)

WOSUND (5 LHS)

August 15, 1984

© Copyright IBM Corporation 1984

194 Professional Graphics Controller

G Jo G leeys

ans
(€ LHS) 9 Wad
(v 118! £ 1Nau
(w2 LHS) 2304k
1Z 1HS}H L INdY
D
1
(z 118) HSYO3 s 3 g1 (1 1HS)
ey
(€ Lhs) 7T ﬁ HSYOIY U1 LHS)
Z1ms) 15v03
1HS)
0 2vd (v LHiS)
€Vt (v LiS)
01va Ndd (1 LH)
L1vandd
Z1vandd
€1vQ N2
¥ 1vQa NdD
S1va Ndd
91v0 Ndd
2190 0D 1 448
%10 100 W3 (1 LHS)
j WOsiz1Ms)
[’
L —lw o 3 (o] HNLNI (9 LHS)
a i K T\ _Een
¥ 1HS) 1y ol ©© sesn a
otn
€ 1H)
v 11 WHAIWNI . Tiw] & L1vd
B 3 NN T
ey H GNO HOBNT | N 0] TWYHO (v LHS)
i ™ ¥osHND 00 wa| " 91vd (€ LHS)
@ L1 u
[t
:] ISUND (2 LHSH

Professional Graphics Controller 195

© Copyright IBM Corporation 1984

August 15, 1984

<t <
o0&
N —
o [
~.Q
w3
— m
— — - &
8 40 | 193ys I8 1tV »n =
[oca | loev | 39
osa] fov] 20
m 628 62V S
828 82V <
128 v =
28| 242
1928 | 192V | =
05 — snexidion) (ON)8AVN4D 28 szv b
8y ——9SN8XxId(0L} (ON)LAQvNdO vZ8 v WJ
9v |— ssnaxidiot) Q3AY3s3Y a3AH3s3y (ON)9QVNdD tz8 ezv &
v —— vSN8X1d(0L) (ON)Q (ON)ELAVYNdD (ON)SavNdd 28 v C
Zy —— €sSn8xid(oL) (ON)D (ON)Z1avNdD (8)yaQvNdd [¥4:] 1Zv
0y — zsnaxidot) N8 (ON)11aVNdD (8)EQVNdD 0z8 0zv ©
—— 1SN8x1d(oL) (ON)VY (ON)OLAVvNdD (8)2AvNdd 618 6ivV
— osnaxidion) (819N (ON)6QVNAD (8)1aVNdD 8l8 [-
34VvdS (VILN (ON)I1LMOQVYLHV1S (8)0avNdd (18 LY e
34VvdS (8)HOOVSIO (01)¢1vandd (0L)€Lvandd 918 9LV “0
34VvdS (ON)113S1VvLS (01)91vAaNdd (01)Z1vaNndd 18] SLY f
— 11vsvoie) (ON)INIJTHTD (01151¥0NdD (01)11¥aNdD via viv =
(6'8)N3W (ON)IN34113S (0Lv1vandd (010Lvandd £18 gLV 0
—— NdJ/1d4S1Q(8) (ON) 7LM NOILONNS —810(8) (ON)HZW3 218 Z\v C
(ONIN3LNONIT (o11av —sco® (ONIHLNI ia v
(ON)TdWNH 019av (ON)IME3 (ON)HOW3 oL8 oLv m
(ON)1Sd1 (o1sav (ON)1083 (6)ZWVHA AZLs 68 6v =
3uvds ©01)vav (8INASX (6)EWVHA 29 8v 4
— NVOSONASHMAQV(6) o1gav 1AQH4SI(6) (6)vWYHa ‘8 v =
— 1naniN3a (ozav (01'8)18MY4SIa E o8 ov e
— msn3d ouiav (01'8)10H4SI0 3uvds sg 5v 6]
(ON)NO/HdSIa3 01100V (0111538373 (8) 11M 300W va W —
(ON)HSVO3 Q3AY3s3y Q3ny3saY [->01008) Ase X eV m
(ON)HSVH3 (6) HLINI z8 v e
34VvdS (8) TLINI ano 18 N4 -qw
U v
LN | [Nl | A
zr zr i 184 vd am.u.
=}
-
o
(=)
-—

HOLYTS (£ 1HS!
8 J0 Z 199y§ Torre
wsvH
wsvo
wsve
S0
zsvu
TSYD
sy
usvD
0svi
108vD (2 LHS)
00M (9 LHS)
:H
" oo
v vl
s 2| K
v
100wy z
Za o] /004 7]
1000 €
o 2004 %1
woa w £00d LI
Ed
0292501
o 0730 (2 IHS)
173012 1HS)
ON3 (9 1HS)

++104dSI (9 1HS)

18 1M9) L8S

iy @ ams)
X

(8 1HS) 08S

nn

i

© Copyright IBM Corporation 1984

[N

OVhE 8 1HS)

Professional Graphics Controller 197

August 15, 1984

8 jo € 199ys

18 IHS LS ——
9us
oHs ————

18 IHS' OBS

hiSSYhL
ehn

om_n F
1qId €
\Zald ol

€Q1d LI

A ovl

sv) vl
sv o 2vl
ey

180 WY
200 o
€00 av

"Ly

0292SH1
on

g
101d €
\"2014 4]

€qid ¢

o]

> "

LDx .

(1

180 hy

0014 Haog sy

2914 Liog v
\Za1d o1

£01d LI hea o

nhn

n
——dsv> p e
Svu v el 1V
B Ty _avie
10q hy| i1 evie
L/201d Thooq sy[T VI
saig efe00 Yl ovie
\5a1der 5 o
'y Yforovie
i
029251
hin

401VIS 12 1HS)
73S
ThSYY
ISV

0S¥ 1L MS!
01M19 1HS!

ovHd 1B iHS)

August 15, 1984

© Copyright IBM Corporation 1984

198 Professional Graphics Controller

8 JO ¥ 199ys

18 1M1 LHS

16 1HS1 0¥S

W OV

M o
s -
W o oves
<
£V
o0ed 715%0 4y]
P Tata ¢ [oven
€0 9|
\Zaea o] ;00 N9 v
€0td L1 0 Lved

0P
0Z925HT
€n

$hZSTVRL
ann

o€ 1

0292 SWI
onn

1|
v
&v|
Y
av
9y
w

0Z925HT
hen

"
Bl

2

i

02925HT
20

AR

I

HOLYIS 1 1HS)
12138

wsVH

Wsvo

1eSvY

1ESVD.

12svy

128v0

Tisvy

Tsvd

oSV

J08¥D 12 LHS!
102M 19 LHSH

01301 118
11301 1HS)
TNI9 LK)
+-10HdSIA 19 1HS)

L 1WX (8 LHS!

010X 18 1HS)
Lv0g 18 1HS!

OVQf '8 1HS)
TIEM 9 LHS!
LYI818 LHS!

svig
vig M

OVE 8 LHS!

LYNG 18 LHS)
v

0V 8 1HS)

Professional Graphics Controller 199

© Copyright IBM Corporation 1984

August 15, 1984

8 40 G 199Yys

ENCERTT
9us
sHS
vHS
£us

hLGSYhL
ohn

0292SWI
2n

/602 ¢
192d ¢
\ 202d SI

€02d L]

HOLYS (£ LHS)
RE

TwsvE

wsvD

IesvVE

€SV

128vH

128V

sy

SV

108Vl

05¥D (£ 1HS)
T0EM 19 LHS)

]

wy

.

02925H1
8zn

0292SHT
920

£ 190X 1§ 1HS)
9 1vx

) 1v0x 1
0.1¥aX 18 145!
RIHS

August 15, 1984

Copyright IBM Corporation 1984

)
©

200 Professional Graphics Controller

8 40 9 199Ys

TWMASIO 1 IHS'

E7) = o8| HOOVSIO 11 LHS!
12 1HS) TON3 (Y1 pd Edl pry o1 ON 1 LHS)
—ai]® € i INULLHS)
oot ae 0
oh an S OW
(v 1HS) 12N 9 a¢) oo N
(5 1HS) 1ENT ol
12 1HS)) 7 O
(8 2 LHS) o] Aifg a 1avnd>
(€ 1HS) TINS. o 211%® eIy — el u 2 1HS)
nfor | ST =
€51528
(2 1Hs) 100m —g =g F;»og‘ hLSENRL 3an
(¥ 1HS) 10ZM hul
L o.B 9 \¥s
—]
(s w0 55 Caant 2l
() w1 o 1QH4SIA (1 1HS)
vs S B
h|: S ECTNERT =
WISV TMICON (1 1HS)
RISTVRL ELINS
(= 2
‘ 0QvNdD (1 LHS)
T ’ 1avndd
(6 1HS) TEM 5 W & ! zavnad
- o2
v
_ﬂ>xm<a—_3|§|@ ! 0 nv_ 3 SQVNdD (1 LHS)
1 JMM 9 13 \¥3 Nv_ avol 1 >
a0 v
i ; Cmp]
T
S ee 0 G 8 \ 09— HAOLISIH (1 1HS)
ek
191SIvhL
89N
{2 1HS) 1INdY
(2 1HS) . 1QHdSIa
1L 1HS) 2N
(L 1HS) EW
N o8
(z JHS) 1E13SAQY
J213sAav
11738AQY
(2 1181 10738A0Y
T 2eanPo 1]
14hL 6
el st e
(£'1 1HS) NdO/1dSIa A =
{1 LHS) %10100W3 o 9
< = O
(7 D% a z
] o 3 g NG
VASTY: S 5] 10 are
Linsiale O oo $
1821 1HS) ¥10100 « 00 ¥ TLINIL LHS)
(@2 [
[0 o“
b
FCEEI 4

Professional Graphics Controller 201

© Copyright IBM Corporation 1984

August 15, 1984

8 J0 £ 198YSg

(8 1H$) 050y
150H

2508

£50u

(8 11S) ¥SOH
1SVEZ IHSI HOLYTS
19 IHS) HD1¥ 10

{4 1HS) . 1AQHASIO

121 1HS1 10738
15§ LHS!H 12738
') LHS) 12735

ISYEZIHS! s 130

wS¥D
sy
1ES¥D

(S¥EZ NS TESYH

1 IHS) NSYOAQY

oo B
o
D €
—|®
——Hwe b 3
—_—H®
—_—] 0
[] €0|
"o [] 0
—s
a0 %
o &l "

o

EIEN
~
5

hLGSYhL
wn

-

—d¥

TAGHJSIA

19 LHSI HNYDS

[SULIRISES
1S¥EZ NS 0130
128vD
125V
Tisvo
Tisve
1080
1S VEZ 1HS) 108VH

|2 |
~
3

HNVISINAS / HAAGY

10
o I
€on

2 lo|e|2]

NREGD wol

o[~

501529
04N

D9 jHS)

T013SAQY (81HS)
IEVISAQY (9 LHS)
1273SAQY (9 1HS)

1104 19 LHS)

- 1HMJSIA 19 LHS)
104dSId 11 1HS)

HLINI | LHS)

ZM 19 LHS)
N (9 LHS!

NdD1481Q 17 LHSH

T1ISAQY 19 LHSH
™10 10019 LHS!

August 15, 1984

© Copyright IBM Corporation 1984

202 Professional Graphics Controller

8 jo g 1e8ys

§¥E2 NS Lyrd —\

cvea
zven

1ven
(g v'e'Z LHSI OVER

SVEZINS! L¥2a
avzg
svzg
vvza
£vze
2vea
1ve8
S v'EZ LNG) Ovea

T i

SVEZ IHS) L¥18
ovi8
svig

vrig

evig

Zvia

i
1§ ¥EZIHSI0V18

ISVEZ LHS) LY08

SVEZ 1HS) Ov08

1 LHS) 2508 X1d

958 Xid
558 Xid
»SN8 Xid
€508 xid
Zsn8@ Xid
I sna xid
11 1HS) 0 SN8 Xid

G¥EZ IHS) LLVOX

hLSSTWRL
€0

! H|

9LvOX

sivox ——— - -

vivox ——— I3 :

ELvgx — =

B — K il

(Lvax ————, v

15'¥'€2 LHS) O1vax —av
[e 90V,
O v
Z

d) 0

%0 |-
TSead sl 1o M TuS
SWaXid 9 mu FI
3 b e
P b o |
s 7]
as08 xta_o1 3

—— L0 [
Lsa o nLedhL s
ohn

hLSSTVRL
190

11

I

¥S0H (2 1HS)

2av i LHS)
9av
sav

0av i 1kl

2800
1808
080M (2 LHS)

£S0H (2 .xM.

%1100 (9 {HS)
D4H (1 1HS)

2HS (SVET HS)
OSSP EZ LHS)

-+108dS10 (9 LHS)

" IMMISIO (L LHS)

TQHISIO (4 LK)

21¥Q Ng 41 LHS)
91va Ndd
§1vQ Ndd
¥1v0 Ndd
€1v0 Ndd
Z1vandd
L 1va ngd
01¥Q 4D (1 LHS)

HDLYIQ (L LHS)

Professional Graphics Controller 203

© Copyright IBM Corporation 1984

August 15, 1984

August 15, 1984
204 Professional Graphics Controller © Copyright IBM Corporation 1984

Glossary

algorithm. A finite set of well-defined rules for the solution of a
problem in a finite number of steps.

alphanumeric (A/N). Pertaining to a character set that contains
letters, digits, and usually other characters, such as punctuation
marks.

American National Standard Code for Information Exchange
(ASCII). The standard code, using a coded character set
consisting of 7-bit coded characters (8 bits including parity
check) used for information exchange between data processing
systems, data communication systems, and associated equipment.
The ASCII set consists of control characters and graphic
characters.

A/N. Alphanumeric

ASCII. American National Standard Code for Information
Exchange.

Cartesian coordinates. A system of coordinates for locating a
point on a plane by its distance from each of two intersecting
lines, or in space by its distance from each of three mutually
perpendicular planes.

cathode ray tube (CRT). A vacuum tube in which a stream of
electrons is projected onto a fluorescent screen producing a
luminous spot. The location of the spot can be controlled.

cathode ray tube display (CRT display). (1) A CRT used for
displaying data. For example, the electron beam can be
controlled to form alphanumeric data by use of a dot matrix. (2)
Synonymous with monitor.

August 15, 1984
© Copyright IBM Corporation 1984 Glossary-1

clipping. In computer graphics, removing parts of a display image
that lie outside a window.

color cone. An arrangement of the visible colors on the surface of
a double-ended cone where lightness varies along the axis of the
cone, and hue varies around the circumference. Lightness
includes both the intensity and saturation of color.

complement. A number that can be derived from a specified
number by subtracting it from a second specified number.

coordinate space. In computer graphics, a system of Cartesian
coordinates in which an object is defined.

cursor. (1) In computer graphics, a movable marker that is used
to indicate a position on a display. (2) A displayed symbol that
acts as a marker to help the user locate a point in text, in a system
command, or in storage. (3) A movable spot of light on the
screen of a display device, usually indicating where the next
character is to be entered, replaced, or deleted.

debounce. (1) An electronic means of overcoming the
make/break bounce of switches to obtain one smooth change of
signal level. (2) The elimination of undesired signal variations
caused by mechanically generated signals from contacts.

display. (1) A visual presentation of data. (2) A device for visual
presentation of information on any temporary character imaging
device. (3) To present data visually. (4) See cathode ray tube
display.

display attribute. In computer graphics, a particular property that
is assigned to all or part of a display; for example, low intensity,
green color, blinking status.

display element. In computer graphics, a basic graphic element
that can be used to construct a display image; for example, a dot,
a line segment, a character.

display group. In computer graphics, a collection of display
elements that can be manipulated as a unit and that can be further
combined to form larger groups.

August 15, 1984
Glossary-z © Copyright IBM Corporation 1984

display image. In computer graphics, a collection of display
elements or display groups that are represented together at any
one time in a display space.

display space. In computer graphics, that portion of a display
surface available for a display image. The display space may be
all or part of a display surface.

display surface. In computer graphics, that medium on which
display images may appear; for example, the entire screen of a
cathode ray tube.

drawing primitive. A group of commands that draw defined
geometric shapes.

field-programmable-logic-sequencer (FPLS). An integrated circuit .
containing a programmable, read-only memory that responds to
external inputs and feedback of its own outputs.

FIFO (first-in-first-out). A queuing technique in which the next
item to be retrieved is the item that has been in the queue for the
longest time.

FPLS. Field-programmable-logic-sequencer.

hither plane. In computer graphics, a plane that is perpendicular
to the line joining the viewing reference point and the view point
and which lies between these two points. Any part of an object
between the hither plane and the view point is not seen. See also
yon plane.

intensity. In computer graphics, the amount of light emitted at a
display point.

interleave. To arrange parts of one sequence of things or events
so that they alternate with parts of one or more other sequences
of the same nature and so that each sequence retains its identity.

August 15, 1984
© Copyright IBM Corporation 1984 Glossary-3

least-significant digit. The rightmost digit.

look-up table (LUT). (1) A technique for mapping one set of
values into a larger set of values. (2) In computer graphics, a
table that assigns a color value (red, green, blue intensities) to a
color index.

luminance. The luminous intensity per unit projected area of a
given surface viewed from a given direction.

LUT. Look-up table.

mask. (1) A pattern of characters that is used to control the
retention or elimination of portions of another pattern of
characters. (2) To use a pattern of characters to control the
retention or elimination of portions of another pattern of
characters.

matrix. (1) A rectangular array of elements, arranged in rows and
columns, that may be manipulated according to the rules of matrix
algebra. (2) In computers, a logic network in the form of an array
of input leads and output leads with logic elements connected at
some of their intersections.

mode. (1) A method of operation; for example, the binary mode,
the interpretive mode, the alphanumeric mode. (2) The most
frequent value in the statistical sense.

modeling transformation. Operations on the coordinates of an
object (usually matrix multiplications) which cause the object to
be rotated about any axis, translated (moved without rotating),
and/or scaled (changed in size along any or all dimensions). See
also viewing transformation.

modulo-N check. A check in which an operand is divided by a
number N (the modulus) to generate a remainder (check digit)
that is retained with the operand. For example, in a modulo-7
check, the remainder will be 0, 1, 2, 3, 4, 5, or 6. The operand is
later checked by again dividing it by the modulus; if the
remainder is not equal to the check digit, an error is indicated.

August 15, 1984
Glossary-4 © Copyright IBM Corporation 1984

modulus. In a modulo-N check, the number by which the operand
is divided.

monitor. Synonym for cathode ray tube display (CRT display).

most-significant digit. The leftmost (non-zero) digit.

nanosecond (ns). 0.000 000 001 second.

ns. Nanosecond; 0.000 000 001 second.

PEL. Picture element.

picture element (PEL). The smallest displayable unit on a display.

raster. A predetermined pattern of lines that provides uniform
coverage of a display space.

saturation. In computer graphics, the purity of a particular hue. A
color is said to be saturated when at least one primary color (red,
green, or blue) is completely absent.

scaling. In computer graphics, enlarging or reducing all or part of
a display image by multiplying the coordinates of the image by a
constant value.

vector. In computer graphics, a directed line segment.

view point. In computer graphics, the origin from which angles
and scales are used to map virtual space into display space.

viewing reference point. In computer graphics, a point in the
modeling coordinate space that is a defined distance from the
view point.

viewing transformation. Operations on the coordinates of an
object (usually matrix multiplications) which cause the view of

August 15, 1984
© Copyright IBM Corporation 1984 Glossary—S

the object to be rotated about any axis, translated (moved without
rotating), and/or scaled (changed in size along any or all
dimensions). Viewing transformations differ from modeling
transformations in that perspective is taken into account. See also
modeling transformation.

viewplane. In computer graphics, a two-dimensional coordinate
system onto which images are projected and which contains the
display space.

viewport. In computer graphics, a predefined part of the display
space.

virtual space. In computer graphics, a space in which the
coordinates of the display elements are expressed in terms of user
coordinates.

window. (1) In computer graphics, a predefined part of the virtual
space. (2) In computer graphics, the visible area of a viewplane
mapped into a viewport.

yon plane. In computer graphics, a plane that is perpendicular to
the line joining the viewing reference point and the view point and
which lies beyond the viewing reference point. Any part of an
object beyond the yon plane is not seen. See also hither plane.

August 15, 1984
Glossary-6 © Copyright IBM Corporation 1984

Index

A

absolute draw

DRAW (2D) 108
absolute move

MOVE (2D) 135

MOVE3 (3D) 137
alphanumeric mode 20, 21, 22, 23
alphanumeric operation 29
ARC 86
AREA 87
area fill 87
area fill command description 68
area fill to boundary color 88
area pattern 89
area pattern mask 61
AREABC 88
AREAPT 89
ASCII commands

ARC 86

AREA 87

AREABC 88

AREAPT 89

CA 90

CIRCLE 91

CLBEG 92

CLDEL 93

CLEARS 94

CLEND 95

CLIPH 96

CLIPY 97

CLOOP 98

CLRD 99

CLRUN 100

COLOR 101

August 15, 1984
© Copyright IBM Corporation 1984

Index-1

CONVRT 102
CX 103
DISPLA 104
DISTAN 105
DISTH 106
DISTY 107
DRAW 108
DRAWR 109
DRAWR3 111
DRAW3 110
ELIPSE 112
FILMSK 113
FLAGRD 114
FLOOD 116
IMAGER 117
IMAGEW 118
LINFUN 119
LINPAT 120
list of commands 83, 84, 85
LUT 121
LUTINT 122
LUTRD 123
LUTSAV 124
MASK 125
MATXRD 126
MDIDEN 127
MDMATX 128
MDORG 129
MDROTX 130
MDROTY 131
MDROT?Z 132
MDSCAL 133
MDTRAN 134
MOVE 135
MOVER 136
MOVER3 138
MOVE3 137
POINT 139
POINT3 140
POLY 141
POLYR 142
POLYR3 144
POLY3 143

August 15, 1984
Index-2 © Copyright IBM Corporation 1984

PRMFIL 145
PROJCT 146
RECT 147
RECTR 148
RESETF 149
SECTOR 151
TANGLE 152
TDEFIN 153
TEXT 154
TEXTP 155
TIUST 156
TSIZE 157
VWIDEN 158
VWMATX 159
VWPORT 160
VWROTX 161
VWROTY 162
VWROTZ 163
VWRPT 164
WAIT 165
WINDOW 166
ASCII communications 78, 79

B

basic operations
emulator 28
high-function graphics 32

bit planes 60

block diagrams
display RAM address control 17
emulator address control 11
graphics emulator 13
high-function graphics display memory 15
look-up table and video output section 18
microprocessor section 6
Professional Graphics Controller 2
system-bus interface 4
timing and control section 19
video control generator section 8

August 15, 1984
© Copyright IBM Corporation 1984

Index-3

C

CA 90

CIRCLE 91

CLBEG 92

CLDEL 93

clear screen 94

CLEARS 94

CLEND 95

clip hither 96

clip yon 97

CLIPH 96

clipping 61

CLIPY 97

CLOOP 98

CLRD 99

CLRUN 100

COLOR 101

color-select register 36, 37

color/fills/patterns
AREA 87
AREABC 88
AREAPT 89
CLEARS 94
COLOR 101
FILMSK 113
FLOOD 116
LINFUN 119
LINPAT 120
list of commands 83, 84, 85
MASK 125
PRMFIL 145

command list begin 92

command list delete 93

command list description 71, 72

command list end 95

command list loop 98

command list read 99

command list run 100

command lists
CLBEG 92
CLDEL 93

August 15, 1984
Index-4 © Copyright IBM Corporation 1984

CLEND 95
CLOOP 98
CLRD 99
CLRUN 100
list of commands 83, 84, 85
~~ communication protocol 80
Communications 78, 79
communications ASCII (command) 90
communications hexadecimal (command) 103
components
display memory 15, 16, 17
display RAM address control 17
emulator address control 11, 12
graphics emulator 13, 14
high-function graphics display memory 15, 16
list of major components 3, 4, 81
look-up table and video output section 18
microprocessor section 6, 7
system-bus interface 4, 5
timing and control section 19
video control generator section 8,9, 10
connector specifications 180
convert 102
CONVRT 102
coordinate space 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55
coordinate transformations 47
current color 58
current point 57
CX 103

D

default LUT selections for LUTINT 168
defining commands

AREAPT 89

DISTAN 105

DISTH 106

DISTY 107

list of commands 83, 84, 85

MDMATX 128

August 15, 1984
© Copyright IBM Corporation 1984 Index-5

MDORG 129
MDTRAN 134
TDEFIN 153
VWMATX 159
VWPORT 160
VWRPT 164
WINDOW 166

DISPLA 104

display 104

display control 58, 59, 60, 62
drawing modes 58
drawing patterns 59
masks 60
primitive fills 59
viewing 62

display memory 15, 16, 17

display RAM address control 17

DISTAN 105

distance 105

distance hither 106

distance yon 107

DISTH 106

DISTY 107

DRAW 108

draw in 3D 110

draw relative 109

draw relative in 3D 111

drawing commands
ARC (2D) 86
CIRCLE (2D) 91
DRAWR3 (3D) 111
DRAW3 (3D) 110
ELIPSE (2D) 112
list of commands 83, 84, 85
POLY (2D) 141
POLYR 142
POLYR3 (3D) 144
POLY3 (3D) 143
RECT (2D) 147
RECTR (2D) 148
SECTOR 151
TEXT 154
TEXTP 155

August 15, 1984
Index-6 © Copyright IBM Corporation 1984

drawing modes 58

drawing patterns 59, 60

drawing primitives 63, 64, 65, 66, 67, 68
area fill command description 68
linear forms 65
move command description 63
nonlinear forms 66
point command description 63
two-dimensional and three-dimensional command format 63
vectors 64

DRAWR 109

DRAWR3 111

DRAW3 110

E

ELIPSE 112

ellipse 112

emulator
alphanumeric mode 20, 21, 22, 23
color-select register 36, 37
description of basic operations 28
graphics mode 24, 25, 26, 27
memory requirements 42
mode register summary 40
mode-select register 38
programming the mode control and status register 35
programming the 6845 CRT controller 33, 34
sequence of events for changing modes 42
status register 41
320-by-200 color/graphics mode 24
40-by-25 alphanumeric mode 22
640-by-200 black-and-white graphics mode 27
80-by-25 alphanumeric mode 23

emulator address control 11, 12

emulator card logic diagrams 191

error handling 82

August 15, 1984
© Copyright IBM Corporation 1984 Index-7

F

fill mask 113
FILMSK 113
flag read 114
FLAGRD 114
FLOOD 116

G

graphics emulator 13, 14
graphics mode 24, 25, 26, 27
graphics operation 30, 31

H

hexadecimal commands
hex AA (CLIPH) 96
hex AB (CLIPY) 97
hex AF (CONVRT) 102
hex A0 (VWIDEN) 158
hex A1 (VWRPT) 164
hex A3 (VWROTX) 161
hex A4 (VWROTY) 162
hex A5 (VWROTZ) 163
hex A7 (VWMATX) 159
hex A8 (DISTH) 106
hex A9 (DISTY) 107
hex BO (PROJCT) 146
hex B1 (DISTAN) 105
hex B2 (VWPORT) 160
hex B3 (WINDOW) 166
hex CO (AREA) 87
hex C1 (AREABC) 88

August 15, 1984
Index-8 © Copyright IBM Corporation 1984

hex DO (DISPLA) 104
hex D8 (IMAGER) 117
hex D9 (IMAGEW) 118
hex EA (LINPAT) 120
hex EB (LINFUN) 119
hex EB (MASK) 125
hex EC (LUTINT) 122
hex ED (LUTSAV) 124
hex EE (LUT) 121

hex EF (FILMSK) 113
hex E7 (AREAPT) 89
hex E9 (PRMFIL) 145
hex OF (CLEARS) 94
hex 04 (RESETF) 149
hex 05 (WAIT) 165
hex 06 (COLOR) 101
hex 07 (FLOOD) 116
hex 08 (POINT) 139
hex 09 (POINT3) 140
hex 10 (MOVE) 135
hex 11 (MOVER) 136
hex 12 (MOVE3) 137
hex 13 (MOVER3) 138
hex 20 (DRAW) 108
hex 21 (DRAWR) 109
hex 22 (DRAW3) 110
hex 23 (DRAWR3) 111
hex 3C (ARC) 86

hex 3D (SECTOR) 151
hex 30 (POLY) 141
hex 31 (POLYR) 142
hex 32 (POLY3) 143
hex 33 (POLYR3) 144
hex 34 (RECT) 147
hex 35 (RECTR) 148
hex 38 (CIRCLE) 91
hex 39 (ELIPSE) 112
hex 43 (CA) 90

hex 43 (CX) 103

hex 50 (LUTRD) 123
hex 51 (FLAGRD) 114
hex 52 (MATXRD) 126
hex 70 (CLBEG) 92

August 15, 1984
© Copyright IBM Corporation 1984 Index-9

hex 71 (CLEND) 95

hex 72 (CLRUN) 100

hex 73 (CLOOP) 98

hex 74 (CLDEL) 93

hex 75 (CLRD) 99

hex 80 (TEXT) 154

hex 81 (TSIZE) 157

hex 82 (TANGLE) 152

hex 83 (TEXTP) 155

hex 84 (TDEFIN) 153

hex 85 (TJUST) 156

hex 90 (MDIDEN) 127

hex 91 (MDORG) 129

hex 92 (MDSCAL) 133

hex 93 (MDROTX) 130

hex 94 (MDROTY) 131

hex 95 (MDROTZ) 132

hex 96 (MDTRAN) 134

hex 97 (MDMATX) 128
high-function graphics

alphanumeric operation 29

ASCII communications 78, 79

communication protocol 80, 81

communications 78, 79

coordinate space 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55

coordinate transformations 47

current color 58

current point 57

default LUT selections for LUTINT 168

description of basic operations 32

error handling 82

graphics operation 30, 31

list of commands 83, 84, 85

modeling matrix 49, 50, 51, 52, 53

programming considerations 43, 44, 45

run-length encoding 167

state 0 168, 169

state 1 170

state 255 178

state 5 176, 177

states 2-4 171,173,174, 175

three-dimensional hither/yon clipping 54

three-dimensional transformation 49

August 15, 1984
Index-10 © Copyright IBM Corporation 1984

three-dimensional viewing to two-dimensional virtual
projection 55
two-dimensional transformation 47, 48
video generation 56, 57, 58
viewer reference-point matrix 53
viewing matrix 53
high-function graphics display memory 15, 16

image processing 74
image read 117
image transmission
IMAGER 117
IMAGEW 118
list of commands 83, 84, 85
image write 118
IMAGER 117
IMAGEW 118
interface information
connector specifications 180
monitor interface 180

L

line function 119
line pattern 120
linear forms 65, 66
LINFUN 119
LINPAT 120
logic diagrams
emulator card 183, 191
memory card 183, 196
processor card 183, 184
look-up table 121
list of commands 83, 84, 85

August 15, 1984
) Copyright IBM Corporation 1984 Index-11

LUT 121

LUTINT 122

LUTRD 123

LUTSAV 124
look-up table and video output section 18
look-up table description 73
look-up table initialize 122
look-up table read 123
look-up table save 124
LUT 121
LUTINT 122
LUTRD 123
LUTSAV 124

M

MASK 125
masks 60, 61, 62
bit planes 60
clipping 61
matrix read 126
MATXRD 126
MDIDEN 127
MDMATX 128
MDORG 129
MDROTX 130
MDROTY 131
MDROTZ 132
MDSCAL 133
MDTRAN 134
memory card logic diagrams 196
memory requirements 42
microprocessor section 6, 7
mode register summary 40
mode set/read
CA 90
CX 103
DISPLA 104
FLAGRD 114
list of commands 83, 84, 85

August 15, 1984
Index-12 © Copyright IBM Corporation 1984

RESETF 149

WAIT 165
mode-select register 38
modeling identity 127
modeling matrix 49, 50, 51, 52, 53, 128
modeling origin 129
modeling rotate x axis 130
modeling rotate y axis 131
modeling rotate z axis 132
modeling scale 133
modeling transformations

list of commands 83, 84, 85

MATXRD 126

MDIDEN 127

MDMATX 128

MDORG 129

MDROTX 130

MDROTY 131

MDROTZ 132

MDSCAL 133

MDTRAN 134
modeling translation 134
monitor interface 180
MOVE 135
move command description 63
move in three dimensions 137
move relative 136
move relative in three dimensions 138
MOVER 136

MOVER3 138
MOVE3 137
N

nonlinear forms 66, 67

August 15, 1984
© Copyright IBM Corporation 1984

Index-13

P

POINT 139

point command description 63
point in three dimensions 140
POINT3 140

POLY 141

polygon 141

polygon in three dimensions 143
polygon relative 142

polygon relative in 3D 144
POLYR 142

POLYR3 144

POLY3 143

primitive fill 145

primitive fills 59, 60

PRMFIL 145

processor card logic diagrams 184
programming considerations

ASCII communications 78, 79

color-select register 36, 37

communication protocol 80, 81

communications 78, 79

coordinate space 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55

coordinate transformations 47

current color 58

current point 57

default LUT selections for LUTINT 168

error handling 82

list of commands 83, 84, 85

memory requirements 42

mode register summary 40

mode-select register 38

modeling matrix 49, 50, 51, 52, 53

programming considerations for the high-function graphics
mode 43, 44, 45

programming the mode control and status register 35

programming the 6845 CRT controller 33, 34

run-length encoding 167

sequence of events for changing modes 42

state 0 168, 169

state 1 170

Index-14

state 255 178

state S 176, 177

states 2-4 171,173,174, 175

status register 41

three-dimensional hither/yon clipping 54

three-dimensional transformation 49

three-dimensional viewing to two-dimensional virtual

projection 55

two-dimensional transformation 47, 48

video generation 56, 57, 58

viewer reference-point matrix 53

viewing matrix 53
programming the mode control and status register 35
programming the 6845 CRT controller 33, 34
PROIJCT 146
projection 146

R

read-back commands 75, 76
reading commands
IMAGER 117
list of commands 83, 84, 85
LUTRD 123
MATXRD 126
RECT 147
rectangle 147
rectangle relative 148
RECTR 148
relative draw
DRAWR (2D) 109
relative move
MOVER 136
MOVER3 (3D) 138
reset commands
list of commands 83, 84, 85
MDIDEN 127
VWIDEN 158
reset flags 149
RESETF 149

August 15, 1984
© Copyright IBM Corporation 1984 Index-15

rotate commands
list of commands 83, 84, 85
MDROTX 130
MDROTY 131
MDROTZ 132
VWROTX 161
VWROTY 162
VWROTZ 163
run-length encoding 167

S

save commands

list of commands 83, 84, 85
SECTOR 151
select commands

DISPLA 104

LINFUN 119

list of commands 83, 84, 85
sequence of events for changing modes 42
set commands

CA 90

CLIPH 96

CLIPY 97

COLOR 101

CX 103

FILMSK 113

FLAGRD 114

LINPAT 120

list of commands 83, 84, 85

LUT 121

LUTSAV 124

MASK 125

MDSCAL 133

POINT (2D) 139

POINT3 (3D) 140

PRMFIL 145

PROIJCT 146

TANGLE 152

TIUST 156

August 15, 1984

Index-16 © Copyright IBM Corporation 1984

TSIZE 157
specifications
power requirements 181
size 181
weight 181
state 0 168, 169
state 1 170
state 255 178
state 5 176, 177
states 2-4 171,173, 174, 175
status register 41
system reset 77
system-bus interface 4,5

T

TANGLE 152
TDEFIN 153
text 154

list of commands 83, 84, 85

TANGLE 152
TDEFIN 153
TEXT 154
TEXTP 155
TIJUST 156
TSIZE 157

text angle 152

text define 153

text description 69, 70

text justify 156

text programmed 155

text size 157

TEXTP 155

three-dimensional drawing
DRAWR3 111
DRAW3 110
MOVER3 138
MOVE3 137
POINT3 140
POLYR3 144

August 15, 1984
© Copyright IBM Corporation 1984

Index-17

POLY3 143
three-dimensional hither/yon clipping 54
three-dimensional transformation 49
three-dimensional viewing to two-dimensional virtual
projection 55
timing and control section 19
TJUST 156
TISZE 157
two-dimensional and three-dimensional command format 63
two-dimensional drawing

ARC 86

CIRCLE 91

DRAW 108

DRAWR 109

ELIPSE 112

MOVE 135

MOVER 136

POINT 139

POLY 141

POLYR 142

RECT 147

RECTR 148

SECTOR 151
two-dimensional transformation 47, 48

Vv

vectors 64

video control generator section 8,9, 10
video generation 56, 57, 58
viewer reference-point matrix 53
viewing 62

viewing identity 158

viewing matrix 53, 159

viewing reference point 164
viewing rotate x axis 161
viewing rotate y axis 162
viewing rotate z axis 163
viewport 160

viewport/ window/ projection

August 15, 1984
Index-18 © Copyright IBM Corporation 1984

CLIPH 96
CLIPY 97
CONVRT 102
DISTAN 105
DISTH 106
DISTY 107
PROJCT 146
VWIDEN 158
VWMATX 159
VWPORT 160
VWROTX 161
VWROTY 162
VWROTZ 163
VWRPT 164
WINDOW 166
VWIDEN 158
VWMATX 159
VWPORT 160
VWROTX 161
VWROTY 162
VWROTZ 163
VWPRT 164

W

WAIT 62, 165
WINDOW 166

write commands

IMAGEW 118
list of commands 83, 84, 85

Numerals

320-by-200 color/ graphics mode 24

40-by-25 alphanumeric mode 22

640-by-200 black-and-white graphics mode 27
80-by-25 alphanumeric mode 23

August 15, 1984
© Copyright IBM Corporation 1984 Index-19

August 15, 1984
Index-20 © Copyright lBMgCorporation 1984

	1
	2
	3
	4
	5
	6

